U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Sage Choice

Logo of sageopen

Systematic reviews: Structure, form and content

This article aims to provide an overview of the structure, form and content of systematic reviews. It focuses in particular on the literature searching component, and covers systematic database searching techniques, searching for grey literature and the importance of librarian involvement in the search. It also covers systematic review reporting standards such as PRISMA-P and PRISMA, critical appraisal and tools and resources to support the review and ensure it is conducted efficiently and effectively. Finally, it summarizes the requirements when screening search results for inclusion in the review, and the statistical synthesis of included studies’ findings.

Provenance and Peer review: Solicited contribution; Peer reviewed; Accepted for publication 24 January 2021.

Introduction

A systematic review collects secondary data, and is a synthesis of all available, relevant evidence which brings together all existing primary studies for review ( Cochrane 2016 ). A systematic review differs from other types of literature review in several major ways. It requires a transparent, reproducible methodology which indicates how studies were identified and the criteria upon which they were included or excluded. As well as synthesis of these studies' findings, there should be an element of evaluation and quality assessment. The systematic review methodology originated in medical and healthcare research, but it has now been adopted by other disciplines, such as engineering, education, economics and business studies. The processes and requirements for conducting a systematic review can seem arduous or time consuming, but with the use of appropriate tools and resources, and with thorough planning undertaken before beginning the review, researchers will be able to conduct their systematic reviews efficiently and smoothly.

This article provides an overview of the structure, form and content of systematic reviews, with a particular focus on the literature searching component. It will also discuss tools and resources – including those relating to reporting standards and critical appraisal of the articles included in the review – which will be of use to researchers conducting a systematic review.

Topic selection and planning

In recent years, there has been an explosion in the number of systematic reviews conducted and published ( Chalmers & Fox 2016 , Fontelo & Liu 2018 , Page et al 2015 ) – although a systematic review may be an inappropriate or unnecessary research methodology for answering many research questions. Systematic reviews can be inadvisable for a variety of reasons. It may be that the topic is too new and there are not enough relevant published papers to synthesise and analyse for a systematic review, or, conversely, that many other researchers have already published systematic reviews on the topic. However, if a scoping search appears to yield sufficient relevant studies for evidence synthesis, and indicates that no previous systematic reviews have been published (or that those previously published require an update or have methodological flaws), systematic reviews are likely to be appropriate.

Most systematic reviews take between six and 18 months to complete, and require a minimum of three authors to independently screen search results. Although many university modules require students to complete systematic reviews, due to this time and authorship requirement, it would be better to describe such student reviews as ‘reviews with systematic literature searches,’ as it is not possible to fulfil all the methodological requirements of a systematic review in a piece of work with a single author. Researchers without the available time or number of potential co-authors may prefer to adopt a different approach, such as narrative, scoping, or umbrella reviews. The systematic, transparent searching techniques outlined in this article can be adopted and adapted for use in other forms of literature review ( Grant & Booth 2009 ), for example, while the critical appraisal tools highlighted are appropriate for use in other contexts in which the reliability and applicability of medical research require evaluation.

Once it has been determined that a systematic review is the appropriate methodology for the research, and that there is sufficient time and resources to conduct it, researchers should then spend some time developing their review topic. It is appropriate at this point to do some scoping searches in relevant subject databases, first to ensure that the proposed review is unique, and meets a research need, and second to obtain a broad overview of the literature that exists, and which is likely to be included in the eventual systematic review. Based on this scoping work, the review topic may need to be refined or adapted, possibly to broaden or narrow it in focus. Once reviewers are satisfied with their chosen topic, the next step is to prepare a protocol which states transparently the methodology they intend to follow when conducting their review.

Creating a protocol

A protocol is a description of the proposed systematic review, including methods, the rationale for the review, and steps which will be taken to eliminate bias while conducting the review. Registering the protocol stakes a claim on the research, and it also means that researchers have done a significant portion of the work required before they formally begin the review, as they will have written the Methods section in draft form and planned what will be necessary to document and report by the time the protocol is finished.

Most protocols are registered with PROSPERO (2020), although it is also possible to upload your protocol on an institutional or subject repository, or publish the protocol in a journal. Guidance for creating a protocol can be found at PRISMA-P (The PRISMA Group et al 2015), or by working through the online training on protocols available at the Cochrane Library ( Cochrane Interactive Learning 2019 ).

Reporting standards and structure

PRISMA (the Preferred Reporting Items for Systematic Reviews and Meta-analyses) is 'an evidence-based minimum set of items for reporting in systematic reviews and meta-analyses' ( Moher et al 2009 ). The PRISMA checklist is a useful guideline of content that should be reported and included in the final published version of the systematic review, and will help when in the planning stages as well. Most systematic reviews will be written up using the PRISMA checklist as their underlying structure, so familiarity with this checklist and the content required when reporting the findings of the systematic review should be established at the earliest planning stages of the research.

PRISMA-P (The PRISMA Group et al 2015) is the reporting guidelines for protocols. The EQUATOR Network lists reporting standards for multiple different types of study design ( EQUATOR Network 2020 ). Researchers can search for the right guideline for their type of study. Those undertaking a Cochrane review should select the correct Cochrane Handbook ( Cochrane Training 2020 ) for their review type.

Search strategy

The search strategy for systematic reviews is the main method of collecting the data which will underpin the review's findings. This means that the search must be sufficiently robust – both sensitive and specific – to capture all relevant articles. Ideally, multiple databases and other sources of information should be searched, using a consistent, predetermined search string. Generally, this will involve multiple synonyms for each theme of the review's topic, and a multifield search including freetext terms in (at minimum) the title and abstract, and the controlled vocabulary in the database thesaurus. These words are then combined with the Boolean operators AND, OR and NOT so that search results are both sensitive and specific.

Grey literature

It is likely that systematic reviews will need to include a search of grey literature as well as the peer-reviewed journal articles found through database searching. Grey literature includes unpublished theses, conference proceedings, government reports, unpublished trial data and more. Leaving grey literature out can run the risk of biasing the reviews results ( Goldacre 2011 ).

Searching grey literature can be challenging. Most sources of grey literature cannot be searched with complex Boolean operators and myriad synonymous keywords in the manner of a database. Likewise, the websites and other sources used to search for grey literature are unlikely to have a controlled vocabulary thesaurus. The Canadian Agency for Drugs and Technologies in Health (CADTH) tool is designed to help adapt complex systematic database search strategies for use when searching for grey literature ( CADTH 2009 ).

Snowballing, hand-searching and reference lists

Sometimes it may be appropriate to 'snowball' a search. This involves screening all the articles that cite included papers (the articles which meet the inclusion criteria after screening). Search for the titles of each included article in Web of Science or Scopus (or both), and any listed citing article which meets your inclusion criteria should also be included in the review.

Hand searching involves looking back through the tables of contents of key journals, conference proceedings, or lists of conference presentations relevant to the systematic review topic. Once key journals have been identified, reviewers should plan how many years back they will look – this will need to be done consistently across all journals that are hand-searched.

After reviewers have screened all the papers identified by the database and grey literature searches, and agreed on which will be included in the review, they should check through these articles' reference lists. Any articles in their reference lists which meet all inclusion criteria should also be included in the review.

Librarian co-authorship

There is some evidence that having a librarian co-author on a systematic review can improve the review's quality. A number of recent studies have indicated that librarian involvement improves the reproducibility of the literature searching ( Hameed et al 2020 , Koffel 2015 , Rethlefsen et al 2015 ). Reviews without librarian involvement often have problems with their search strategies – for example Boolean operators used incorrectly, inappropriate search syntax, or a lack of sufficient synonyms for each search term, meaning that relevant studies might be missed ( Golder et al 2008 , Li et al 2014 ). Unfortunately, in some instances, systematic reviews without librarian co-authors will still be published, even if their search strategies have significant methodological flaws ( Brasher & Giustini 2020 ). Librarian involvement will help ensure that the search strategy is robust, and that it is described accurately in the methodology to ensure that the systematic review is reproducible. Generally, if a librarian is developing the search terms, running the searches in databases and writing the search methods, they should be a co-author of the systematic review, whereas if the librarian supports researchers who then conduct the searches themselves, co-authorship is not necessary. This also aligns with the Vancouver recommendations on co-authorship ( International Committee of Medical Journal Editors 2019 ).

After database and grey literature searches are completed, and researchers have identified other papers through hand-searching, they will need to screen the titles and abstracts to determine if they meet the criteria for inclusion. These criteria should be pre-defined (ie: stated in the protocol before searches have begun). Inclusion criteria might relate to the following:

Date range of publication. Study design type. Whether a study focuses on the review's specific disease, condition, or patient population. Whether a study focuses mainly on the review's specific intervention. Whether a study focused on a certain country, region, or healthcare context (for example primary care, outpatient department, critical care unit, or similar).

This list is not exhaustive, and there are many other inclusion criteria to apply, depending on the scope of the topic of the systematic review. It is important that these criteria are stated clearly in the Methods section of both the protocol and systematic review, and that all co-authors understand them.

Generally, articles are screened against these criteria independently by at least two authors. Initially they should screen the titles and abstracts, and then move on to screening the full text for any articles which could not be judged as fulfilling (or not fulfilling) all inclusion criteria on the basis of the information in their titles and abstracts.

Referencing software such as Endnote, EndnoteWeb, Mendeley or Zotero can be used for screening, or reviewers may prefer to use systematic review screening software such as Covidence or Rayyan.

Critical appraisal tools

There are a number of tools and checklists available to help assess the quality of studies to be included in a review. Studies included in a systematic review should be assessed for their quality and reliability. While poor quality studies should not be excluded if they fulfil predefined inclusion criteria, the systematic review should make clear that all included studies have been assessed according to consistent principles of critical appraisal, and the results of that appraisal should be included in the review.

Most critical appraisal tools consist of different checklists to apply to different types of study design. If a systematic review includes multiple types of study design, it is advisable that researchers are consistent about which tools they use – it is preferable to use different checklists from a single source, rather than picking and choosing from a variety of sources.

If the systematic review is only including peer-reviewed, published journal articles, the checklists from either CASP (Critical Appraisal Skills Programme), Centre for Evidence-Based Medicine, SIGN (Scottish Intercollegiate Guidelines Network), or Joanna Briggs Institute will be appropriate ( Brice 2020 , Centre for Evidence-Based Medicine 2020 , Joanna Briggs Institute 2020 , SIGN 2020 ). Reviews which include grey literature should use a grey literature appraisal tool, such as AACODS ( Tyndall 2008 ). There are also risk of bias assessment tools, such as RoBiS for evaluating systematic reviews, and RoB 2 for evaluating randomized controlled trials ( Bristol Medical School 2020 , Sterne et al 2019 ).

One of the main advantages of systematic reviews is that they combine the analysis of the data from a number of primary studies. Most commonly, this is done through meta-analysis – the statistical combination of results from two or more studies. As outlined in the Cochrane Handbook, in interventional studies, a systematic review meta-analysis will seek to answer these three main questions:

What is the direction of effect? What is the size of effect? Is the effect consistent across [all included] studies? ( Higgins et al 2019 )

The researchers will then make a judgement as to the strength of evidence for the effect. If the systematic review is assessing the effectiveness of a variety of different interventions, it may not be possible to combine all studies for meta-analysis as the studies may be sufficiently different to make meta-analysis inappropriate. Researchers should ensure that when interpreting the results they consider the limitations and potential biases of included studies. When reporting the findings it is also usually necessary to consider applicability, and make recommendations – such as for a change in practice.

Systematic reviews – when an appropriate approach to the topic being researched – are a way to synthesize and evaluate the range of evidence available in multiple primary studies. Their methodology is complex, but if the correct reporting guidelines are followed, and researchers make use of tools, resources and the support of librarians and other information specialists, the process will be more straightforward. Planning is key: researchers should have a clear picture of what is involved, and what will need to be documented and reported in any resulting publications, and put measures in place to ensure that they capture all of this essential information.

No competing interests declared .

ORCID iD: Veronica Phillips https://orcid.org/0000-0002-4383-9434

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Systematic Review | Definition, Example, & Guide

Systematic Review | Definition, Example & Guide

Published on June 15, 2022 by Shaun Turney . Revised on November 20, 2023.

A systematic review is a type of review that uses repeatable methods to find, select, and synthesize all available evidence. It answers a clearly formulated research question and explicitly states the methods used to arrive at the answer.

They answered the question “What is the effectiveness of probiotics in reducing eczema symptoms and improving quality of life in patients with eczema?”

In this context, a probiotic is a health product that contains live microorganisms and is taken by mouth. Eczema is a common skin condition that causes red, itchy skin.

Table of contents

What is a systematic review, systematic review vs. meta-analysis, systematic review vs. literature review, systematic review vs. scoping review, when to conduct a systematic review, pros and cons of systematic reviews, step-by-step example of a systematic review, other interesting articles, frequently asked questions about systematic reviews.

A review is an overview of the research that’s already been completed on a topic.

What makes a systematic review different from other types of reviews is that the research methods are designed to reduce bias . The methods are repeatable, and the approach is formal and systematic:

  • Formulate a research question
  • Develop a protocol
  • Search for all relevant studies
  • Apply the selection criteria
  • Extract the data
  • Synthesize the data
  • Write and publish a report

Although multiple sets of guidelines exist, the Cochrane Handbook for Systematic Reviews is among the most widely used. It provides detailed guidelines on how to complete each step of the systematic review process.

Systematic reviews are most commonly used in medical and public health research, but they can also be found in other disciplines.

Systematic reviews typically answer their research question by synthesizing all available evidence and evaluating the quality of the evidence. Synthesizing means bringing together different information to tell a single, cohesive story. The synthesis can be narrative ( qualitative ), quantitative , or both.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Systematic reviews often quantitatively synthesize the evidence using a meta-analysis . A meta-analysis is a statistical analysis, not a type of review.

A meta-analysis is a technique to synthesize results from multiple studies. It’s a statistical analysis that combines the results of two or more studies, usually to estimate an effect size .

A literature review is a type of review that uses a less systematic and formal approach than a systematic review. Typically, an expert in a topic will qualitatively summarize and evaluate previous work, without using a formal, explicit method.

Although literature reviews are often less time-consuming and can be insightful or helpful, they have a higher risk of bias and are less transparent than systematic reviews.

Similar to a systematic review, a scoping review is a type of review that tries to minimize bias by using transparent and repeatable methods.

However, a scoping review isn’t a type of systematic review. The most important difference is the goal: rather than answering a specific question, a scoping review explores a topic. The researcher tries to identify the main concepts, theories, and evidence, as well as gaps in the current research.

Sometimes scoping reviews are an exploratory preparation step for a systematic review, and sometimes they are a standalone project.

Prevent plagiarism. Run a free check.

A systematic review is a good choice of review if you want to answer a question about the effectiveness of an intervention , such as a medical treatment.

To conduct a systematic review, you’ll need the following:

  • A precise question , usually about the effectiveness of an intervention. The question needs to be about a topic that’s previously been studied by multiple researchers. If there’s no previous research, there’s nothing to review.
  • If you’re doing a systematic review on your own (e.g., for a research paper or thesis ), you should take appropriate measures to ensure the validity and reliability of your research.
  • Access to databases and journal archives. Often, your educational institution provides you with access.
  • Time. A professional systematic review is a time-consuming process: it will take the lead author about six months of full-time work. If you’re a student, you should narrow the scope of your systematic review and stick to a tight schedule.
  • Bibliographic, word-processing, spreadsheet, and statistical software . For example, you could use EndNote, Microsoft Word, Excel, and SPSS.

A systematic review has many pros .

  • They minimize research bias by considering all available evidence and evaluating each study for bias.
  • Their methods are transparent , so they can be scrutinized by others.
  • They’re thorough : they summarize all available evidence.
  • They can be replicated and updated by others.

Systematic reviews also have a few cons .

  • They’re time-consuming .
  • They’re narrow in scope : they only answer the precise research question.

The 7 steps for conducting a systematic review are explained with an example.

Step 1: Formulate a research question

Formulating the research question is probably the most important step of a systematic review. A clear research question will:

  • Allow you to more effectively communicate your research to other researchers and practitioners
  • Guide your decisions as you plan and conduct your systematic review

A good research question for a systematic review has four components, which you can remember with the acronym PICO :

  • Population(s) or problem(s)
  • Intervention(s)
  • Comparison(s)

You can rearrange these four components to write your research question:

  • What is the effectiveness of I versus C for O in P ?

Sometimes, you may want to include a fifth component, the type of study design . In this case, the acronym is PICOT .

  • Type of study design(s)
  • The population of patients with eczema
  • The intervention of probiotics
  • In comparison to no treatment, placebo , or non-probiotic treatment
  • The outcome of changes in participant-, parent-, and doctor-rated symptoms of eczema and quality of life
  • Randomized control trials, a type of study design

Their research question was:

  • What is the effectiveness of probiotics versus no treatment, a placebo, or a non-probiotic treatment for reducing eczema symptoms and improving quality of life in patients with eczema?

Step 2: Develop a protocol

A protocol is a document that contains your research plan for the systematic review. This is an important step because having a plan allows you to work more efficiently and reduces bias.

Your protocol should include the following components:

  • Background information : Provide the context of the research question, including why it’s important.
  • Research objective (s) : Rephrase your research question as an objective.
  • Selection criteria: State how you’ll decide which studies to include or exclude from your review.
  • Search strategy: Discuss your plan for finding studies.
  • Analysis: Explain what information you’ll collect from the studies and how you’ll synthesize the data.

If you’re a professional seeking to publish your review, it’s a good idea to bring together an advisory committee . This is a group of about six people who have experience in the topic you’re researching. They can help you make decisions about your protocol.

It’s highly recommended to register your protocol. Registering your protocol means submitting it to a database such as PROSPERO or ClinicalTrials.gov .

Step 3: Search for all relevant studies

Searching for relevant studies is the most time-consuming step of a systematic review.

To reduce bias, it’s important to search for relevant studies very thoroughly. Your strategy will depend on your field and your research question, but sources generally fall into these four categories:

  • Databases: Search multiple databases of peer-reviewed literature, such as PubMed or Scopus . Think carefully about how to phrase your search terms and include multiple synonyms of each word. Use Boolean operators if relevant.
  • Handsearching: In addition to searching the primary sources using databases, you’ll also need to search manually. One strategy is to scan relevant journals or conference proceedings. Another strategy is to scan the reference lists of relevant studies.
  • Gray literature: Gray literature includes documents produced by governments, universities, and other institutions that aren’t published by traditional publishers. Graduate student theses are an important type of gray literature, which you can search using the Networked Digital Library of Theses and Dissertations (NDLTD) . In medicine, clinical trial registries are another important type of gray literature.
  • Experts: Contact experts in the field to ask if they have unpublished studies that should be included in your review.

At this stage of your review, you won’t read the articles yet. Simply save any potentially relevant citations using bibliographic software, such as Scribbr’s APA or MLA Generator .

  • Databases: EMBASE, PsycINFO, AMED, LILACS, and ISI Web of Science
  • Handsearch: Conference proceedings and reference lists of articles
  • Gray literature: The Cochrane Library, the metaRegister of Controlled Trials, and the Ongoing Skin Trials Register
  • Experts: Authors of unpublished registered trials, pharmaceutical companies, and manufacturers of probiotics

Step 4: Apply the selection criteria

Applying the selection criteria is a three-person job. Two of you will independently read the studies and decide which to include in your review based on the selection criteria you established in your protocol . The third person’s job is to break any ties.

To increase inter-rater reliability , ensure that everyone thoroughly understands the selection criteria before you begin.

If you’re writing a systematic review as a student for an assignment, you might not have a team. In this case, you’ll have to apply the selection criteria on your own; you can mention this as a limitation in your paper’s discussion.

You should apply the selection criteria in two phases:

  • Based on the titles and abstracts : Decide whether each article potentially meets the selection criteria based on the information provided in the abstracts.
  • Based on the full texts: Download the articles that weren’t excluded during the first phase. If an article isn’t available online or through your library, you may need to contact the authors to ask for a copy. Read the articles and decide which articles meet the selection criteria.

It’s very important to keep a meticulous record of why you included or excluded each article. When the selection process is complete, you can summarize what you did using a PRISMA flow diagram .

Next, Boyle and colleagues found the full texts for each of the remaining studies. Boyle and Tang read through the articles to decide if any more studies needed to be excluded based on the selection criteria.

When Boyle and Tang disagreed about whether a study should be excluded, they discussed it with Varigos until the three researchers came to an agreement.

Step 5: Extract the data

Extracting the data means collecting information from the selected studies in a systematic way. There are two types of information you need to collect from each study:

  • Information about the study’s methods and results . The exact information will depend on your research question, but it might include the year, study design , sample size, context, research findings , and conclusions. If any data are missing, you’ll need to contact the study’s authors.
  • Your judgment of the quality of the evidence, including risk of bias .

You should collect this information using forms. You can find sample forms in The Registry of Methods and Tools for Evidence-Informed Decision Making and the Grading of Recommendations, Assessment, Development and Evaluations Working Group .

Extracting the data is also a three-person job. Two people should do this step independently, and the third person will resolve any disagreements.

They also collected data about possible sources of bias, such as how the study participants were randomized into the control and treatment groups.

Step 6: Synthesize the data

Synthesizing the data means bringing together the information you collected into a single, cohesive story. There are two main approaches to synthesizing the data:

  • Narrative ( qualitative ): Summarize the information in words. You’ll need to discuss the studies and assess their overall quality.
  • Quantitative : Use statistical methods to summarize and compare data from different studies. The most common quantitative approach is a meta-analysis , which allows you to combine results from multiple studies into a summary result.

Generally, you should use both approaches together whenever possible. If you don’t have enough data, or the data from different studies aren’t comparable, then you can take just a narrative approach. However, you should justify why a quantitative approach wasn’t possible.

Boyle and colleagues also divided the studies into subgroups, such as studies about babies, children, and adults, and analyzed the effect sizes within each group.

Step 7: Write and publish a report

The purpose of writing a systematic review article is to share the answer to your research question and explain how you arrived at this answer.

Your article should include the following sections:

  • Abstract : A summary of the review
  • Introduction : Including the rationale and objectives
  • Methods : Including the selection criteria, search method, data extraction method, and synthesis method
  • Results : Including results of the search and selection process, study characteristics, risk of bias in the studies, and synthesis results
  • Discussion : Including interpretation of the results and limitations of the review
  • Conclusion : The answer to your research question and implications for practice, policy, or research

To verify that your report includes everything it needs, you can use the PRISMA checklist .

Once your report is written, you can publish it in a systematic review database, such as the Cochrane Database of Systematic Reviews , and/or in a peer-reviewed journal.

In their report, Boyle and colleagues concluded that probiotics cannot be recommended for reducing eczema symptoms or improving quality of life in patients with eczema. Note Generative AI tools like ChatGPT can be useful at various stages of the writing and research process and can help you to write your systematic review. However, we strongly advise against trying to pass AI-generated text off as your own work.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Quartiles & Quantiles
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Prospective cohort study

Research bias

  • Implicit bias
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic
  • Social desirability bias

A literature review is a survey of scholarly sources (such as books, journal articles, and theses) related to a specific topic or research question .

It is often written as part of a thesis, dissertation , or research paper , in order to situate your work in relation to existing knowledge.

A literature review is a survey of credible sources on a topic, often used in dissertations , theses, and research papers . Literature reviews give an overview of knowledge on a subject, helping you identify relevant theories and methods, as well as gaps in existing research. Literature reviews are set up similarly to other  academic texts , with an introduction , a main body, and a conclusion .

An  annotated bibliography is a list of  source references that has a short description (called an annotation ) for each of the sources. It is often assigned as part of the research process for a  paper .  

A systematic review is secondary research because it uses existing research. You don’t collect new data yourself.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Turney, S. (2023, November 20). Systematic Review | Definition, Example & Guide. Scribbr. Retrieved April 2, 2024, from https://www.scribbr.com/methodology/systematic-review/

Is this article helpful?

Shaun Turney

Shaun Turney

Other students also liked, how to write a literature review | guide, examples, & templates, how to write a research proposal | examples & templates, what is critical thinking | definition & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

University of Maryland Libraries Logo

Systematic Review

  • Library Help
  • What is a Systematic Review (SR)?

Steps of a Systematic Review

  • Framing a Research Question
  • Developing a Search Strategy
  • Searching the Literature
  • Managing the Process
  • Meta-analysis
  • Publishing your Systematic Review

Forms and templates

Logos of MS Word and MS Excel

Image: David Parmenter's Shop

  • PICO Template
  • Inclusion/Exclusion Criteria
  • Database Search Log
  • Review Matrix
  • Cochrane Tool for Assessing Risk of Bias in Included Studies

   • PRISMA Flow Diagram  - Record the numbers of retrieved references and included/excluded studies. You can use the Create Flow Diagram tool to automate the process.

   •  PRISMA Checklist - Checklist of items to include when reporting a systematic review or meta-analysis

PRISMA 2020 and PRISMA-S: Common Questions on Tracking Records and the Flow Diagram

  • PROSPERO Template
  • Manuscript Template
  • Steps of SR (text)
  • Steps of SR (visual)
  • Steps of SR (PIECES)

Adapted from  A Guide to Conducting Systematic Reviews: Steps in a Systematic Review by Cornell University Library

Source: Cochrane Consumers and Communications  (infographics are free to use and licensed under Creative Commons )

Check the following visual resources titled " What Are Systematic Reviews?"

  • Video  with closed captions available
  • Animated Storyboard
  • << Previous: What is a Systematic Review (SR)?
  • Next: Framing a Research Question >>
  • Last Updated: Mar 4, 2024 12:09 PM
  • URL: https://lib.guides.umd.edu/SR

IMAGES

  1. Systematic literature review phases.

    systematic literature review sections

  2. How to conduct a Systematic Literature Review

    systematic literature review sections

  3. Overview

    systematic literature review sections

  4. A Step by Step Guide for Conducting a Systematic Review

    systematic literature review sections

  5. The Systematic Review Process

    systematic literature review sections

  6. How to Conduct a Systematic Review

    systematic literature review sections

VIDEO

  1. What is Systematic Literature Review SLR

  2. Writing Systematic Literature Review papers

  3. Systematic Literature Review, by Prof. Ranjit Singh, IIIT Allahabad

  4. Systematic Literature Review Paper

  5. Systematic Literature Review Paper presentation

  6. Systematic Literature Review Part2 March 20, 2023 Joseph Ntayi

COMMENTS

  1. Systematic reviews: Structure, form and content - PMC

    Systematic reviews: Structure, form and content. This article aims to provide an overview of the structure, form and content of systematic reviews. It focuses in particular on the literature searching component, and covers systematic database searching techniques, searching for grey literature and the importance of librarian involvement in the ...

  2. Guidance on Conducting a Systematic Literature Review - Yu ...

    This article is organized as follows: The next section presents the methodology adopted by this research, followed by a section that discusses the typology of literature reviews and provides empirical examples; the subsequent section summarizes the process of literature review; and the last section concludes the paper with suggestions on how to improve the quality and rigor of literature ...

  3. Guidelines for writing a systematic review - ScienceDirect

    A preliminary review, which can often result in a full systematic review, to understand the available research literature, is usually time or scope limited. Complies evidence from multiple reviews and does not search for primary studies. 3. Identifying a topic and developing inclusion/exclusion criteria.

  4. Systematic Review | Definition, Example & Guide - Scribbr

    A systematic review is a type of review that uses repeatable methods to find, select, and synthesize all available evidence. It answers a clearly formulated research question and explicitly states the methods used to arrive at the answer. Example: Systematic review. In 2008, Dr. Robert Boyle and his colleagues published a systematic review in ...

  5. How to write a systematic literature review: a guide for ...

    Systematic review allows the assessment of primary study quality, identifying the weaknesses in current experimental efforts and guiding the methodology of future research. Choosing the features of study design to review and critique is dependent on the subject and design of the literature identified.

  6. How-to conduct a systematic literature review: A quick guide ...

    Method details Overview. A Systematic Literature Review (SLR) is a research methodology to collect, identify, and critically analyze the available research studies (e.g., articles, conference proceedings, books, dissertations) through a systematic procedure [12].

  7. Systematic reviews: Structure, form and content - Veronica ...

    Abstract. This article aims to provide an overview of the structure, form and content of systematic reviews. It focuses in particular on the literature searching component, and covers systematic database searching techniques, searching for grey literature and the importance of librarian involvement in the search.

  8. Steps of a Systematic Review - Systematic Review - Research ...

    Tools: Steps: PICO template. 1. Id entify your research question. Formulate a clear, well-defined research question of appropriate scope. Define your terminology. Find existing reviews on your topic to inform the development of your research question, identify gaps, and confirm that you are not duplicating the efforts of previous reviews.