Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here .

Loading metrics

Open Access

Peer-reviewed

Research Article

Water resource management: IWRM strategies for improved water management. A systematic review of case studies of East, West and Southern Africa

Roles Conceptualization, Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review & editing

* E-mail: [email protected]

Affiliations Soil, Crop, and Climate Sciences, University of the Free State, Bloemfontein, South Africa, School of Engineering, University of KwaZulu-Natal, Pietermaritzburg, South Africa, Varmac Consulting Engineers, Scottsville, Pietermaritzburg, South Africa

ORCID logo

Roles Conceptualization, Formal analysis, Methodology, Writing – original draft, Writing – review & editing

Affiliation Department of Civil & Structural Engineering, Masinde Muliro University of Science and Technology, Kakamega, Kenya

Roles Conceptualization, Methodology, Supervision, Writing – review & editing

Affiliation Soil, Crop, and Climate Sciences, University of the Free State, Bloemfontein, South Africa

Roles Writing – review & editing

Affiliation Department of Agriculture and Engineering Services, Irrigation Engineering Section, Ministry of Agriculture and Natural Resources, Ilorin, Kwara State, Nigeria

  • Tinashe Lindel Dirwai, 
  • Edwin Kimutai Kanda, 
  • Aidan Senzanje, 
  • Toyin Isiaka Busari

PLOS

  • Published: May 25, 2021
  • https://doi.org/10.1371/journal.pone.0236903
  • Reader Comments

17 May 2024: Dirwai TL, Kanda EK, Senzanje A, Busari TI (2024) Correction: Water resource management: IWRM strategies for improved water management. A systematic review of case studies of East, West and Southern Africa. PLOS ONE 19(5): e0304228. https://doi.org/10.1371/journal.pone.0304228 View correction

Table 1

The analytical study systematically reviewed the evidence about the IWRM strategy model. The study analysed the IWRM strategy, policy advances and practical implications it had, since inception on effective water management in East, West and Southern Africa.

The study adopted the Preferred Reporting Items for Systematic Review and Meta-analysis Protocols (PRISMA-P) and the scoping literature review approach. The study searched selected databases for peer-reviewed articles, books, and grey literature. DistillerSR software was used for article screening. A constructionist thematic analysis was employed to extract recurring themes amongst the regions.

The systematic literature review detailed the adoption, policy revisions and emerging policy trends and issues (or considerations) on IWRM in East, West and Southern Africa. Thematic analysis derived four cross-cutting themes that contributed to IWRM strategy implementation and adoption. The identified four themes were donor effect, water scarcity, transboundary water resources, and policy approach. The output further posited questions on the prospects, including whether IWRM has been a success or failure within the African water resource management fraternity.

Citation: Dirwai TL, Kanda EK, Senzanje A, Busari TI (2021) Water resource management: IWRM strategies for improved water management. A systematic review of case studies of East, West and Southern Africa. PLoS ONE 16(5): e0236903. https://doi.org/10.1371/journal.pone.0236903

Editor: Sergio Villamayor-Tomas, Universitat Autonoma de Barcelona, SPAIN

Received: July 12, 2020; Accepted: May 2, 2021; Published: May 25, 2021

Copyright: © 2021 Dirwai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: All relevant data are within the paper.

Funding: This study was supported by the National Research Foundation (NRF) in the form of a grant awarded to TLD (131377) and VarMac Consulting Engineers in the form of a salary for TLD. The specific roles of the authors are articulated in the ‘author contributions’ section. The funders had no additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have read the journal’s policy and have the following potential competing interests: TLD is a paid employee of VarMac Consulting Engineers. This does not alter our adherence to PLOS ONE policies on sharing data and materials. There are no patents, products in development or marketed products associated with this research to declare.

1 Introduction

Integrated Water Resources Management (IWRM) is a concept that is meant to foster effective water resource management. GWP [ 1 ] defined it as “the process which promotes the coordinated development and management of water, land and related resources, to maximise the resultant economic and social welfare equitably without compromising the sustainability of vital systems”. A holistic approach, in the form of the Dublin statement on Water and Sustainable Development (DSWSD), emerged and it became the backbone of IWRM principles.

According to Solanes and Gonzalez-Villarreal [ 2 ] the Dublin priciples are: “ (1) Freshwater is a finite and vulnerable resource , essential to sustain life , development and the environment; (2) Water development and management should be based on a participatory approach , involving users , planners and policy-makers at all levels , (3) Women play a central part in the provision , management , and safeguarding of water , and (4) Water has an economic value in all its competing uses , and should be recognised as an economic good .” The seamless conflation of the DSWSD and the Agenda 21 at the United Nations Conference on Environment and Development (UNCED) in 1992 further strengthened the IWRM discourse and facilitated the policy approach of IWRM [ 3 , 4 ]. Since its inception the IWRM policy has been the holy grail of water resource management in Africa, Asia, and Europe to mention a few. For policy diffusion, countries were required to develop an IWRM policy blueprints for effective water use [ 5 ].

This review sought to unveil the innovative IWRM strategy approach by critically examining its genesis, implementation, adoption and the main drivers in in East, Southern and West Africa. Secondary to this, the study endeavoured to determine whether the IWRM implementation has been a success or failure. The choice of East, West and Southern Africa was influenced by the regional dynamics of Sub-Saharan Africa which have unique problems in water resources management and the hydropolitical diversity in this region. The isolated cases provide a holistic representation t the implementation dynamics of IWRM. In addition, sub-Sahara Africa was the laboratory for IWRM with Zimbabwe and South Africa being the early implementers [ 6 ]. Apart from the IWRM strategy being a social experiment in sub-Sahara, there exists a gap on an overarching review on the performance and aggregated outcomes of the IWRM adopters in the continent. The selection of the countries of interest was based on the authors geo-locations and their expert experiences with the IWRM strategy in their respective localities. The study sought to draw trends, similarities, and potential differences in the drivers involved in achieving the desired IWRM outcome.

IWRM strategy approach and implementation are ideally linked to individual country’s developmental policies [ 7 ]. Southern Africa (Zimbabwe and South Africa) is the biggest adopter of the water resource management strategy and produced differed uptake patterns [ 8 ]. In East Africa, Tanzania,Uganda and Kenya also adopted the IWRM strategy, whilst in West Africa, Burkina Faso latently adopted the IWRM strategy in 1992 [ 4 ] and in Ghana, customary and traditional water laws transformed into latent IWRM practices [ 9 ].

Various initiatives were put in place to aid the adoption of IWRM in sub-Sahara Africa. For example, Tanzania benefited from donor funds and World Bank programmes that sought to alleviate poverty and promote environmental flows. The World Bank radically upscaled and remodelled IWRM in Tanzania through the River Basin Management—Smallholder Irrigation Improvement Programme (RBM-SIIP) [ 10 ]. The government of Uganda’s efforts of liberalising the markets, opening democratic space and decentralising the country attracted donor funds that drove the IWRM strategy agenda. The long-standing engagement between Uganda and the Nordic Fresh Water initiative helped in the diffusion of IWRM strategy in the country. Finally, in West Africa, Burkina Faso and Ghana made significant strides in operationalising the IWRM strategy by adopting the West Africa Water Resources Policy (WAWRP). A massive sense of agency coupled with deliberate government efforts drove the adoption status of Burkina Faso.

Total policy diffusion can be achieved when the practice or idea has supporting enablers. Innovation is key in developing plocies that altersocietal orthodox policy paths that fuel hindrance and consequently in-effective water governance [ 11 ]. Acknowledging the political nature of water (water governance and transboundary catchments issues) is the motivation to legislate water-driven and people-driven innovative policy [ 12 ]. Water policy reform should acknowledge the differing interests’ groups of the water users and its multi-utility nature; thus, diffusion channels should be tailored accordingly, avoiding the ‘one size fits all’ fallacy. IWRM as an innovative strategy approach diffused from the global stage to Africa and each regional block adopted the approach at different times under different circumstances.

The rest of this paper is outlined as follows; section 2 presents the conceptual framework adopted and the subsequent methodology. Section 3 presents the results and discussion. The discussion is structured around innovation driver in each respective region. Thereafter, sub-section 3.4 presents the prospect of IWRM in the East, West and Southern Africa regions. Lastly, the paper presents the conclusion.

2 Methodology

2.1 conceptual framework and methodology.

The analytical framework applied in the study is based on the water innovation frames by the United Nations Department of Economic and Social Affairs (UNDESA) [ 13 ]. The UNDESA [ 13 ], classified water frames into three distinct categories namely water management strategies (e.g., IWRM), water infrastructure and water services. The former partly involves IWRM strategies and the latter encompasses economic water usage such as agriculture, energy production and industrial applications [ 12 ].

The literature review identified research gaps that informed the employed search strategy. The literature that qualified for inclusion was thoroughly analysed and discussed. The aggregated outcomes were used for excerpt extraction in the thematic analysis.

2.2 Literature handling

The study performed a systematic review as guided by the Arksey and O’Malley [ 14 ] approach. The approach details methods on how to scope, gather, screen and report literature. The study further employed a constructionist thematic analysis to extract common recurring themes amongst the regions.

2.2.1 Eligibility criteria.

Eligibility criteria followed an adapted SPICE (Setting, Perspective, Intervention, Comparison and Evaluation) structure ( Table 1 ). The SPICE structure informed the study’s search strategy ( Table 2 ) and the subsequent formulation of the inclusion-exclusion criteria ( Table 3 ). The evidence search was conducted from the following databases: Scopus, Web of Science, Google Scholar, UKZN-EFWE, CABI, JSTOR, African Journals Online (AJOL), Directory of Open Access Journals (DOAJ), J-Gate, SciELO and WorldCat for peer-reviewed articles, books, and grey literature. The study did not emphasize publication date as recommended by Moffa, Cronk [ 15 ]. Databases selection was based on their comprehensive and over-arching nature in terms of information archiving. It is worth mentioning that the search strategy was continuously revised by trial and error until the databases yielded the maximum number of articles for screening.

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pone.0236903.t001

thumbnail

https://doi.org/10.1371/journal.pone.0236903.t002

thumbnail

https://doi.org/10.1371/journal.pone.0236903.t003

2.2.2 Search strategy.

The search strategy or query execution [ 16 ] utilised Boolean operators ( OR & AND ). The dynamic nature of the search strategy required the authors to change the search terms and strategy, for example, if digital databases did not yield the expected search items the study would manually search for information sources. The search queries included a string of search terms summarised in Table 2 .

2.2.3 Selection process.

DistillerSR © software was used for article screening. Online data capturing forms were created in the DistillerSR © software and two authors performed the article scoring process that eventully led to article screening. The screening was based on the article title, abstract and locality. The study employed a two-phase screening process [ 17 ], the first phase screened according to title and the second phase screened according to abstract and keywords. During the screening process, studies that the matched information in the left column of Table 3 we included in the literature review syntheses, whilst those that matched the exclusion list were discarded.

2.3 Thematic analysis

The review also adopted the thematic analysis approach by Braun and Clarke [ 18 ] to extract, code, and select candidate converging themes for the systematic review. The selected lieterature was subjected to qualitative analysis to capture recurring themes amongst the selected regions (East, West and Southern Africa). Data extracts from the respective regional analysis were formulated into theoretical themes. Thereafter, the extracted data was coded according to the extracted patterns from the information source to constitute a theme. It is worth mentioning that the authors used their discretion to extract and code for themes.

3 Results and discussion

Data charting comprised of the PRISMA flow-chart ( Fig 1 ). The study utilised 80 out of 183 records (n = 37, 46%) for East Africa, (n = 37, 46%) for Southern Africa, and (n = 6, 8%) for West Africa.

thumbnail

https://doi.org/10.1371/journal.pone.0236903.g001

3.1 Case studies

The introduction of IWRM in the East African region was initiated in 1998 by the water ministers in the Nile basin states due to the need for addressing the concerns raised by the riparian states. These water sector reforms revolved around the Dublin principles initiated by the UN in 1992 [ 20 ]. In 1999, Kenya developed the national water policy and the enabling legislation, the Water Act 2002 was enacted [ 21 ]. The Act was replaced by the Water Act 2016 which established the Water Resources Authority (WRA) as the body mandated to manage water resources in line with the IWRM principles and Water Resource Users Association (WRUA) as the lowest (local) level of water management [ 22 ].

Similarly, Uganda developed the national water policy in 1999 to manage, and develop the available water resources in an integrated and sustainable manner [ 23 ]. The National Water Policy further provides for the promotion of water supply for modernized agriculture [ 24 ]. Tanzania’s water policy of 2002 espouses IWRM principles, and its implementation is based on a raft of legal, economic, administrative, technical, regulatory and participatory instruments [ 25 ]. The National Irrigation Policy (NIP), 2010 and the National Irrigation Act, 2013 provides the legal basis for the involvement of different actors on a private-public partnership basis [ 26 ].

West Africa possesses an unregistered IWRM strategy that is espoused in the West Africa Water Resources Policy (WAWRP) of 2008. The WAWRP is founded on the following legal principles; (a) “promote, coordinate and ensure the implementation of a regional water resource policy in West Africa, in accordance with the mission and policies of Economic Community of West African States (ECOWAS)and (b) “harmonization and coordination of national policies and the promotion of programmes, projects and activities, especially in the field of agriculture and natural resources”. The founding legal basis resonates with the Dublin principles.

The WAWRP design actors were ECOWAS, Union Economique et Monétaire Ouest Africaine (UEMOA), and Comité Permanent Inter-État de Llutte Contre la Sécheresse au Sahel (CILSS). CILSS is the technical arm of ECOWAS and UEMOA. The institutional collaboration was driven by the fact that West Africa needed a sound water policy for improved regional integration and maximised economic gains. ECOWAS established the Water Resources Coordination Centre (WRCC) to (a) oversee and monitor the region’s water resources and management activities and (b) to act as an executive organ of the Permanent Framework for Coordination and Monitoring (PFCM) of IRWM [ 27 ].

The inception and triggers of IWRM in West Africa can be traced back to the General Act of Berlin in 1885 which, among other things, dictated water resources use of the Congo and Niger rivers [ 28 ]. A multiplicity of agreements around shared watercourses in West Africa led to the realisation of the IWRM policy approach. For example, the Senegal River Basin (SRB) Development Mission facilitated collaboration between Senegal and Mauritania in managing the SRB. Another noteworthy agreement was Ruling C/REG.9/7/97, a regional plan to fight floating plants in the ECOWAS countries [ 28 ]. GWP (2003) categorised the West African countries according to the level of adoption into three distinct groups namely; (a) Group A comprised of countries with the capacity to develop and adopt the IWRM approach (Burkina Faso and Ghana), (b) Group B comprised of countries needing “light support” to unroll the IWRM plan (Benin, Mali, Nigeria, and Togo), and (3) Group C comprised of laggards which needed significant support to establish an IWRM plan (Cape Verde, Ivory Coast, Gambia, Guinea, Guinea Bissau, Liberia, Mauritania, Niger, Senegal and Sierra Leone).

Southern African Development Community (SADC) regional bloc has over 15 shared transboundary river basins (For detailed basin and catchment arrangement in SADC see [ 29 ]). SADC member states established the Protocol on Shared Water Systems (PSWS) which meant to encourage sustainable water resources utilisation and management. The PSWS was perceived to strengthen regional integration [ 30 ]. The regional bloc formulated the Regional Strategic Action Plans (RSAPs) that sought to promote an integrated water resources development plan. The action initiative mimicked IWRM principles and the shared water resources initiatives acted as a catalyst for the genesis of IWRM in Southern Africa [ 31 ]. SADC houses the Waternet and the GWP-SA research and innovation hubs upon which SADC’s IWRM adoption was anchored on. Besides the availability of trained water experts in the region who were willing to experiment with the IWRM policy approach, water scarcity fuelled by climate change prompted the region’s adoption of the IWRM policy approach at the local level.

3.2 Diffusion drivers of IWRM in East, West and Southern Africa

3.2.1 water scarcity..

The adoption of IWRM in East Africa was necessitated by water scarcity which is experienced by the countries in the region, which formed the need for adoption of prudent water resources management strategies as envisaged under the Dublin principles which was championed indirectly, according to Allouche [ 5 ], by the World Bank. Specifically, the need to give incentives and disincentives in water use sectors to encourage water conservation.

Kenya is a water-scarce country with per capita water availability of 586 m 3 in 2010 and projected to 393 m 3 in 2030 [ 32 ]. Uganda is endowed with water resources, however, it is projected that the country will be water-stressed by 2020 which could be compounded by climate variability and change, rapid urbanization, economic and population growth [ 33 ].

Using water scarcity was in essence coercing countries to adopt the IWRM principles with the irrigation sector, the contributor of the largest proportion of water withdrawals, becoming the major culprit [ 5 ]. The researchers opine that the effects of water scarcity in the region can be countered by adopting IWRM strategy, but adaptively to suit the local context and thus, persuasive rather than coercive, is the appropriate term. Indeed, as put forward by Van der Zaag [ 34 ], IWRM is not an option but it is a necessity and therefore, countries need to align their water policies and practices in line with it.

West African climatic conditions pose a threat on the utilisation of the limited water resource. Water resource utilisation is marred by erratic rainfalls and primarily a lack of water resources management know-how [ 27 ]. Countries in the Sahelian regions are characterised by semi-arid climatic conditions. Thus, dry climatic conditions account as an IWRM strategy driver to ensure maximised water use efficiency. Although the region acknowledges the need for adopting the IWRM strategy, they have varied adoption statuses (GWP, 2003).

Southern African countries also face serious water scarcity problems. Rainfall in South Africa is low and unevenly distributed with about 9% translating to useful runoff making the country one of the most water scarce countries in the world [ 35 ]. Generally, SADC countries experience water scarcity resulting in conflicts due to increasing pressure on the fresh water resources [ 36 ]. Thus, the researched opine that water scarcity pushed the region to adopt the IWRM strategy inorder to mitigate the looming effects of climate change on surface water availainility.

3.2.2 Trans-boundary water resources.

Water resources flow downstream indiscriminately across villages, locations, regions and nations/states and therefore necessitates co-operation. The upstream and downstream relationships among communities, people and countries created by the water is asymmetrical in that the actions upstream tend to affect the downstream riparian and not the other way round [ 34 ]. In East Africa, the Nile Basin Initiative (NBI) and the Lake Victoria Basin Commission (LVBC) plays a critical component in promoting the IWRM at regional level [ 20 ].

The Nile River system is the single largest factor driving the IWRM in the region. Lake Victoria, the source of the Nile River is shared by the three East African states of Kenya, Uganda and Tanzania. Irrigation schemes in Sudan and Egypt rely exclusively on the waters of River Nile and are therefore apprehensive of the actions of upstream states notably Ethiopia, Kenya, Uganda, Tanzania, Rwanda and Burundi. The source of contention is the asymmetrical water needs and allocation which was enshrined in the Sudan–Egypt treaty of 1959 [ 37 ]. All the riparian countries in the Nile basin have agricultural-based economies and thus irrigation is the cornerstone of food security [ 38 ]. Therefore, there was the need for the establishment of basin-wide co-operation which led to the formation of NBI in 1999 with a vision to achieve sustainable socio-economic development through the equitable utilisation of the Nile water resources [ 39 ].

The Mara River is another trans-boundary river which is shared between Tanzania and Kenya and the basin forms the habitat for the Maasai Mara National Reserve and Serengeti National Park in Kenya and Tanzania, respectively, which is prominent for the annual wildlife migration. Kenya has 65% of the upper part of the basin, any development on the upstream, such as hydropower or water diversion, will reduce the water quantities and therefore affect the Serengeti ecosystem and the livelihoods of people in Tanzania [ 40 ]. The LVBC, under the East African Community, developed the Mara River Basin-wide—Water Allocation Plan (MRB-WAP) to help in water demand management and protection of the Mara ecosystem [ 41 ]. The mandate of the LVBC is to implement IWRM in Lake Victoria Basin riparian countries [ 20 ].

Other shared water basins include the Malakisi-Malaba-Sio River basin shared between Uganda and Kenya and the Kagera River basin traversing Burundi, Rwanda, Tanzania and Uganda. The two river basins form part of the Upper Nile system and are governed through the LVBC and the NBI.

The universal transboundary nature of water creates dynamics that warrant cooperation for improved water use. West Africa has 25 transboundary watercourses and only 6 are under agreed management and regulation. The situation is compounded by the fact that 20 watercourses lack strategic river-basin management instruments [ 28 ]. Unregistered rules and the asymmetrical variations associated with watercourses warranted the introduction of the IWRM principle to set equitable water sharing protocols and promote environmental flows (e-flows). The various acts signed represent an evolutionary treaty development that combines th efforts of riparian states to better manage the shared water resources (for detailed basin configuration in West Africa see [ 42 ]). Hence, adoption of the IWRM strategy driven WAWRP of 2008 ensured the coordinanted and harmonised regional water usage mechanisms.

The SADC region has 13 major transboundary river basins which calls for development of agreements on how to handle the shared water resources with the contraints of varying levels of economic development and priorities among the member states. The multi-lateral and bi-lateral agreeements on shared water resources in the SADC is hampered by the hydropolitics where economic power dynamics favour South Africa as in the case of the Orange-Senqu basin [ 43 ].

3.2.3 Donor influence.

The World Bank has been pushing for IWRM principles in the East Africa through the NBI and by pressurising Egypt to agree to co-operate with the upstream riparian countries in the Nile basin [ 38 ]. In the early 1990s, the World Bank had aligned its funding policies to include sustainable water resources management [ 44 ].

In Tanzania, Norway, through NORAD, played a key role in implementing IWRM by promoting water projects including hydropower schemes [ 45 ]. Indeed the transformation of the agricultural sector in Tanzania through Kilimo Kwanza policy of 2009 which emphasised on the commercialization of agriculture including irrigation was driven by foreign donors such as the USAID and UK’s DFID [ 26 ].

In Uganda, however, the reforms in the water sector were initiated devoid of external influence [ 46 ]. However, this assertion is countered by Allouche [ 5 ] who pointed that Uganda had become a ‘darling’ of the donor countries in the early 1990s and that DANIDA helped to develop the Master Water Plan and the country was keen to show a willingness to develop policy instruments favourable to the donor. East African countries are developing economies and therefore most of their development plans are supported by external agencies, which to some extent come with subtle ‘conditions’ such as free-market economies. In fact imposition of tariffs and other economic instruments used to implement IWRM in water supply and irrigation is a market-based approach which was favoured by the World Bank and other development agencies.

Donor aid cannot be downplayed in pushing for IWRM diffusion in low-income aid-dependent countries of West Africa. GoBF [ 47 ] reported that from the period 1996–2001, more than 80% of water-related projects were donor funded. Cherlet and Venot [ 48 ] also found that almost 90% of the water investments in Mali were funded outside the government apparatus. It can, therefore, be argued that donor-aid plays a pivotal and central role in diffusing policy and innovation in aid-depended countries because of the incentive nature it provides for the low-income countries in the sub-Sahara region.

Southern Africa’s experience with western donors including the World Bank in terms of IWRM adoption favoured the urban areas and neglected rural areas (see [ 8 ]). The National Water Act drafting process in South africa was a multi-stakeholder and intersectoral activity that brought in international consultancies. Notable IWRM drivers were Department of International Development—UK (DFID), Danish Danida, and Deustsche Gesellschaft fur Zusammernarbeit (GIZ). The DFID was instrumental in water reform allocation law whilst the GIZ and Danida were active in experimental work in the catchments [ 3 ]. On the contrary, in Zimbabwe, a lack of access to international funding and fleeting donor aid exacerbated the policy uptake as such the anticipated implementation, operationalisation and continuous feedback mechanism for policy revision and administering process was never realised.

3.2.4 Government intervention and pro-active citizenry.

This was predomint in West Africa. For example the Burkinabe government exhibited political goodwill such that in 1995 the government brought together two separate ministries into one ministry of Environment and Water thus enabling coherent policy formulation and giving the ministry one voice to speak on water matters. The dynamic innovation arena (where policy players interact) allows continuous policy revision and redesign thus water policy reform diffusion, and policy frameworks are in a perpetual state of shifting. For example, in the 1990s the Burkinabe government was engaged in several water-related projects and was continuously experimenting with local governance and privatization (from donors) [ 1 ]. This policy shift according to Gupta [ 49 ] qualifies as an innovation driver.

Burkina Faso and Mali’s adoption story is accentuated by heightened agency, the individual enthusiasm on influencing the outcome facilitated policy diffusion and can be argued to be a potential innovation diffusion driver for the IWRM policy approach in the region. The individual policy diffusion fuelled by an enthusiastic citizenry was a sure method that effectively diffused awareness around the IWRM innovation and acted as a driver of the IWRM practices in the region. Individual strategies were honed in smallholder farming institutions to diffuse the IWRM practice and drawing from the Sabatier and Jenkins-Smith [ 50 ] advocacy coalition theory, having individuals with common agendas promoted the transfer and diffusion of water reforms in parts of West Africa.

3.2.5 Legal, political and institutional incoherence.

This was a major factor which dictated the pace of IWRM implementation in Southern Africa. For example, the Fast Track Land Reform (FTLR) programme in Zimbabwe disaggregated the large-scale commercial farms and created smallholder farming [ 51 ], consequently influencing and dictating IWRM policy path. The FTLR programme had a negative impact on the spread and uptake of IWRM. A series of poor economic performance and poor policy design compounded the limited diffusion and the adoption of IWRM practices at local levels in Zimbabwe. The FTLR programme compounded the innovation diffusion process as the Zimbabwe National Water Authority (ZINWA) lost account of who harvested how much at the newly created smallholder farms. Thus, water access imbalance ensured, and ecological sustainability was compromised.

Policy incoherence was a major factor in poor IWRM diffusion and adoption, for example, the government did not synchronise the land and water reforms thus it meant at any given point in time there was a budget for one reform agenda [ 8 ] and the land reform agenda would take precedence because of political rent-seeking. IWRM in its nature couples growth to the coordinated consumption of finite resources, hence the circular approach cannot be easily realised because finte resources are at the core of the strategy’s existence.

South Africa’s transition from Integrated Catchment Management (ICM) strategies to the IWRM strategy, hindered the operationalisation and diffusion of the IWRM strategy [ 52 ]. Despite acknowledging the “integration”, researchers argued that the word lacked a clear-cut definition thus failing to establish a common ground for water’s multi-purpose use [ 53 ]. For maximised adoption of a practice, incremental innovation is required, which was Danida’s agenda in the quest to drive IWRM in South Africa. According to Wehn and Montalvo [ 54 ] incremental innovation “is characterised by marginal changes and occurs in mature circumstances”,

Land reform in South Africa is characterised by (a) redistribution which seeks to transfer land from the white minority on a willing buyer willing seller basis, (b) restitution which rights the discriminatory 1913 land laws that saw natives evicted from their ancestral land, and (c) land tenure that provides tenure to the occupants of the homelands. This new pattern created a new breed of smallholder farmers that are, more often than not, excluded from diffusion and water governance channels [ 55 ]. In addition, researchers argue that a farm once owned by one white farmer is owned by multiple landowners with different cultural backgrounds and, more often than not, IWRM strategy is met with resistance [ 56 ]. Another challenge posed by multi-cultural water users is the interpretation and translation of innovations.

To foster water as an economic good aspect of IWRM the licensing system was enacted in South Africa. The phenomenon was described by van Koppen (2012) as paper water precedes water, thus the disadvantaged black smallholder farmers could not afford paper water which consequently limits access to water. The licensing system can be interpreted as stifling the smallholder sector and hence negative attitudes develop and hinder effective policy diffusion. Another issue that negatively impacted adoption was that issuing a license was subject to farmers possessing storage facilities. The smallholder farmers lack resources hence the requirement for obtaining a license excluded the small players in favour of the large-scale commercial farmers. This consequently maintains the historically skewed status-quo, where “big players” keep winning. Van Koppen [ 57 ] and Denby, Movik [ 58 ] argue the shift from local water rights system to state-based water system have created bottlenecks making it hard for smallholder farmers to obtain “paper water” and subsequently “wet water”. The state-based system is characterised by bureaucracies and local norms are in perpetual change, hence denying the IWRM innovation policy approach stability efficiency.

A lack of political will and pragmatism amplified the poor adoption and operationalisation of IWRM, a poorly performing economy and fleeing donor agencies resulted in less funding for water-related project. Political shenanigans created an imbalance that resulted in two forms of water i.e., water as an economic good vs. water as a social good [ 59 ]. Manzungu [ 60 ] argued post-colonial Zimbabwe continuously failed to develop a peoples-oriented water reform policy. In a bid to correct historical wrongs by availing subsidised water to the vulnerable and support the new social order, the initiative goes against the neo-liberalism approach that defines the “water as an economic good” [ 61 ] which is a founding principle of IWRM.

Water redistribution in South Africa has been fraught with political and technical issues, for example, the Water Allocation Reform of 2003 failed to reconcile the apartheid disparity hence the equity component of IWRM was compromised. IWRM suffered another setback caused by the governing party when they introduced radical innovations that sought to shift from the socialist to neoliberal water resource use approach. The radical innovation through the government benefited the large-scale commercial farmers at the expense of the black smallholder farming community [ 53 ].

3.3 Systematic comparison of findings on East, West and Southern Africa

Data extracts from the respective regional analysis were formulated into theoretical candidate themes. The thematic analysis extracted recurring themes common to all the three regions. An independent reviwer performed the subjective thematic analysis and the authors performed the review on the blind thematic analysis outcome. The analysis performed a data extraction exercise and formulated codes ( Fig 2 ). Themes were then generated from the coded data extracts to create a thematic map. It is worth mentioning that the data extracts were phrases/statement from with in the literature review.

thumbnail

https://doi.org/10.1371/journal.pone.0236903.g002

3.3.1 Donor aid and policy approach.

Donor activity invariably influenced the policy path that individual countries took. The three regions had significant support from donors to drive the IWRM strategy. Zimbabwe experienced a different fate. The political climate caused an exodus of donor support from the nation, which consequently caused a laggard. The absence of donor support was at the backdrop of the two formulated water acts namely National Water Act [ 62 ] and the Zimbabwe National Water Authority Act of 1998 [ 63 ], which were meant to promote equitable water provision amongst the population. This highlights the latent adoption of IWRM strategy. The 2008/2009 cholera outbreak raised alarm and facilitated the return of donor activity in Zimbabwe’s water sector. The availability of donor support motivated the redrafting of a water clause in the 2013 constitution that espoused the IWRM strategy to water management [ 64 ].

Whilst Mehta, Alba [ 64 ] argue that South Africa enjoyed minimal donor support it cannot be downplayed how much donor influence impacted the IWRM strategy adoption. For instance, the Water Allocation Reform (WAR) was drafted with the aid of the UK Department of International Development. The WAR fundamentals are informed by IWRM principles. The economic structural programmes spearheaded by The World Bank and the IMF were active in facilitating the diffusion of the IWRM strategy in Kenya and Uganda. Uganda made strides because of a long-standing relationship with donor nations. The Uganda—donor relationship dates back to early 1990 where Uganda was elected to be the NBI secretariat, this in itself evidence of commitment to water policy reform [ 4 , 65 ]. Donor aid acts as an incentive and augments the low African goverments’ budgets, as such proper accountability and usage of the funds ensures that more funds come in for projected water related projects.

3.3.2 Transboundary water resources.

The Nile River system is the single largest factor driving the IWRM in the region since it is shared across several upstream and downetream nations. Irrigation schemes in Sudan and Egypt rely exclusively on the waters of River Nile and are therefore apprehensive of the actions of upstream states notably Ethiopia, Kenya, Uganda, Tanzania, Rwanda and Burundi. The source of contention is the asymmetrical water needs and allocation which was enshrined in the Sudan–Egypt treaty of 1959 [ 37 ]. Over time, the upstream countried demanded equitable share of the Nile waters and this led to the establishment of NBI. In Eastern Africa, the Nile Basin Initiative (NBI) and the Lake Victoria Basin Commission (LVBC) plays a critical component in promoting the IWRM at regional level [ 20 ]. The LVBC is deeply intertwined with the East African Community (EAC) and thus has more political clout to implement policies regarding utilization of the Lake Victoria waters [ 66 ]. This, therefore, implies that for NBI to succeed, it must have a mandate and political goodwill from the member countries.

The conflicts around the utilization of the Nile water resources persists due to the treaty of 1959 which led to the signing of Cooperative Framework Agreement (CFA) by a number of the Nile basin countries, with the notable exceptions of Egypt, Sudan and South Sudan [ 67 ]. The CFA was signed between 2010 and 2011 and establishes the principle that each Nile Basin state has the right to use, within its territory, the waters of the Nile River Basin, and lays down some factors for determining equitable and reasonable utilization such as the contribution of each state to the Nile waters and the proportion of the drainage area [ 68 ]. The construction of the Grand Ethiopian Renaissance Dam has been a source of concern and conflict among the three riparian countries of Ethiopia, Sudan and Egypt [ 67 ]. The asymmetrical power relations (Egypt is the biggest economy) in the Nile Basin is a big hindrance to the co-operation among the riparian countries [ 69 ] and thus a threat to IWRM implementation in the shared watercourse. While Ethiopia is using its geographical power to negotiate for an equitable share in the Nile water resources, Egypt is utilizing both materials, bargaining and idealistic power to dominate the hydro politics in the region and thus the former can only succeed if it reinforces its geographical power with material power [ 70 ].

Therefore, IWRM implementation at the multi-national stage is complex but necessary to forestall regional conflicts and war. The necessity of co-operation rather than conflict in the Nile Basin is paramount due to the water availability constraints which is experienced by most countries in the region. The transboundary IWRM revolves around water-food- energy consensus where the needs of the riparian countries are sometimes contrasting, for example, Egypt and Sudan require the Nile waters for irrigation to feed their increasing population while Ethiopia requires the Nile waters for power generation to stimulate her economy. The upstream riparian States could use their bargaining power to foster co-operation and possibly force the hegemonic downstream riparian States into the equitable and sustainable use of Nile waters [ 71 ].

The SADC region has 13 major transboundary river basins (excluding the Nile and Congo) of Orange, Limpopo, Incomati, Okavango, Cunene, Cuvelai, Maputo, Buzi, Pungue, Save-Runde, Umbeluzi, Rovuma and Zambezi [ 72 ]. The Revised Protocol on Shared Watercourses was instrumental for managing transboundary water resources in the SADC. The overall aim of the Protocol was to foster co-operation for judicious, sustainable and coordinated management, the protection and utilization of shared water resources [ 73 ].

Ashton and Turton [ 74 ] argue that the transboundary water issues in Southern Africa revolved around the key roles played by pivotal States and impacted States and their corresponding pivotal basins and impacted basins. In this case, pivotal States are riparian states with a high level of economic development (Botswana, Namibia, South Africa, and Zimbabwe) and a high degree of reliance on shared river basins for strategic sources of water supply while impacted States are riparian states (Angola, Lesotho, Malawi, Mozambique, Swaziland, Tanzania, and Zambia) that have a critical need for access to water from an international river basin that they share with a pivotal state, but appear to be unable to negotiate what they consider to be an equitable allocation of water and therefore, their future development dreams are impeded by the asymmetrical power dynamics with the pivotal states. Pivotal Basins (Orange, Incomati, and Limpopo) are international river basins that face closure but are also strategically important to anyone (or all) of the pivotal states by virtue of the range and magnitude of economic activity that they support. Impacted basins (Cunene, Maputo, Okavango, Cuvelai, Pungué, Save-Runde, and Zambezi) are those international river basins that are not yet approaching a point of closure, and which are strategically important for at least one of the riparian states with at least one pivotal State.

The transboundary co-operation under IWRM in Southern Africa is driven mainly by water scarcity which is predominant in most of the SADC countries which may imply the use of inter-basin transfers schemes [ 74 ]. Further, most of the water used for agriculture, industry and domestic are found within the international river basins [ 75 ] which calls for collaborative water management strategies. The tricky feature hindering the IWRM is the fact that States are reluctant to transfer power to River Basin Commissions [ 76 ]. Indeed most of the River Basin Organizations (RBO) in Southern region such as the Zambezi Commission, the Okavango River Basin Commission, and the Orange-Sengu River Basin Commission have loose links with SADC and therefore lack the political clout to implement the policies governing the shared water resources [ 66 ]. Power asymmetry, like in Eastern Africa, is also a bottleneck in achieving equitable sharing of water resources as illustrated by the water transfer scheme involving Lesotho and South Africa [ 77 ]. The hydro-hegemonic South Africa is exercising control over any negotiations and agreements in the Orange-Senqu basin [ 43 ]. Limited data sharing among the riparian States is another challenge which affects water management in transboundary river basins e.g. in the Orange-Senqu basin [ 78 ].

West Africa has 25 transboundary watercourses and only 6 are under agreed management and regulation. The situation is compounded by the fact that 20 watercourses lack strategic river-basin management instruments [ 28 ]. Unregistered rules and the asymmetrical variations associated with watercourses warrant the introduction of the IWRM principle to set equitable water sharing protocols and promote environmental flows (e-flows). The various acts signed represent an evolutionary treaty development that combines the efforts of riparian states to better manage the shared water resources. It is important to note that evolutionary treaties are incremental innovation. Water Resources Coordination Centre (WRCC) was established in 2004 to implement an integrated water resource management in West Africa and to ensure regional coordination of water resource related policies and activities [ 79 ].

The Niger River basin covers 9 Countries of Benin, Burkina, Cameroon, Chad, Côte d’Ivoire, Guinea, Mali, Niger and Nigeria. The Niger River Basin Authority (NBA) was established to promote co-operation among the member countries and to ensure basin-wide integrated development in all fields through the development of its resources, notably in the fields of energy, water resources, agriculture, livestock, forestry exploitation, transport and communication and industry [ 80 ]. The Shared Vision and Sustainable Development Action Programme (SDAP) was developed to enhance co-operation and sharing benefits from the resources of River Niger [ 81 ]. The Niger Basin Water Charter together with the SDAP are key instruments which set out a general approach to basin development, an approach negotiated and accepted not only by all member states but also by other actors who utilize the basin resources [ 82 ].

The main agreement governing the transboundary water resource in River Senegal Basin is the Senegal River Development Organization, OMVS (Organisation pour la mise en valeur du fleuve Sénégal) with its core principle being the equitably shared benefits of the resources of the basin [ 82 ]. The IWRM in the Senegal River Basin is hampered by weak institutional structures and lack of protocol on how shared waters among the States as well as conflicting national and regional interests [ 83 , 84 ]. The Senegal River Basin, being situated in the Sudan-Sahelian region, is faced by the threat of climate change which affects water availability [ 84 ] The Senegal River Basin States have high risks of political instability.

3.4 Prospects of IWRM Africa

The countries in the three regions are at different stages of implementation ( Table 4 ). In East Africa, Uganda and Kenya are at medium-high level while Tanzania is medium-low. Majority of the countries in the Southern Africa region are at medium low. Comoros Islands is the only country at low level of implementation in the region. West African countries are evenly spread between low, medium-low and medium-high levels of implementation. Generally, East Africa is ranked as medium-high level with average score of 54% while Southern Africa and West Africa are ranked as medium low-level at 46% and 42% respectively. However if you include, medium low countries of Rwanda, Burundi, Ethiopia and South Sudan and the low-level Somalia, then East Africa’s score drops to 39% (medium-low).

thumbnail

https://doi.org/10.1371/journal.pone.0236903.t004

The implementation of IWRM in the continent, and more so the inter dependent and multi purpose water use sectors, will continue to evolve amid implementation challenges. The dynamics of water policies, increased competition for finite water resources from rapid urbanization, industrialization and population growth will continue to shape IWRM practices in the region. Trans-boundary water resources management will possibly take centre stage as East African countries move towards full integration and political federation as envisaged in the four pillars of the EAC treaty. Decision support tools such as the Water—Energy—Food (WEF) nexus appraoch will be very relevant in the trans-boundary water resources such as the Nile system, Mara and Kagera river basins. The approach can potentially ameliorate the after effects of the devolved governance system in Kenya that consequently created a multiplicity of transboundary sectors.

Adoption of the IWRM policy in West Africa is fraught with many challenges. For example, despite having significant water resources, the lack of a collective effort by the governments to train water experts at national level presents a challenge for adoption. Unavailability of trained water experts (who in any case are diffusion media) results in a lack of diffusion channels that facilitate policy interpretation, translation and its subsequent implementation. Helio and Van Ingen [ 27 ] pointed out how political instability possesses a threat to current and future implantation initiatives. The future collaboration projects and objective outlined by ECOWAS, CILSS, and UEMO highlight a major effort to bring the region to speed with the IWRM policy approach. The WAWRP objectives can potentially set up the region on an effective IWRM trajectory which can be mimicked and upscaled in other regions. Positives drawn from the region are the deliberate institutional collaborations. Burkina Faso and Mali have the potential to operationalise and facilitate policy diffusion to other neighbouring states. Donor driven reform is essential and national ownership is critical in ensuring the water reform policies and innovation diffusion processes are implemented at the national level.

The IWRM policy approach and practice in South Africa was government-driven whereas in Zimbabwe external donors were the main vehicles for diffusion. For both countries, the water and land reform agenda has a multiplicity of overlapping functionaries; however, they are managed by separate government departments. The silo system at national level prevents effective innovation diffusion and distorts policy interpretation and the subsequent dissemination at the local level.i.

Water affairs are politicised and often, the water reform policy fails to balance the Dublin’s principles which form the backbone of the IWRM innovation policy approach. Failure by national governments to address unequal water access created by former segregationist policies is perpetuated by the lack of balance between creating a new social order and recognising the “water as an economic good” principle.

4 Conclusion

Africa as a laboratory of IWRM produced varied aggregated outcomes. The outcomes were directly linked to various national socio-economic development agendas; thus, the IWRM policy took a multiplicity of paths. In East Africa, Kenya is still recovering from the devolved system of government to the County system which created new transboundary sectors with the country. Water scarcity, trans-boundary water resource and donor aid played a critical role in driving the IWRM policy approach in the three regions. Southern Africa’s IWRM experience has been fraught with policy clashes between the water and land reforms. Similar to Africa, the transboundary issue in Europe and Asia and the subsequent management is a major buy-in for formulating water resources strategies that are people centric and ecologically friendly. Global water scarcity created fertile grounds for IWRM adoption in Asia, specifically India. Thus, we postulate that some of the drivers that influenced the uptake and diffusion in Africa are not only unique to the continent.

For the future, IWRM policy approach can be implemented in Africa and the continent has the potential to implement and adopt the practice. Endowed with a significant number of water bodies, Africa must adopt a blend of IWRM strategy and the water energy food nexus (WEF) for maximising regional cooperation and subsequent economic gains. WEF nexus will help combat a singular or silo approach to natural resources management. WEF nexus and IWRM is a fertile area for future research as it brings a deeper understanding of the trade-offs and synergies exsisting in the water sector across and within regions. In addition, the WEF nexus approach can potentially facilitate a shift to a circular approach that decouples over dependence on one finte resource for development.

Supporting information

S1 checklist..

https://doi.org/10.1371/journal.pone.0236903.s001

S1 Table. Data extracts with the applied codes.

https://doi.org/10.1371/journal.pone.0236903.s002

  • 1. GWP, Capitalizing the development process of the Action Plan for IWRM and its implementation in Burkina Faso . 2009, Global Water Patnership: Ouagadougou, Burkina Faso.
  • 2. Solanes M. and Gonzalez-Villarreal F., The Dublin principles for water as reflected in a comparative assessment of institutional and legal arrangements for integrated water resources management, ed. G.W.P.T.A.C. (TAC). 1999, Stockholm, Sweden.: Global Water Partnership.
  • 3. Mehta L., et al., Flows and Practices : The Politics of Integrated Water Resources Management in Eastern and Southern Africa , Metha L., Derman B., and Manzungu E., Editors. 2017, Weaver Press: Harare, Zimbabwe.
  • View Article
  • Google Scholar
  • 13. UNDESA, International Standard Industrial Classification of All Economic Activities Revision 4 . 2008, United Nations Department of Economic and Social Affairs: New York, USA.
  • PubMed/NCBI
  • 20. GWP, Integrated water resources management in Eastern Africa : Coping with ’complex’ hydrology 2015, Global Water Partnership: Stockholm, Sweden.
  • 21. GOK, The Water Act , 2002 . 2002, Government Printer Nairobi, Kenya.
  • 22. GOK, The Water Act , 2016 . 2016, Government Printer: Nairobi, Kenya.
  • 23. MWLE, A National Water Policy 1999 , Ministry of Water, Lands and Environment Kampala, Uganda.
  • 25. MWLD, National Water Policy . 2002, Ministry of Water and Livestock Development: Dodoma, The United Republic of Tanzania.
  • 27. Helio J. and Van Ingen N., in West Africa Water Resources Policy (WAWRP) . 2008, Partnership for Environmental Governance in West Africa—PAGE.: Ouagadougou. Burkina Faso.
  • 29. Senzanje A., Agricultural Water Management Interventions (Awmi) for Sustainable Agricultural Intensification (SAI) in the Chinyanja Triangle Area of Malawi , Mozambique and Zambia . 2016, IWMI: Pretoria, South Africa.
  • 30. Granit J., Swedish experiences from transboundary water resources management in southern Africa . Stockholm: SIDA (Publications on Water Resources 17), 2000.
  • 32. Kibiiy J. and Kosgei J., Long-Term Water Planning : A Review of Kenya National Water Master Plan 2030 , in Water Resources Management . 2018, Springer: Berlin, Germany. p. 193–208.
  • 41. LVBC, Mara river basin-wide water allocation plan . 2013, Lake Victoria Basin Commission: Kisumu, Kenya.
  • 43. Mirumachi N., Transboundary Water Politics in the Developing World . 2015, New York Routledge.
  • 46. Kesti E., Domestic water supply policy evaluation : A comparative case study of Uganda and Madagascar between 1992 and 2016 . 2019, Lund University Lund, Sweden.
  • 47. GoBF, Le PAGIRE dans le contexte du secteur de l’eau du Burkina . Document debase : Table ronde des bailleurs de fonds du plan d’action pour la gestion intégrée des ressources en eau ., Faso G.d.B., Editor. 2003, GoBF Ouagadougou, Burkina Faso.
  • 49. Gupta J., Driving forces in global freshwater governance. In: Water Policy Entrepreneurs : A Research Companion to Water Transitions Around the Globe ., Huitema D. and Meijerink S., Editors. 2009, Edward Elgar: Cheltenham, UK. p. 37–57.
  • 50. Sabatier P.A. and Jenkins-Smith H.C., Policy change and learning : An advocacy coalition approach . 1993, Colorado, USA.: Westview Pr.
  • 51. Moyo S. and Chambati W., Land and Agrarian Reform in Zimbabwe . 2013, Dakar, Senegal.: African Books Collective.
  • 55. Denby K., et al., The’trickle down’of IWRM : A case study of local-level realities in the Inkomati Water Management Area , South Africa . 2016.
  • 56. Denby K., et al., The’trickle down’of IWRM : A case study of local-level realities in the Inkomati Water Management Area , South Africa . 2016, Harae, Zimbabwe.: Weaver Press.
  • 58. Denby K., et al., The ‘trickle down’of integrated water resources management : A case study of local-level realities in the Inkomati water management area , South Africa . 2017, Harare, Zimbabwe.: Weaver Press.
  • 59. Hellum A. and Derman B., Negotiating water rights in the context of a new political and legal landscape in Zimbabwe , in Mobile People , Mobile Law . 2017, Routledge: London, UK. p. 189–210.
  • 62. GoZ, Zimbabwe Water Act . 1998, GoZ: Harare, Zimbabwe.
  • 63. GoZ, Zimbabwe National Water Authority (Chapter 20 : 25) . 1998, Zimbabwe National Water Authority (ZINWA): Harare, Zimbabwe.
  • 65. Jønch-Clausen T.J.W., what and how, Integrated Water Resources Management (IWRM) and Water Efficiency Plans by 2005 : Why , What , and How . 2004: p. 5–4.
  • 69. Allan J.A. and Mirumachi N., Why Negotiate? Asymmetric Endowments, Asymmetric Power and the Invisible Nexus of Water, Trade and Power that Brings Apparent Water Security, in Transboundary water management Earle A., Jägerskog A., and Öjendal J., Editors. 2010, Stockholm International Water Institute: London. p. 13–26.
  • 70. Cascão A.E. and Zeitoun M., Power, Hegemony and Critical Hydropolitics, in Transboundary Water Management Earle A., Jägerskog A., and Öjendal J., Editors. 2010, Stockholm International Water Institute: London p. 27–42.
  • 71. Cascão A. and Zeitoon M., Changing nature of bargaining power in the hydropolitical relations in the Nile River Basin, in Transboundary water management , Earle A., Jägerskog A., and Öjendal J., Editors. 2010, Stockholm International Water Institute: London. p. 189–194.
  • 73. Heyns P. Strategic and Technical Considerations in the Assessment of Transboundary Water Management with Reference to Southern Africa. in Water , Development and Cooperation- Comparative Perspective : Euphrates-Tigris and Southern Africa . 2005. Bonn Bonn International Center for Conversion.
  • 74. Ashton P. and Turton A., Water and Security in Sub-Saharan Africa: Emerging Concepts and their Implications for Effective Water Resource Management in the Southern African Region, in Facing Global Environmental Change , Brauch H.G., et al., Editors. 2009, Springer: Berlin, Heidelberg. p. 661–674.
  • 75. Ashton P. and Turton A. Transboundary Water Resource Management in Southern Africa: Opportunities, Challenges and Lessons Learned. in Water , Development and Cooperation-Comparative Perspective : Euphrates-Tigris and Southern Africa . 2005. Bonn International Center for Conversion.
  • 76. Swatuk L.A. Political Challenges to Sustainably Managing Intra-Basin Water Resources in Southern Africa: Drawing Lessons from Cases. in Water , Development and Cooperation- Comparative Perspective : Euphrates-Tigris and Southern Africa . 2005. Bonn: Bonn International Center for Conversion.
  • 77. Daoudy M., Getting Beyond the Environment–Conflict Trap: Benefit Sharing in International River Basins, in Transboundary water management , Earle A., Jägerskog A., and Öjendal J., Editors. 2010, Stockholm International Water Institute: London p. 43–58.
  • 79. Bhattacharyya S., Bugatti N., and Bauer H., A bottom-up approach to the nexus of energy , food and water security in the Economic Community of West African States (ECOWAS) region . 2015, London: Economic and Social Research Council.
  • 80. Olomoda I.A. Integrated Water Resources Management: The Niger Basin Authority’s Experience. in From Conflict to Co-operation in International Water Resources Management : Challenges and Opportunities . 2002. Delft, The Netherlands.
  • 81. Andersen I., et al., The Niger River Basin : A Vision for Sustainable Management , ed. Golitzen K.G. 2005, Washington, DC: World Bank.
  • 85. UNEP, Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6 . 5 . 1 : degree of IWRM implementation . 2018, United Nations Environment Programme: Nairobi.
  • News, Stories & Speeches
  • Get Involved
  • Structure and leadership
  • Committee of Permanent Representatives
  • UN Environment Assembly
  • Funding and partnerships
  • Policies and strategies
  • Evaluation Office
  • Secretariats and Conventions

An overhead view of a highway cutting through a city

  • Asia and the Pacific
  • Latin America and the Caribbean
  • New York Office
  • North America
  • Climate action
  • Nature action
  • Chemicals and pollution action
  • Digital Transformations
  • Disasters and conflicts
  • Environment under review
  • Environmental rights and governance
  • Extractives
  • Fresh Water
  • Green economy
  • Ocean, seas and coasts
  • Resource efficiency
  • Sustainable Development Goals
  • Youth, education and environment
  • Publications & data

case study of water resources

Integrated water resources management - climate change adaptation case studies

Report cover

Five case studies from around the world – 1) Vanuatu, 2) Lower Mekong River Basin (shared by Cambodia, Laos, Thailand and Viet Nam), 3) Uruguay and 4) North Darfur (Sudan) and 5) Amazon Basin – showcase the importance of aligning integrated water resources management (IWRM) and climate change adaptation (CCA) measures in order to build environmental, social and economic resilience to the impacts of climate change and ever-growing demand for water.

  • Climate Action
  • Nature Action
  • Fresh water

Ocean

© 2024 UNEP Terms of Use Privacy   Report Project Concern Report Scam Contact Us

Water Resources Planning and Management: An Overview

  • Open Access
  • First Online: 04 March 2017

Cite this chapter

You have full access to this open access chapter

case study of water resources

  • Daniel P. Loucks 3 &
  • Eelco van Beek 4  

181k Accesses

47 Citations

Water resource systems have benefited both people and their economies for many centuries. The services provided by such systems are multiple. Yet in many regions of the world they are not able to meet even basic drinking water and sanitation needs. Nor can many of these water resource systems support and maintain resilient biodiverse ecosystems. Typical causes include inappropriate, inadequate and/or degraded infrastructure, excessive withdrawals of river flows, pollution from industrial and agricultural activities, eutrophication resulting from nutrient loadings, salinization from irrigation return flows, infestations of exotic plant and animals, excessive fish harvesting, flood plain and habitat alteration from development activities, and changes in water and sediment flow regimes.

You have full access to this open access chapter,  Download chapter PDF

  • Water Resource
  • River Basin
  • Water Resource Management
  • Integrate Water Resource Management
  • Water Resource System

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

1.1 Introduction

Water resource systems have benefited both people and their economies for many centuries. The services provided by such systems are multiple. Yet in many regions of the world they are not able to meet even basic drinking water and sanitation needs. Nor can many of these water resource systems support and maintain resilient biodiverse ecosystems . Typical causes include inappropriate, inadequate and/or degraded infrastructure, excessive withdrawals of river flows, pollution from industrial and agricultural activities, eutrophication resulting from nutrient loadings , salinization from irrigation return flows, infestations of exotic plant and animals, excessive fish harvesting, flood plain and habitat alteration from development activities, and changes in water and sediment flow regimes. The inability of water resource systems to meet the diverse needs for water often reflect failures in planning, management, and decision-making—and at levels broader than water. Planning, developing, and managing water resources to ensure adequate, inexpensive, and sustainable supplies and qualities of water for both humans and natural ecosystems can only succeed if we recognize and address the causal socioeconomic factors, such as inadequate education, corruption, population pressures, and poverty.

Over the centuries, surface and ground waters have been a source of water supply for agricultural, municipal, and industrial consumers. Rivers have provided hydroelectric energy and inexpensive ways of transporting bulk cargo. They have provided people water-based recreational opportunities and have been a source of water for wildlife and their habitats. They have also served as a means of transporting and transforming waste products that are discharged into them. The quantity and quality regimes of streams and rivers have been a major factor in governing the type, health, and biodiversity of riparian and aquatic ecosystems. Floodplains have provided fertile lands for agricultural crop production and relatively flat lands for the siting of roads and railways and commercial and industrial complexes. In addition to the economic benefits that can be derived from rivers and their floodplains, the aesthetic beauty of most natural rivers has made lands adjacent to them attractive sites for residential and recreational development. Rivers and their floodplains have generated, and, if managed properly, can continue to generate, substantial cultural, economic, environmental, and social benefits for their inhabitants.

Human activities undertaken to increase the benefits obtained from rivers and their floodplains may also increase the potential for costs and damages such as when the river is experiencing periods of droughts, floods, and heavy pollution. These costs and damages are physical, economic, environmental, and social. They result because of a mismatch between what humans expect or demand, and what nature offers or supplies. Human activities tend to be based on the “usual or normal” range of river flow conditions. Rare or “extreme” flow conditions outside these normal ranges will continue to occur, and possibly with increasing frequency as climate change experts suggest. River-dependent human activities that cannot adjust to these extreme flow conditions will incur losses.

The planning of human activities involving rivers and their floodplains must consider certain hydrologic facts. One of these facts is that surface water flows and aquifer storage volumes vary over space and time. They are also finite. There are limits to the amounts of water that can be withdrawn from them. There are also limits to the amounts of pollutants that can be discharged into them. Once these limits are exceeded, the concentrations of pollutants in these waters may reduce or even eliminate the benefits that could be obtained from other users of the resource.

Water resources professionals have learned how to plan, design , build, and operate structures that together with nonstructural measures increase the benefits people can obtain from the water resources contained in aquifers, lakes, rivers, and estuaries. However, there is a limit to the services one can expect from these resources. Rivers, estuaries, and coastal zones under stress from over development and overuse cannot reliably meet the expectations of those depending on them. How can these resources best be managed and used? How can this be accomplished in an environment of uncertain and varying supplies and uncertain and increasing demands, and consequently of increasing conflicts among individuals having different interests in their management and use? The central purpose of water resources planning, management, and analysis activities is to address, and if possible answer, these questions. These questions have scientific, technical, political (institutional), and social dimensions. Thus water resources planning processes and products are must.

River basin, estuarine, and coastal zone managers—those responsible for managing the resources in those areas—are expected to manage those resources effectively and efficiently, meeting the demands or expectations of all users, and reconciling divergent needs. This is no small task, especially as demands increase, as the variability of hydrologic and hydraulic processes become more pronounced, and as stakeholder expectations of system performance increase in complexity. The focus or goal is no longer simply to maximize economic net benefits while making sure the distribution of those benefits is equitable. There are also environmental and ecological goals to consider. Rarely are management questions one-dimensional, such as how can we provide, at acceptable costs , more high-quality water to municipalities, industry, or to irrigation areas in the basin. Now added to that question is how would those withdrawals affect the downstream hydrologic water quantity and quality regimes, and in turn the riparian and aquatic ecosystems .

Problems and opportunities change over time. Just as the goals of managing and using water change over time, so do the processes of planning to meet these changing goals. Planning processes evolve not only to meet new demands, expectations , and objectives , but also in response to new perceptions of how to plan and manage more effectively.

This chapter reviews some of the issues requiring water resources planning and management. It provides some context and motivation for the following chapters that outline in more detail our understanding of “how to plan” and “how to manage” and how computer-based programs and models can assist those involved in these activities. Additional information is available in many of the references listed at the end of this chapter.

1.2 Planning and Management Issues: Some Case Studies

Managing water resources certainly requires knowledge of the relevant physical sciences and technology. But at least as important, if not more so, are the multiple institutional, social, or political issues confronting water resources planners and managers. The following brief descriptions of some water resources planning and management studies at various geographic scales illustrate some of these issues.

1.2.1 Kurds Seek Land , Turks Want Water

The Tigris and Euphrates Rivers (Fig.  1.1 ) created the “Fertile Crescent” where some of the first civilizations emerged. Today their waters are critical resources, politically as well as geographically. In one of the world’s largest public works undertakings, Turkey’s Southeast Anatolia Project includes 13 irrigation and hydropower schemes, and the construction of 22 dams and 19 hydroelectric power plants on both the Tigris and the Euphrates. Upon completion, it is expected to provide up to 25% of the country’s electricity.

The Tigris and Euphrates Rivers in Turkey, northern Syria, and Iraq

Its centerpiece, the Ataturk Dam (Fig.  1.2 ) on the Euphrates River, is already completed. In the lake formed behind the dam, sailing and swimming competitions are being held on a spot where for centuries there was little more than desert (Fig.  1.3 ).

figure 2

Ataturk Dam on the Euphrates River in Turkey (DSI)

figure 3

Water sports on Ataturk Reservoir on the Euphrates River in Turkey (DSI)

When the multireservoir project is completed it is expected to increase the amount of irrigated land in Turkey by 40% and provide up to a quarter of the country’s electric power needs. Planners hope this can improve the standard of living of six million of Turkey’s poorest people, most of the Kurds, and thus undercut the appeal of revolutionary separatism. It will also reduce the amount of water Syria and Iraq believe they need—water that Turkey fears might ultimately be used in anti-Turkish causes.

The region of Turkey where Kurd’s predominate is more or less the same region covered by the Southeast Anatolia Project, encompassing an area about the size of Austria. Giving that region autonomy by placing it under Kurdish self-rule could weaken the central Government’s control over the water resource that it recognizes as a keystone of its future power.

In other ways also, Turkish leaders are using their water as a tool of foreign as well as domestic policy. Among their most ambitious projects considered is a 50-mile undersea pipeline to carry water from Turkey to the parched Turkish enclave on northern Cyprus. The pipeline, if actually built, will carry more water than northern Cyprus can use. Foreign mediators, frustrated by their inability to break the political deadlock on Cyprus, are hoping that the excess water can be sold to the ethnic Greek republic on the southern part of the island as a way of promoting peace.

As everyone knows, the Middle East is currently (2016) witnessing considerable turmoil so who knows the fate of any water resources project in this region, including the one just described in Turkey and the following example in Jordan. One can only hope that the management and use of this scarce resource will lead to more peaceful resolutions of conflicts not only involving water but of other political issues as well.

1.2.2 Sharing the Water of the Jordan River Basin: Is There a Way?

A growing population —approximately 12 million people—and intense economic development in the Jordan River Basin (Fig.  1.4 ) are placing heavy demands on its scarce freshwater resources. This largely arid region receives less than 250 mm of rainfall each year, yet total water use for agricultural and economic activities has been steadily increasing. This plus encroaching urban development have degraded many sources of high-quality water in the region.

The Jordan River between Israel and Jordan

The combined diversions by the riparian water users have changed the river in its lower course into little better than a sewage ditch. From the 1300 million cubic meters (mcm) of water that flowed into the Dead Sea in the 1950s only a small fraction remains at present. In normal years the flow downstream from Lake Tiberias (also called the Sea of Galilee or Lake Kinneret) is some 60 million cubic meters (mcm)—about 10% of the natural discharge in this section. It mostly consists of saline springs and sewage water. These flows are then joined by what remains of the Yarmouk, by some irrigation return flows, and by winter runoff , adding up to an annual total of from 200–300 mcm. Both in quantity and quality this water is unsuitable for irrigation and does not sufficiently supply natural systems either. The salinity of the Jordan River reaches up to 2000 parts per million (ppm) in the lowest section, which renders it unfit for crop irrigation. Only in flood years is fresh water released into the lower Jordan Valley.

One result of this increased pressure on freshwater resources is the deterioration of the region’s wetlands . These wetlands are important for water purification and flood and erosion control. As agricultural activities expand, wetlands are being drained, and rivers, aquifers , lakes, and streams are being polluted with runoff containing fertilizers and pesticides. Reversing these trends by preserving natural ecosystems is essential to the future availability of fresh water in the region.

To ensure that an adequate supply of fresh, high-quality water is available for future generations, Israel, Jordan, and the Palestinian Authority will have to work together to preserve aquatic ecosystems (White et al. 1999 ). Without these natural ecosystems, it will be difficult and expensive to sustain high-quality water supplies. The role of ecosystems in sustaining water supplies has largely been overlooked in the context of the region’s water supplies. Vegetation controls storm water runoff and filters polluted water , and it reduces erosion and the amount of sediment that makes its way into water supplies. Streams assimilate wastewater, lakes store clean water, and surface waters provide habitat for many plants and animals.

The Jordan River Basin just like most river basins should be evaluated and managed as a whole system, to permit the comprehensive assessment of the effects of water management options on wetlands , lakes, the lower river, and the Dead Sea coasts. Damage to ecosystems and loss of animal and plant species should be weighed against the potential benefits of developing land and creating new water resources. For example, large river-management projects that divert water to dry areas have promoted intensive year-round farming and urban development, but available river water is declining and becoming increasingly polluted. Attempting to meet current demands solely by withdrawing more ground and surface water could result in widespread environmental degradation and depletion of freshwater resources.

There are policies that if implemented could help preserve the capacity of the Jordan River to meet future demands. Most of the options relate to improving the efficiency of water use—that is, they involve conservation and better use of proven technologies. Also being considered are policies that emphasize economic efficiency and reduce overall water use. Charging higher rates for water use in peak periods, and surcharges for excessive use, would encourage conservation. In addition, new sources of fresh water can be obtained by capturing rainfall through rooftop cisterns, catchment systems, and storage ponds. However before such measures are required, one should assess the impact on local aquifer recharge, storage, and withdrawals .

Thus there are alternatives to a steady deterioration of the water resources of the Jordan Basin. They will require coordination and cooperation among all those living in the basin. Will this be possible?

1.2.3 Mending the “Mighty and Muddy” Missouri

Nearly two centuries after an epic expedition through the Western US in search of a northwest river passage to the Pacific Ocean, there is little enchantment left to the Missouri River. Shown in Figs.  1.5 and 1.6 , it has been dammed, diked, and dredged since the 1930s mainly to control floods and float cargo barges. The river nicknamed the “Mighty Missouri” and the “Big Muddy” by its explorers is today neither mighty nor muddy. The conservation group American Rivers perennially lists the Missouri among the USA’s 10 most endangered rivers .

Major river basins in the continental US

The Missouri Basin’s Reservoirs (not to scale) constructed for navigation and flood control

Its wilder upper reaches are losing their cottonwood trees to dam operations and cattle that trample seedlings along the river’s banks. Its vast middle contains multiple dams that hold back floods, generate power, and provide pools for boats and anglers.

Its lower one-third is a narrow canal sometimes called “The Ditch” that is deep enough for commercial towboats. Some of the river’s banks are armored with rock and concrete retaining walls that protect half a million acres of farm fields from flooding. Once those floods produced and maintained marshlands and side streams—habitats for a wide range of wildlife. Without these habitats, many wild species are unable to thrive, and in some cases even survive.

Changes to restore at least some of the Missouri to a more natural state are being implemented. These changes add protection of fish and wildlife habitat to the list of objectives to be achieved by the government agencies managing the Missouri. The needs of wildlife are now as important as other competing interests on the river including navigation and flood control. This is in reaction , in part, to the booming $115 million-a-year outdoor recreation industry. Just how much more emphasis will be given to these back-to-nature goals depends on whether the Missouri River Basin Association, an organization representing eight states and 28 Native American tribes, can reach a compromise with the traditional downstream uses of the river.

1.2.4 The Endangered Salmon

Greater Seattle in the northwestern US state of Washington may be best known around the world for Microsoft, but residents know it for something less flashy: its dwindling stock of wild salmon. The Federal Government has placed seven types of salmon and two types of trout on its list of threatened or endangered species. Saving the fish from extinction could slow land development in one of the fastest growing regions of the U.S.

The Snake and Columbia River reservoirs identified by the Columbia and Snake Rivers Campaign for modification or dismantling to permit salmon passage

Before the Columbia River and its tributaries in NW US were blocked with dozens of dams, about 10–16 million salmon made the annual run back up to their spawning grounds (Fig.  1.7 ). In 1996, a little less than 1 million did. But the economy of the NW depends on the dams and locks that have been built in the Columbia that provide cheap hydropower production and navigation .

For a long time, engineers tried to modify the system so that fish passage would be possible. As shown in Fig.  1.8 b, this included even the use of trucks to transport captured juvenile salmon around dams for release downstream. (It is not clear that the trucks will be there when the fish return to spawn upstream of the dams.) These measures have not worked all that well. Still too many young fish enter the hydropower turbines on their way down the river. Now, as the debate over whether or not to remove some dams takes place, fish are caught and trucked around the turbines. The costs of keeping these salmon alive, if not completely happy, are enormous.

A salmon swimming upstream ( a ) and measures taken to protect young juvenile salmon pass by hydropower dams on their way downstream ( b ) (US Fish and Wildlife Service and US Army Corps of Engineers, Pacific region)

Over a dozen national and regional environmental organizations have joined together to bring back salmon and steelhead by modifying or partially dismantling five federal dams on the Columbia and Snake Rivers. Partial removal of the four dams on the lower Snake River in Washington State and lowering the reservoir behind John Day dam on the Columbia bordering Oregon and Washington (see Fig.  1.8 ) should help restore over 200 miles of vital river habitat. Running the rivers more like rivers may return salmon and steelhead to harvestable levels of the 1960s before the dams were built.

Dismantling part of the four Lower Snake dams will leave most of each dam whole. Only the dirt bank connecting the dam to the riverbank will be removed. The concrete portion of the dam will remain in place, allowing the river to flow around it. The process is reversible and, the Campaign argues, it will actually save taxpayers money in planned dam maintenance, by eliminating subsidies to shipping industries and agribusinesses, and by ending current salmon recovery measures that are costly. Only partially removing the four Lower Snake River dams and modifying John Day dam will help restore rivers, save salmon, and return balance to the Northwest’s major rivers.

1.2.5 Wetland Preservation: A Groundswell of Support and Criticism

The balmy beach community of Tiger Point near Pensacola, Florida, bordering the Gulf of Mexico, is booming with development. New subdivisions, a Wal-Mart discount retail store and a recreation center dot the landscape.

Most—if not all—of this neighborhood was once a wetland that soaked up rain during downpours. Now, water runs off the parking lots and the roofs and into resident’s living rooms. Some houses get flooded nearly every year.

A federal agency oversees wetland development. Critics say the agency is permitting in this area one of the highest rates of wetland loss in the nation. Obviously local developers wish they did not have to deal with the agency at all. The tension in Tiger Point reflects the debate throughout the US about whether the government is doing enough—or too much—to protect the nation’s environment, and in this case, its wetlands.

Environmentalists and some homeowners value wetlands because they help reduce water pollution and floods, as well as nurture a diverse wildlife population. But many landowners and developers see the open wetlands as prime territory for building houses and businesses, rather than for breeding mosquitoes. They view existing federal wetland rules as onerous, illogical, and expensive.

While some areas such as Tiger Point have residents who want stricter laws to limit wetlands development, others—such as the suburbs around Seattle—have people who long for less strict rules.

Federal regulators had tried to quell the controversy with a solution known as wetlands mitigation. Anyone who destroys a wetland is required to build or expand another wetland somewhere else. Landowners and developers also see mitigation as a way out of the torturous arguments over wetlands. However, studies have shown many artificial marshes do not perform as well as those created by nature (NRC 2001 ). Many of the new, artificial wetlands are what scientists call the “ring around the pond” variety: open water surrounded by cattails. Furthermore, the federal agency issuing permits for wetland replacement do not have the resources to monitor them after they are approved. Developers know this.

1.2.6 Lake Source Cooling: Aid to Environment, or Threat to Lake?

It seems to be an environmentalist’s dream: a cost-effective system that can cool some 10 million square feet of high school and university buildings simply by pumping cold water from the depths of a nearby lake (Fig.  1.9 ). No more chlorofluorocarbons, the refrigerants that can destroy protective ozone in the atmosphere and at a cost substantially smaller than for conventional air conditioners. The lake water is returned to the lake, with a few added calories.

figure 9

The cold deep waters of Lake Cayuga are being used to cool the buildings of a local school and university (Ithaca City Environmental Laboratory)

However, a group of local opponents insists that Cornell University’s $55 million lake-source-cooling plan that replaced its aging air conditioners is actually an environmental threat. They believe it could foster algal blooms. Pointing to 5 years of studies, thousands of pages of data, and more than a dozen permits from local and state agencies, Cornell’s consultants say the system could actually improve conditions in the lake. Yet another benefit, they say, is that the system would reduce Cornell’s contribution to global warming by reducing the need to burn coal to generate electricity.

For the most part, government officials agree. But a small determined coalition of critics from the local community argue over the expected environmental impacts, and over the process that took place in getting the required local, state, and federal permits approved. This is in spite of the fact that the planning process, that took over 5 years, requested and involved the participation of all interested stakeholders (that would participate) from the very beginning. Even the local Sierra Club chapter and biology professors at other universities have endorsed the project. However, in almost every project where the environmental impacts are uncertain, there will be debates among scientists as well as stakeholders. In addition, a significant segment of society distrusts scientists anyway. “This is a major societal problem,” wrote a professor and expert in the dynamics of lakes. “A scientist says X and someone else says Y and you’re got chaos. In reality, we are the problem. Every time we flush our toilets, fertilize our lawns, gardens and fields, or wash our cars we contribute to the nutrient loading of the lake.”

The project has now been operating for over a decade, and so far no adverse environmental effects have been noticed at any of the many monitoring sites.

1.2.7 Managing Water in the Florida Everglades

The Florida Everglades (Fig.  1.10 ) is the largest single wetland in the continental United States. In the mid-1800s it covered a little over nine million acres, but since that time the historical Everglades has been drained and half of the area devoted to agriculture and urban development. The remaining wetland areas have been altered by human disturbances both around and within them. Water has been diverted for human uses, flows have been lowered to protect against floods, nutrient supplies to the wetlands from runoff from agricultural fields and urban areas have increased, and invasions of nonnative or otherwise uncommon plants and animals have out-competed native species. Populations of wading birds (including some endangered species) have declined by 85–90% in the last half-century, and many species of South Florida’s mammals, birds, reptiles, amphibians, and plants are either threatened or endangered.

figure 10

Scenes of the Everglades in southern Florida (South Florida Water Management District)

The present management system of canals, pumps, and levees (Fig.  1.11 ) will not be able to provide adequate water supplies to agricultural and urban areas, or sufficient flood protection , let alone support the natural (but damaged) ecosystems in the remaining wetlands . The system is not sustainable. Problems in the greater Everglades ecosystem relate to both water quality and quantity , including the spatial and temporal distribution of water depths , flows, and flooding durations—called hydroperiods. Issues arise because of variations from the natural/historical hydrologic regime, degraded water quality, and the sprawl from fast-growing urban areas.

figure 11

Pump station on a drainage canal in southern Florida (South Florida Water Management District)

To meet the needs of the burgeoning population and increasing agricultural demands for water, and to begin the restoration of Everglades’ aquatic ecosystem to a more natural regime, an ambitious plan has been developed by the U.S. Army Corps of Engineers and its local sponsor, the South Florida Water Management District. The proposed Corps plan is estimated to cost over $8 billion. The plan and its Environmental Impact Statement (EIS) have received input from many government agencies and nongovernmental organizations, as well as from the public at large.

The plan to restore the Everglades is ambitious and comprehensive, involving change of the current hydrologic regime in the remnant Everglades to one that resembles a more natural one, reestablishment of marshes and wetlands , implementation of agricultural best management practices, enhancements for wildlife and recreation , and provisions for water supply and flood control.

Planning for and implementing the restoration effort requires application of state-of-the-art large systems analysis concepts, hydrological and hydroecological data and models incorporated within decision support systems, integration of social sciences, and monitoring for planning and evaluation of performance in an adaptive management context. These large, complex challenges of the greater Everglades restoration effort demand the most advanced, interdisciplinary, and scientifically sound analysis capabilities that are available. They also require the political will to make compromises and to put up with the lawsuits by anyone possibly disadvantaged by some restoration measure.

Who pays for all this? The taxpayers of Florida and the taxpayers of the U.S.

1.2.8 Restoration of Europe’s Rivers and Seas

1.2.8.1 north and baltic seas.

The North and Baltic Seas (shown in Fig.  1.12 ) are the most densely navigated seas in the world. Besides shipping, military, and recreational uses, an offshore oil industry and telephone cables cover the seabed. The seas are rich and productive with resources that include not only fish but also crucial minerals (in addition to oil) such as gas, sand, and gravel. These resources and activities play major roles in the economies of the surrounding countries.

Europe’s major rivers and seas

Being so intensively used and surrounded by advanced industrialized countries, pollution problems are serious. The main pollution sources include various wastewater outfalls, dumping by ships (of dredged materials, sewage sludge, and chemical wastes) and operational discharges from offshore installations. Deposition of atmospheric pollutants is an additional major source of pollution.

Those parts of the seas at greatest risk from pollution are where the sediments come to rest, where the water replacement is slowest and where nutrient concentrations and biological productivity are highest. A number of warning signals have occurred.

Algal populations have changed in number and species. There have been algal blooms, caused by excessive nutrient discharge from land and atmospheric sources. Species changes show a tendency toward more short-lived species of the opportunistic type and a reduction, sometimes to the point of disappearance, of some mammals and fish species and the sea grass community. Decreases of ray, mackerel, sand eel, and echinoderms due to eutrophication have resulted in reduced plaice, cod, haddock and dab, mollusk and scoter.

The impact of fishing activities is also considerable. Sea mammals, sea birds, and Baltic fish species have been particularly affected by the widespread release of toxins and pollutants accumulate in the sediments and in the food web. Some animals, such as the gray seal and the sea eagle, are threatened with extinction.

Particular concern has been expressed about the Wadden Sea that serves as a nursery for many North Sea species. Toxic PCB contamination, for example, almost caused the disappearance of seals in the 1970s. Also, the 1988 massive seal mortality in the North and Wadden Seas, although caused by a viral disease, is still thought by many to have a link with marine pollution.

Although the North Sea needs radical and lengthy treatment it is probably not a terminal case. Actions are being taken by bordering countries to reduce the discharge of wastes into the sea. A major factor leading to agreements to reduce discharges of wastewaters has been the verification of predictive pollutant circulation models of the sea that identify the impacts of discharges from various sites along the sea boundary.

1.2.8.2 The Rhine

The map of Fig.  1.13 shows the areas of the nine countries that are part of river Rhine basin. In the Dutch area of the Rhine basin, water is partly routed northward through the IJssel and westward through the highly interconnected river systems of the Rhine, Meuse, and Waal.

The Rhine River Basin of Western Europe and its extension in The Netherlands

About 55 million people live in the Rhine River basin and about 20 million of those people drink the river water.

In the mid 1970s, some called the Rhine the most romantic sewer in Europe. In November 1986, a chemical spill degraded much of the upper Rhine’s aquatic ecosystem. This damaging event was reported worldwide. The Rhine was again world news in the first 2 months of 1995, when its water level reached a height that occurs on average once in a century. In the Netherlands, some 200,000 people, 1,400,000 pigs and cows, and 1,000,000 chickens had to be evacuated. During the last 2 months of the same year there was hardly enough water in the Rhine for navigation . It is fair to say these events have focused increased attention on what needs to be done to “restore” and protect the Rhine.

To address just how to restore the Rhine, it is useful to look at what has been happening to the river during the past 150 years. The Rhine was originally a natural watercourse. It is the only river connecting the Alps with the North Sea. To achieve greater economic benefits from the river, it was engineered for navigation, hydropower, water supply, and flood protection . Flood plains now “protected” from floods, provided increased land areas suitable for development. The main stream of the Rhine is now considerably shorter and narrower and deeper than it was originally.

From an economic development point of view, the engineering works implemented in the river and its basin worked. The Rhine basin is now one of the most industrialized regions in the world. The basin is characterized by intensive industrial and agricultural activities. Some 20% of the world’s chemical industry is located in the Rhine River basin. The River is reportedly the busiest shipping waterway in the world, containing long canals with regulated water levels. These canals connect the Rhine and its tributaries with the rivers of almost all the surrounding river basins including the Danube River. This provides water transport to and from the North and Black Seas.

From an environmental and ecological viewpoint, and from the viewpoint of flood control as well, the economic development that has taken place over the past two centuries has not worked perfectly. The concerns growing from the recent toxic spill and floods as from a generally increasing interest by the inhabitants of the basin in environmental and ecosystem restoration and the preservation of natural beauty, has resulted in basin-wide efforts to rehabilitate the basin to a more “living” sustainable entity.

A Rhine Action Programme was created to revive the ecosystem. The goal of that program is the revival of the main stream as the backbone of the ecosystem, particularly for migratory fish, and the protection, maintenance, and the revival of ecologically important areas along the Rhine. The plan, implemented in the 1990s, was given the name “Salmon 2000”. The return of salmon to the Rhine is seen as a symbol of ecological revival. A healthy salmon population will need to swim throughout the river length. This will pose a challenge, as no one pretends that the engineering works that provide navigation and hydropower benefits, but which also inhibit fish passage, are no longer needed or desired.

1.2.8.3 The Danube

The Danube River (shown in Fig.  1.14 ) is in the heartland of Central Europe. Its basin includes to a larger extent the territories of 15 countries. It additionally receives runoff from small catchments located in four other countries. About 90 million people live in the basin. This river encompasses perhaps more political, economic, and social variations than arguably any other river basin in Europe.

The Danube River in Central Europe

The river discharges into the Black Sea. The Danube delta and the banks of the Black Sea have been designated a Biosphere Reserve by UNESCO. Over half of the Delta has been declared a “wet zone of international significance.” Throughout its length the Danube River provides a vital resource for drainage, communications, transport , power generation, fishing, recreation , and tourism. It is considered to be an ecosystem with irreplaceable environmental values.

More than 40 dams and large barrages plus over 500 smaller reservoirs have been constructed on the main Danube River and its tributaries. Flood control dikes confine most of the length of the main stem of the Danube River and the major tributaries. Over the last 50 years natural alluvial flood plain areas have declined from about 26,000 km 2 to about 6000 km 2 .

There are also significant reaches with river training works and river diversion structures. These structures trap nutrients and sediment in the reservoirs. This causes changes in downstream flow and sediment transport regimes that reduce the ecosystems ’ habitats both longitudinally and transversely, and decrease the efficiency of natural purification processes. Thus while these engineered facilities provide important opportunities for the control and use of the river’s resources, they also illustrate the difficulties of balancing these important economic activities with environmentally sound and sustainable management.

The environmental quality of the Danube River is also under intense pressure from a diverse range of human activities, including point source and nonpoint source agricultural, industrial, and municipal wastes. Because of the poor water quality (sometimes affecting human health) the riparian countries of the Danube river basin have been participating in environmental management activities on regional , national, and local levels for several decades. All Danube countries signed a formal Convention on Cooperation for the Protection and Sustainable Use of the Danube River in June 1994. The countries have agreed to take “…all appropriate legal, administrative and technical measures to improve the current environmental and water quality conditions of the Danube River and of the waters in its catchment area and to prevent and reduce as far as possible adverse impacts and changes occurring or likely to be caused.”

1.2.9 Flood Management on the Senegal River

As on many rivers in the tropical developing world, dam constructions on the Senegal (and conventional dam management strategies) can change not only the riverine environment but also the social interactions and economic productivity of farmers, fishers, and herders whose livelihoods depend on the annual flooding of valley bottomlands. Although much of the Senegal River flows through a low rainfall area, the naturally occurring annual flooding supported a rich and biologically diverse ecosystem. Living in a sustainable relationship with their environment, small-land holders farmed sandy uplands during the brief rainy season, and then cultivated the clay plains as floodwaters receded to the main channel of the river. Livestock also benefited from the succession of rain-fed pastures on the uplands and flood-recession pastures on the plains. Fish were abundant. As many as 30,000 tons were caught yearly. Since the early 1970s, small irrigated rice schemes added a fifth element to the production array: rain-fed farming, recession farming, herding, fishing, and irrigation.

Completion of the Diama salt intrusion barrage near the mouth of the river between Senegal and Mauritania and Manantali High Dam more than 1000 km upstream in Mali (Fig.  1.15 ), and the termination of the annual flood have had adverse effects on the environment. Rather than insulating the people from the ravages of drought, the dam release policy can accelerate desertification and intensify food insecurity. Furthermore, anticipation of donor investments in huge irrigation schemes has, in this particular case, lead to the expulsion of non-Arabic-speaking black Mauritanians from their floodplain lands.

Senegal River and its Manantali Reservoir more than 1000 km upstream in Mali

This is a common impact of dam construction: increased hardships of generally politically powerless people in order that urban and industrial sectors may enjoy electricity at reduced costs.

Studies in the Senegal Valley by anthropologists, hydrologists, agronomists, and others suggest that it may be entirely economically feasible to create a controlled annual “artificial flood,” assuring satisfaction of both urban, industrial, and rural demands for the river’s water and supporting groundwater recharge, reforestation, and biodiversity.

Because of these studies, the government of Senegal ended its opposition to an artificial flood, and its development plans for the region are now predicated on its permanence. However, due to the common belief that releasing large quantities of water to create an artificial flood is incompatible with maximum hydropower production, the other members of the three-country consortium managing the dams—Mali and Mauritania—have resisted accepting this policy.

1.2.10 Nile Basin Countries Striving to Share Its Benefits

The Nile River (Fig.  1.16 ) is one of the major rivers of the world, serving millions and giving birth to entire civilizations. It is one of the world’s longest rivers , traversing about 6695 km from the farthest source of its headwaters in Rwanda and Burundi through Lake Victoria, to its delta in Egypt on the Mediterranean Sea. Its basin includes 11 African countries (Burundi, DR Congo, Egypt, Eritrea, Ethiopia, Kenya, Rwanda, South Sudan, The Sudan, and Tanzania) and extends for more than 3 million square kilometers which represents about 10% of Africa’s land mass area. The basin includes the Sudd wetland system in South Sudan.

The Nile River Basin

Nile Basin countries are today home to more than 437 million people and of these, 54% (238 million) live within the basin and expect benefits from the management and use of the shared Nile Basin water resources.

Notwithstanding the basin’s natural and environmental endowments and rich cultural history, its people face considerable challenges including persistent poverty with millions living on less than a dollar a day; extreme weather events associated with climate variability and change such as floods and droughts; low access to water and sanitation services; deteriorating water quality ; and very low access rate to modern energy with most countries below 20% access level . The region also has a history of tensions and instability both between states and internal to states.

Cooperative management and development could bring a vast range of benefits including increased hydropower and food production; better access to water for domestic use; improved management of watersheds and reduced environmental degradation; reduced pollution and more control over damage from floods and droughts. Recognizing this the Nile Basin Initiative was created as a regional intergovernmental partnership that seeks to develop the River Nile in a cooperative manner, share substantial socioeconomic benefits, and promote regional peace and security. The partnership includes 10 Member States namely Burundi, DR Congo, Egypt, Ethiopia, Kenya, Rwanda, South Sudan, The Sudan, Tanzania, and Uganda. Eritrea participates as an observer. NBI was conceived as a transitional institution until a permanent institution can be created.

The partnership is guided by a Shared Vision: “To achieve sustainable socio-economic development through equitable utilization of, and benefit from, the common Nile Basin Water resources.” The shared belief is that countries can achieve better outcomes for all the peoples of the Basin through cooperation rather than competition. It is supported by a “Shared Vision Planning Model” built by experts from all the basin countries. The model is designed to run different scenarios and assess the basin-wide impacts of different management policies and assumptions that any country may wish to perform.

1.2.11 Shrinking Glaciers at Top of the World

As shown in Fig.  1.17 , Tibet lies north of India, Nepal, Bhutan, and Myanmar, west of China, and south of East Turkistan. The highest and largest plateau on Earth, it stretches some 1500 miles (2400 km) from east to west, and 900 miles (1448 km) north to south, an area equivalent in size to the United States region east of the Mississippi River. The Himalayas form much of its southern boundary, and Tibet’s average altitude is so high—11,000 feet (3350 km) above sea level—that visitors often need weeks to acclimate.

China, India, and Southeast Asia, highlighting the Tibetan Plateau

The Tibetan Plateau serves as the headwaters for many of Asia’s largest rivers, including the Yellow, Yangtze, Mekong, Brahmaputra, Salween, and Sutlej, among others. A substantial portion of the world’s population lives in the watersheds of the rivers whose sources lie on the Tibetan Plateau.

Recent studies—including several by the Chinese Academy of Sciences—have documented a host of serious environmental challenges involving the quantity and quality of Tibet’s freshwater reserves, most of them caused by industrial activities. Deforestation has led to large-scale erosion and siltation. Mining, manufacturing, and other human and industrial activities are producing record levels of air and water pollution in Tibet, as well as elsewhere in China (Wong 2013 ). Together, these factors portend future water scarcity that could add to the region’s political volatility.

Most important is that the region’s glaciers are receding at one of the fastest rates anywhere in the world, and in some regions of Tibet by three 3 m per year (IPPC 2007 ). The quickening melting and evaporation is raising serious concerns in scientific and diplomatic communities, in and outside China, about Tibet’s historic capacity to store more freshwater than anyplace on earth, except the North and South Poles. Tibet’s water resources, they say, have become an increasingly crucial strategic political and cultural element that the Chinese are intent on managing and controlling.

1.2.12 China, a Thirsty Nation

Why does China care about the freshwater in Tibet? With more than a quarter of its land classified as desert, China is one of the planet’s most arid regions. Beijing is besieged each spring by raging dust storms born in Inner Mongolia where hundreds of square miles of grasslands are turning to desert each year. In other parts of the nation, say diplomats and economic development specialists, Chinese rivers are either too polluted or too filled with silt to provide all of China’s people with adequate supplies of freshwater.

Chinese authorities have long had their eyes on Tibet’s water resources. They have proposed building dams for hydropower and spending billions of dollars to build a system of canals to tap water from the Himalayan snowmelt and glaciers and transport it hundreds of miles north and east to the country’s farm and industrial regions.

But how long that frozen reservoir will last is in doubt. In attempting to solve its own water crisis, China could potentially create widespread water shortages among its neighbors.

While the political issues involving Tibet are complex, there is no denying that water plays a role in China’s interest in the region. The water of Tibet may prove to be one of its most important resources in the long run—for China, and for much of southern Asia. Figuring out how to sustainably manage that water will be a key to reducing political conflicts and tensions in the region.

1.2.13 Managing Sediment in China’s Yellow River

The scarcity of water is not the only issue China has to address. So is sediment, especially in the Yellow River (Fig.  1.18 ). The Yellow River basin is the cradle of Chinese civilization, with agricultural societies appearing on the banks of the river more than 7000 years ago. The Yellow River originates in the Qinghai–Tibetan plateau and discharges into the Bohai Gulf in the Yellow sea. The basin is traditionally divided into the upper, middle, and lower reaches, which can be described as three down-sloping steps: the Tibetan Plateau, the Loess Plateau, and the alluvial plain. Key management issues are many, but the most visible one is sediment (Figs.  1.19 and 1.20 ).

The Yellow River Basin in China

The high sediment load of the Yellow River is a curse if the sediment deposits on the bed of the channel and reduces its capacity, thereby increasing the risk of flooding. Also, rapid deposition of sediment in reservoirs situated along the river is a problem as it reduces their effectiveness for flood control and water storage.

Another major management issue is the ecosystem health of the river. The relative scarcity of water creates a tension between allocating water for the benefit of river health, and for direct social and economic benefit. Irrigation uses 80% of the water consumed from the river, with the rest supplying industry, and drinking water for cities along the river and outside of the basin (Tianjin, Cangzhou and Qingdao). During the 1980s and 1990s the lower river dried up nearly every year, resulting in lost cereal production, suspension of some industries, and insufficient water supplies for more than 100,000 residents, who had to queue daily for drinking water. As well as costing around RmB40 billion in lost production, there was a serious decline in the ecological health of the river.

The diversity of habitat types and extensive areas of wetlands within the Ramsar-listed Yellow River Delta support at least 265 bird species. The birds, fish, and macroinvertebrates in the delta rely on healthy and diverse vegetation communities, which in turn depend upon on annual freshwater flooding and the associated high sediment loads. Degradation of the ecosystem of the Delta has been documented, especially from the late-1990s, due to increased human activities and a significant decrease in the flow of freshwater to the Delta wetlands. This has led to saltwater intrusion and increased soil salinity. Restoration activities involving the artificial delivery of freshwater to the wetlands began in 2002.

figure 19

Sediment flows in China’s Yellow River. http://yellowriver-china.blogspot.com/2011/09/book-review-on-flood-discharge-and.html

figure 20

Dams can be designed and operated to remove some of the sediment that is trapped in the upstream reservoir

1.2.14 Damming the Mekong (S.E. Asia), the Amazon, and the Congo

The world’s most biodiverse river basins—the Amazon, Congo, and Mekong—are attracting hydropower developers. While hydropower projects address energy needs and offer the potential of a higher standard of living, they also can impact the river’s biodiversity, especially fisheries. The Amazon, Congo, and Mekong basins hold roughly one-third of the world’s freshwater fish species, most of which are not found elsewhere. Currently more than 450 additional dams are planned for these three rivers (see Figs.  1.22 and 1.23 ) (Winemiller et al. 2016 ). Many of the sites most appropriate for hydropower production also are the habitats of many fish species. Given recent escalation of hydropower development in these basins, planning is needed to reduce biodiversity loss , as well as other adverse environmental, social, and economic impacts while meeting the energy needs of the basins.

The Mekong River (Fig.  1.21 ) flows some 4200 km through Southeast Asia to the South China Sea through Tibet, Myanmar (Burma), Vietnam, Laos, Thailand, and Cambodia. Its “development” has been restricted over the past several decades due to regional conflicts, indeed conflicts that have altered the history of the world. Now that these conflicts are not resulting in military battles (at this writing), investment capital is becoming available to develop the Mekong’s resources for improved fishing, irrigation, flood control, hydroelectric power , tourism, recreation , and navigation . The potential benefits are substantial, but so are the environmental, ecological, and social risks (Orr et al. 2012 ).

The Lower Mekong River Basin including Tonle Sap Lake in Cambodia and the Mekong Delta in Vietnam

The economic value of hydroelectric power currently generated from the Mekong brings in welcome income however the environmental impacts are harder to quantify. Today some 60 million people (12 million households) live in the Lower Mekong Basin, and 80% rely directly on the river system for their food and livelihoods. Most of these households would be affected by alterations to fish availability since fish is their main source of dietary protein. The food security impacts on these people due to the existing and proposed dam building and operation in Cambodia, Laos, Thailand, and Vietnam remain relatively unexplored. Dam builders have often failed to recognize, or wish to ignore, the crucial role of inland fisheries in meeting food security needs.

During some months of the year the lack of rainfall causes the Mekong to fall dramatically. Salt water may penetrate as much as 500 km inland. In other months the flow can be up to 30 times the low flows, causing the water in the river to back up into wetlands and flood some 12,000 km 2 of forests and paddy fields in the Vietnamese delta region alone. The ecology of a major lake, Tonle Sap, in Cambodia depends on these backed up waters.

While flooding imposes risks on the inhabitants of the Mekong flood plain, there are also distinct advantages. High waters deposit nutrient-rich silts on the low-lying farmlands, thus sparing the farmers from having to transport and spread fertilizers on their fields. Also, shallow lakes and submerged lands provide spawning habitats for about 90% of the fish in the Mekong basin. Fish yield totals over half a million tons annually.

What will happen to the social fabric and to the natural environment if the schemes to build big dams (see Fig.  1.22 a) across the mainstream of the Mekong are implemented? Depending on their design , location, and operation, they could disrupt the current fertility cycles and the habitats and habits of the fish in the river resulting from the natural flow and sediment regimes. Increased erosion downstream from major reservoirs is also a threat. Add to these possible adverse impacts the need to evacuate and resettle thousands of people displaced by the lake behind the dams. How will they be resettled? And how long will it take them to adjust to new farming conditions? And will there even be a Delta? Together with sea level rise and a blockage of Mekong’s sediment to the Delta, its survival as a geologic feature, and as a major source of food, is in doubt.

Lancang/Mekong River where reservoirs are being planned on the river itself ( a ) and on many of its tributaries ( b ). a http://khmerization.blogspot.com/2013/10/wwf-expresses-alarm-over-laos-decision.html , 6/10/13, and b reprinted from Wild and Loucks 2014, with permission. © 2014. American Geophysical Union

There have been suggestions that a proposed dam in Laos could cause deforestation in a wilderness area of some 3000 km 2 . Much of the wildlife, including elephants, big cats, and other rare animals, would have to be protected if they are not to become endangered. Malaria-carrying mosquitoes, liver fluke, and other disease bearers might find ideal breeding grounds in the mud flats of the shallow reservoir. These are among the types of issues that need to be considered now that increased development seems likely.

Similar issues face those who are planning similar hydropower dam developments in the other two most biodiverse river basins in the world—the Amazon and the Congo (Fig.  1.23 ). Clarifying the trade-offs between energy (economic), environmental, and social goals can inform governments and funding institutions as they make their dam siting, design , and operating decisions.

Fish diversity and dam locations in the Amazon and Congo basins. In addition to basin-wide biodiversity summaries ( upper left ), each basin can be divided into ecoregions ( white boundaries ). Approximate number of species ( black numbers ) and the total species richness ( shades of green ) found in ecoregions differ widely (Winemiller et al. 2016 )

Hydropower accounts for more than two-thirds of Brazil’s energy supply, and over 300 new Amazon dams have been proposed. Impacts of these dams would extend beyond direct effects on rivers to include relocation of human populations and expanding deforestation associated with new roads. Scheduled for completion in 2016, Brazil’s Belo Monte hydropower complex was designed with installed capacity of 11,233 MW, ranking it the world’s third largest. But it could also set a record for biodiversity loss owing to selection of a site that is the sole habitat for many species. The Congo has far fewer dams than the Amazon or Mekong, yet most power generated within the basin is from hydropower. Inga Falls, a 14.5-km stretch of the lower Congo that drops 96 m to near sea level, has greater hydropower potential than anywhere else. The Inga I and II dams, constructed in the 1970s and 1980s, currently yield 40% of the 2132-MW installed capacity. Planned additional dams (Inga III and Grand Inga) would harness as much as 83% of the Congo’s annual discharge, with most of the energy to be exported. Grand Inga would divert water and substantially reduce flow for at least 20 km downstream from the falls. Again, many trade-offs involved with dam building, and all calling for comprehensive systems planning and analyses to identify them.

1.3 So, Why Plan, Why Manage?

Water resources planning and management activities are usually motivated, as they were in each of the previous section’s case examples, by the realization that there are problems to solve and/or opportunities to obtain increased benefits by changing the management and use of water and related land resources. These benefits can be measured in many different ways. The best way to do it is often not obvious. Whatever way is proposed may provoke conflict. Hence there is the need for careful study and research, as well as full stakeholder involvement, in the search for the best compromise plan or management policy.

Reducing the frequency and/or severity of the adverse consequences of droughts, floods, and excessive pollution are common goals of many planning and management exercises. Other reasons include the identification and evaluation of alternative measures that may increase the available water supplies, hydropower, improve recreation and/or navigation, and enhance water quality and aquatic ecosystems . Quantitative system performance criteria can help one judge the relative net benefits , however measured, of alternative plans and management policies.

System performance criteria of interest have evolved over time. They have ranged from being primarily focused on safe drinking water just a century ago to multipurpose economic development a half-century ago to goals that now include environmental and ecosystem restoration and protection, aesthetic and recreational experiences, and more recently, sustainability (ASCE 1998 ; GTT 2014 ).

Some of the multiple purposes served by a river can be conflicting. A reservoir used solely for hydropower, or water supply, is better able to meet its objectives when it is full of water. On the other hand, a reservoir used solely for downstream flood control is best left empty so it can store more of the flood flows when they occur. A single reservoir serving all three purposes introduces conflicts over how much water to store in it and discharge from it, i.e., how it should be operated. In basins where diversion demands exceed the available supplies, conflicts will exist over water allocations . Finding the best way to manage, if not resolve, these conflicts are reasons for planning.

1.3.1 Too Little Water

Issues involving inadequate supplies to meet demands can result from too little rain or snow. They can also result from patterns of land and water use. They can result from growing urbanization, the growing needs to meet instream flow requirements, and conflicts over private property and public rights regarding water allocations . Other issues can involve transbasin water transfers and markets, objectives of economic efficiency versus the desire to keep nonefficient activities viable, and demand management measures, including incentives for water reuse and water reuse financing.

Measures to reduce the demand for water in times of supply scarcity should be identified and agreed upon before everyone must cope with an actual water scarcity. The institutional authority to implement drought measures when their designated “triggers”—such as storage volumes in reservoirs—have been met should be established before they are needed. Such management measures may include increased groundwater abstractions to supplement low-surface water flows and storage volumes. Conjunctive use of ground and surface waters can be sustainable as long as the groundwater aquifers are recharged during conditions of high flow and surface storage volumes. Many aquifers are subject to withdrawals exceeding recharge, and hence continued withdrawals from them cannot be sustained.

1.3.2 Too Much Water

Damage due to flooding is a direct result of floodplain development that is incompatible with floods. This is a risk many take, and indeed on average it may result in positive private net benefits, especially when public agencies subsidize these private risk takers who incur losses in times of flooding. In many river basins of developed regions, annual expected flood damages are increasing over time, in spite of increased expenditures in flood damage reduction measures. This is in part due to increased economic development taking place on river flood plains, not only of increased frequencies and magnitudes of floods.

The increased economic value of developments on floodplains often justifies increased development and increased expenditures on flood damage reduction measures. Flood protection works decrease the risks of flood damage, creating an even larger incentive for increased economic development. Then when a flood exceeding the capacity of existing flood protection works occurs, and it will, even more damage results. This cycle of increasing flood damages and costs of protection is a natural result of increasing values of flood plain development. Just what is the appropriate level of risk? It may depend, as Fig.  1.24 illustrates, on the level of flood insurance or subsidy provided when flooding occurs.

The lowest risk of flooding on a floodplain does not always mean the best risk, and what risk is acceptable may depend on the amount of insurance or subsidy provided when flood damage occurs

Flood damages will decrease only if there are restrictions placed on floodplain development. Analyses carried out during planning can help identify the appropriate level of development and flood damage protection works based on the beneficial as well as adverse economic, environmental, and ecological consequences of flood plain development. People are increasingly recognizing the economic as well as environmental and ecological benefits of allowing floodplains to do what they were formed to do—store flood waters when floods occur.

Industrial development and related port development may result in the demand for deeper and wider rivers to allow the operation of larger draft cargo vessels in the river. River channel improvement cannot be detached from functions such as water supply and flood control. Widening and deepening a river channel for shipping purposes may also decrease flood water levels.

1.3.3 Too Polluted

Wastewater discharges by industry and households can have considerable detrimental effects on water quality and hence on public and ecosystem health. Planning and management activities should pay attention to these possible negative consequences of industrial development and the intensive use and subsequent runoff of pesticides and fertilizers in urban as well as in agricultural areas.

Issues regarding the environment and water quality include:

Upstream versus downstream conflicts on meeting water quality standards,

Threats from aquatic nuisance species,

Threats from the chemical, physical, and biological water quality of the watershed’s aquatic resources,

Quality standards for recycled water,

Nonpoint source pollution discharges including sediment from erosion, and

Inadequate groundwater protection, compacts, and concerned institutions.

We still know too little about the environmental and health impacts of many of the wastewater constituents found in river waters. As more is learned about, for example, the harmful effects of heavy metals and dioxins, pharmaceutical products, and micropollutants and nanoparticles in our water supplies, water quality standards, plans and management policies should be adjusted accordingly. The occurrence of major fish kills and algae blooms also point to the need to manage water quality as well as quantity.

1.3.4 Too Expensive

Too many of the world’s population do not have adequate water to meet all of their drinking and sanitation needs. Much of this is not due to the lack of technical options available to provide water to meet those needs. Rather those options are deemed to be too expensive. Doing so is judged to be beyond the ability of those living in poverty to pay and recover the costs of implementing, maintaining, and operating the needed infrastructure. Large national and international aid grants devoted to reducing water stress—demands for clean water exceeding usable supplies—in stressed communities have not been sustainable in the long run where recipients have been unable to pay for the upkeep of whatever water resource systems are developed and provided. If financial aid is to be provided, to be effective it has to address all the root causes of such poverty, not only the need for clean water.

1.3.5 Ecosystem Too Degraded

Aquatic and riparian ecosystems may be subject to a number of threats. The most important ones include habitat loss due to river training and reclamation of floodplains and wetlands for urban and industrial development, poor water quality due to discharges of pesticides, fertilizers and wastewater effluents, and the infestation of aquatic nuisance species.

Exotic aquatic nuisance species can be major threats to the chemical, physical, and biological water quality of a river’s aquatic resources and a major interference with other uses. The destruction and/or loss of the biological integrity of aquatic habitats caused by introduced exotic species is considered by many ecologists to be among the most important problems facing natural aquatic and terrestrial ecosystems. Biological integrity of natural ecosystems is controlled by habitat quality, water flows or discharges, water quality , and biological interactions including those involving exotic species.

Once exotic species are established, they are usually difficult to manage and nearly impossible to eliminate. This creates a costly burden for current and future generations. The invasion in North America of nonindigenous aquatic nuisance species such as the sea lamprey, zebra mussel, purple loosestrife, European green crab, and various aquatic plant species, for example, has had pronounced economic and ecological consequences for all who use or otherwise benefit from aquatic ecosystems.

Environmental and ecological effectiveness as well as economic efficiency should be a guiding principle in evaluating alternative solutions to problems caused by aquatic nuisance organisms. Funds spent in prevention and early detection and eradication of aquatic nuisance species may reduce the need to spend considerably more funds on management and control once such aquatic nuisance species are well established.

1.3.6 Other Planning and Management Issues

1.3.6.1 navigation.

Dredging river beds is a common practice to keep river channels open for larger draft cargo ships. The use of jetties as a way to increase the flow in the main channel and hence increase bottom scour is a way to reduce the amount of dredging that may be needed, but any modification of the width and depth of a river channel can impact its flood carrying capacity. It can also alter the periodic flooding of the floodplain that in turn can have ecological impacts.

1.3.6.2 River Bank Erosion

Bank erosion can be a serious problem where towns are located close to morphologically active (eroding) rivers. Predictions of changes in river courses due to bank erosion and bank accretion are important inputs to land use planning in river valleys and the choice of locations for bridges, buildings, and hydraulic structures.

1.3.6.3 Reservoir Related Issues

Degradation of the riverbeds upstream of reservoirs may increase the risks of flooding in those areas. Reservoir construction inevitably results in loss of land and forces the evacuation of residents due to impoundment. Reservoirs can be ecological barriers for migrating fish species such as salmon. The water quality in the reservoir may deteriorate and the inflowing sediment may settle and accumulate, reducing the active (useful) water storage capacity of the reservoir and causing more erosion downstream. Other potential problems may include those stemming from stratification , water-related diseases, algae growth , and abrasion of hydropower turbines.

Environmental and morphological impacts downstream of the dam are often due to a changed river hydrograph and decreased sediment load in the water released from the reservoir. Lower sediment concentrations result in higher risks of scouring of downstream riverbeds and consequently a lowering of their elevations. Economic as well as social impacts include the risk of a dam break. Environmental impacts may result from sedimentation control measures (e.g., sediment flushing as shown in Fig.  1.19 ) and reduced oxygen content of the outflowing water.

1.4 System Planning Scales

1.4.1 spatial scales for planning and management.

Watersheds or river basins are usually considered logical regions for water resources planning and management. This makes sense if the impacts of decisions regarding water resources management are contained within the watershed or basin. How land and water are managed in one part of a river basin can impact the land and water in other parts of the basin. For example, the discharge of pollutants or the clearing of forests in the upstream portion of the basin may degrade the quality and increase the variability of the flows and sedimentation downstream. The construction of a dam or weir in the downstream part of a river may block vessels and fish from traveling up- or downstream through the dam site. To maximize the economic and social benefits obtained from the entire basin, and to insure that these benefits and accompanying costs are equitably distributed, planning and management on a basin scale is often undertaken.

While basin boundaries make sense from a hydrologic point of view, they may be inadequate for addressing particular water resources problems that are caused by events taking place outside the basin. What is desired is the highest level of performance, however defined, of the entire physical, social-economic, and administrative water resource system. To the extent that the applicable problems, stakeholders, and administrative boundaries extend outside the river basin, then the physically based “river basin” focus of planning and management should be expanded to include the entire applicable “problem-shed.” Hence consider the term “river basin” used in this book to mean problem-shed when appropriate.

1.4.2 Temporal Scales for Planning and Management

Planning is a continuing iterative process. Water resources plans need to be periodically updated and adapt to new information, new objectives , and updated forecasts of future demands, costs , and benefits. Current decisions should not preclude future generations from options they may want to consider, but otherwise current decisions should be responsive to current needs and opportunities, and have the ability to be adaptable in the future to possible changes in those needs and opportunities.

The number and duration of within-year time periods explicitly considered in the planning process will depend in part on the need to consider the variability of the supplies of and demands for water resources and on the purposes to be served by the water resources. Irrigation planning and summer season water recreation planning may require a greater number of within-year periods during the summer growing and recreation season than might be the case if one were considering only municipal water supply planning, for example. Assessing the impacts of alternatives for conjunctive surface and groundwater management , or for water quantity and quality management, require attention to processes that typically take place on different spatial and temporal scales.

1.5 Planning and Management Approaches

There are two general approaches to planning and management. One is from the top-down, often called command and control. The other is from the bottom-up, often called the grassroots approach. Both approaches, working together, can lead to an integrated plan and management policy.

1.5.1 Top-Down Planning and Management

Over much of the past half-century water resources professionals have been engaged in preparing integrated, multipurpose “master” development plans for many of the world’s river basins. These plans typically consist of a series of reports, complete with numerous appendices, describing all aspects of water resources management and use. In these documents alternative structural and nonstructural management options are identified and evaluated. Based on these evaluations, the preferred plan is recommended.

This master planning exercise has typically been a top-down approach. Professionals have dominated the top-down approach. Using this approach there is typically little if any active participation of interested stakeholders . The approach assumes that one or more institutions have the ability and authority to develop and implement the plan, i.e., to oversee and manage the coordinated development and operation of the basin’s activities impacting the surface and ground waters of the basin. In today’s environment where publics are calling for less government oversight, regulation and control, and increasing participation in planning and management activities, strictly top-down approaches are becoming less desirable or acceptable.

1.5.2 Bottom-Up Planning and Management

Within the past several decades water resources planning and management processes have increasingly involved the active participation of interested stakeholders—those potentially affected by the decision being considered. Plans are being created from the bottom-up rather than top-down through a process of consensus building. Concerned citizens, nongovernmental organizations, as well as professionals in governmental agencies are increasingly working together toward the creation of adaptive comprehensive water management programs, policies, and plans.

Experiences trying to implement plans developed primarily by professionals without significant citizen involvement have shown that even if such plans are technically sound they have little chance of success if they do not take into consideration the concerns and objectives of affected stakeholders . To gain their support, concerned stakeholders must be included in the decision-making process as early as possible. They must become part of the decision-making process, not merely spectators, or even advisors, to it. This will help gain their cooperation and commitment to the plans eventually adopted. Participating stakeholders will consider the resulting plans as their plans as much as someone else’s. They will have a sense of ownership, and as such will strive to make them work. Such adopted plans, if they are to be successfully implemented, must fit within existing legislative, permitting, enforcement, and monitoring programs. Stakeholder participation improves the chance that the system being managed will be sustainable.

Successful planning and management involves motivating all potential stakeholders and sponsors to join and participate in the water resources planning and management process. It will involve building a consensus on goals and objectives and on how to achieve them. Ideally this should occur before addressing conflicting issues so that all involved know each other and are able to work together more effectively. Agreements on goals and objectives and on the organization (or group formed from multiple organizations) that will lead and coordinate the water resources planning and management process should be reached before stakeholders bring their individual priorities or problems to the table. Once the inevitable conflicts become identified, the settling of administrative matters does not get any easier.

Bottom-up planning must strive to achieve a common or “shared” vision among all stakeholders. It must either comply with all applicable laws and regulations, or propose changes to them. It should strive to identify and evaluate multiple alternatives and performance criteria —including sustainability criteria, and yet keep the process from producing a wish list of everything each stakeholder wants. In other words, it must identify trade-offs among conflicting goals or measures of performance, and prioritizing appropriate strategies. It must value and compare, somehow, the intangible and nonmonetary impacts of environmental and ecosystem protection and restoration with other activities whose benefits and costs can be expressed in monetary units. In doing all this, planners should use modern information technology, as available, to improve both the process and product. This technology, however, will not eliminate the need to reach conclusions and make decisions on the basis of incomplete and uncertain data and scientific knowledge.

These process issues emphasize the need to make water resources planning and management as efficient and effective as possible and remain participatory. Many issues will arise in terms of evaluating alternatives and establishing performance criteria (prioritizing issues and possible actions), performing incremental cost analysis, and valuing monetary and nonmonetary benefits. Questions must be answered as to how much data must be collected and with what precision, and what types of modern information technology (e.g., geographic information systems (GIS), remote sensing, Internet and mobile Internet networks , decision support systems, etc.) can be beneficially used both for analyses as well as communication.

1.5.3 Integrated Water Resources Management

The concept of integrated water resources management (IWRM) has been developing over the past several decades. IWRM is the response to the growing pressure on our water resources systems caused by growing populations and socioeconomic developments. Water shortages and deteriorating water quality have forced many countries in the world to reconsider their development policies with respect to the management of their water resources. As a result water resources management (WRM) has been undergoing a change worldwide, moving from a mainly supply-oriented, engineering-biased approach toward a demand-oriented, multisectoral approach, often labeled integrated water resources management.

The concept of IWRM moves away from top-down “water master planning” that usually focuses on water availability and development, and toward “comprehensive water policy planning” that addresses the interaction between different subsectors (Fig.  1.25 ), seeks to establish priorities, considers institutional requirements, and deals with the building of management capacity.

Interactions among the natural, administrative, and socioeconomic water resource subsectors and between them and their environment

Box 1.1 Definition of IWRM

IWRM is a process which promotes the coordinated development and management of water, land, and related resources, in order to maximize the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems.

(GWP 2000 )

IWRM (Box 1.1) considers the use of the resources in relation to social and economic activities and functions. These determine the need for laws and regulations pertaining to the sustainable and beneficial use of the water resources. Infrastructure together with regulatory measures allows more effective use of the resource including meeting ecosystem needs.

1.5.4 Water Security and the Sustainable Development Goals (SDGs)

While IWRM focuses on the process to improve water management (the how), the term “water security” focuses on the output (the what). The World Economic Forum has identified Water Security as one of the biggest global economic development issues. Water Security is defined by UN-Water ( 2013 ) as

the capacity of a population to safeguard sustainable access to adequate quantities of acceptable quality water for sustaining livelihoods, human well-being, and socio-economic development, for ensuring protection against water-borne pollution and water-related disasters, and for preserving ecosystems in a climate of peace and political stability.

Attempts are being made to identify the many dimensions of water security and to quantify them (van Beek and Arriens 2014 ; ADB 2016 ). In 2015 the UN adopted the Sustainable Development Goals 2015–2030 that specify specific targets for various goals such as the provision of water for drinking and sanitation, water productivity in agriculture , industry and energy, environment, and reduction of floods and droughts. It is expected that many countries will expect their water managers to use the SDGs as objectives in water resources planning. This means that our planning and management proposals need to be able to quantify the impacts of possible plans and policies in terms of the SDG targets.

1.5.5 Planning and Management Aspects

1.5.5.1 technical.

Technical aspects of planning include hydrologic assessments. Hydrologic assessments identify and characterize the properties of, and interactions among, the resources in the basin or region. This includes the land, the rainfall, the runoff , the stream and river flows, and the groundwater .

Existing watershed land use and land cover, and future changes in this use and cover, result in part from existing and future changes in regional population and economy. Planning involves predicting changes in land use/covers and economic activities at watershed and river basin levels. These will influence the amount of runoff , and the concentrations of sediment and other quality constituents (organic wastes, nutrients, pesticides, etc.) in the runoff resulting from any given pattern of rainfall over the land area. These predictions will help planners estimate the quantities and qualities of flows throughout a watershed or basin, associated with any land use and water management policy. This in turn provides the basis for predicting the type and health of terrestrial and aquatic ecosystems in the basin. All of this may impact the economic development of the region, which is what, in part, determines the future demands for changes in land use and land cover.

Technical aspects also include the estimation of the costs and benefits of any measures taken to manage the basin’s water resources. These measures might include:

Engineering structures for making better use of scarce water.

Canals and water-lifting devices.

Dams and storage reservoirs that can retain excess water from periods of high flow for use during the periods of low flow. By storage of floodwater they may also reduce flood damage below the reservoir.

Open channels that may take the form of a canal, flume, tunnel, or partly filled pipe.

Pressure conduits.

Diversion structures, ditches, pipes, checks, flow dividers, and other engineering facilities necessary for the effective operation of irrigation and drainage systems.

Municipal and industrial water intakes, including water purification plants and transmission facilities.

Sewerage and industrial wastewater treatment plants, including waste collection and ultimate disposal facilities.

Hydroelectric power storage, run-of-river, or pumped storage plants.

River channel regulation works, bank stabilization, navigation dams and barrages, navigation locks, and other engineering facilities for improving a river for navigation.

Levees and floodwalls for confining flows within predetermined channels.

Not only must the planning process identify and evaluate alternative management strategies involving structural and nonstructural measures that will incur costs and bring benefits, but it must also identify and evaluate alternative time schedules for implementing those measures. The planning of development over time involving interdependent projects, uncertain future supplies and demands as well as costs, benefits, and interest (discount) rates is part of all water resources planning and management processes.

With increasing emphasis placed on ecosystem preservation and enhancement, planning must include ecologic impact assessments. The mix of soil types and depths and land covers together with the hydrological quantity and quality flow and storage regimes in rivers, lakes, wetlands , and aquifers all impact the riparian and aquatic ecology of the basin. Water managers are being asked to consider ways of improving or restoring ecosystems by, for example, reducing the

destruction and/or loss of the biological integrity of aquatic habitats caused by introduced exotic species or changes in flow and sediment patterns due to upstream reservoir operation .

decline in number and extent of wetlands and the adverse impacts to wetlands of proposed land and water development projects.

conflicts between the needs of people for water supply, recreational, energy, flood control, and navigation infrastructure and the needs of ecological communities, including endangered species.

And indeed there are and will continue to be conflicts among alternative objectives and purposes of water management. Planners and managers must identify the trade-offs among environmental, ecologic, economic, and social impacts, however measured, and the management alternatives that balance these often-conflicting interests .

1.5.5.2 Financial and Economic

The overriding financial component of any planning process is to make sure that the recommended plans and projects will be able to pay for themselves. Revenues are needed to recover construction costs, if any, and to maintain, repair, and operate any infrastructure designed to manage the basin’s water resources. This may require cost-recovery policies that involve pricing the outputs of projects. Recognizing water as an economic good does not always mean that full costs should be charged. Poor people have the right to safe water and how this is to be achieved should be taken into account. Yet beneficiaries should be expected to pay at least something for the added benefits they get. Planning must identify equitable cost and risk-sharing policies and improved approaches to risk/cost management.

Financial viability is often viewed as a constraint that must be satisfied. It is not viewed as an objective whose maximization could result in a reduction in economic efficiency, equity , or other nonmonetary objectives . In many developing countries a distinction is made between the recovery of investment costs and the recovery of O&M costs. Recovery of O&M costs is a minimum condition for a sustainable project. Without that, it is likely that the performance of the project will deteriorate over time.

Many past failures in water resources management are attributable to the fact that water—its quantity, reliability , quality, pressure, location—has been and still is viewed as a free good. Prices paid for irrigation and drinking water are in many countries well below the full cost of the infrastructure and personnel needed to provide that water, which comprises the capital charges involved, the operation and maintenance (O&M) costs, the opportunity cost , economic and environmental externalities (see GWP 2000 ). Charging for water at less than full cost means that the government, society, and/or environment “subsidizes” water use and leads to an inefficient use of the resource.

1.5.5.3 Institutional and Governance

The first condition for the successful implementation of plans and policies is to have an enabling environment. There must exist national, provincial, and local policies, legislation and institutions that make it possible for the desired decisions to be taken and implemented. The role of the government is crucial. The reasons for governmental involvement are manifold:

Water is a resource beyond property rights: it cannot be “owned” by private persons. Water rights can be given to persons or companies, but only the rights to use the water and not to own it. Conflicts between users automatically turn up at the table of the final owner of the resource—the government.

Water is a resource that often requires large investments to develop, treat, store, distribute, and use, and then to collect, treat, and dispose or reuse. Examples are multipurpose reservoirs and the construction of dykes along coasts and rivers. The required investments are large and typically can only be made by governments or state-owned companies.

Water is a medium that can easily transfer external effects. The use of water by one activity often has negative effects on other water using activities (externalities). The obvious example is the discharge of wastewater into a river may save the discharger money but it may have negative effects on downstream users requiring cleaner water.

Only the government can address many of these issues and hence “good governance” is necessary for good water management. An insufficient institutional setting and the lack of a sound economic base are the main causes of water resources development project failure , not technical inadequacy of design and construction. This is also the reason why at present much attention is given to institutional developments and governance in both developed and developing regions and countries.

In Europe, various types of water agencies are operational (e.g., the Agence de l’Eau in France and the water companies in England), each having advantages and disadvantages. The Water Framework Directive of the European Union requires that water management be carried out at the scale of a river basin, particularly when this involves transboundary management. It is very likely that this will result in a shift in responsibilities of the institutions involved and the establishment of new institutions. In other parts of the world experiments are being carried out with various types of river basin organizations, combining local, regional, and sometimes national governments.

1.5.5.4 Models for Impact Prediction and Evaluation

Planning processes have undergone a significant transformation over the past five decades, mainly due to the continuing development of improved computational technology. Planning today is heavily dependent on the use of computer-based impact prediction models. Such models are used to assist in the identification and evaluation of alternative ways of meeting various planning and management objectives. They provide an efficient way of using spatial and temporal data in an effort to predict the interaction and impacts, over space and time, of various river basin components under alternative designs and operating policies.

Many of the systems analysis approaches and models discussed in the following chapters of this book have been, and continue to be, central to the planning and management process. Their usefulness is directly dependent on the quality of the data and models being used. Models can assist planning and management at different levels of detail. Some models are used for preliminary screening of alternative plans and policies, and as such do not require major data collection efforts. Screening models can also be used to estimate how significant certain data and assumptions are to the decisions being considered, and hence can help guide additional data collection activities. At the other end of the planning and management spectrum, much more detailed models can be used for engineering design . These more complex models are more data demanding, and typically require higher levels of expertise for their proper use.

The integration of modeling technology into the social and political components of the planning and management processes in a way that enhances those processes continues to be the main challenge of those who develop planning and management models . Efforts to build and apply interactive generic modeling programs or “shells” into which interested stakeholders can “draw in” their system, enter their data and operating rules at the level of detail desired, simulate it, and discover the effect of alternative assumptions and operating rules, has in many cases helped to create a common or shared understanding among these stakeholders . Getting stakeholders involved in developing and experimenting with their own interactive data-driven models has been an effective way of building a consensus—a shared vision.

1.5.5.5 Models for Shared Vision or Consensus Building

Participatory planning involves conflict management. Each stakeholder or interest group has its objectives, interests, and agendas. Some of these may be in conflict. The planning and management process is one of negotiation and compromise. This takes time but from it can come decisions that have the best chance of being considered the right decisions by most participants. Models can assist in this process of reaching a common understanding and agreement among different stakeholders. This has a greater chance of happening if the stakeholders themselves are involved in the modeling process.

Involving stakeholders in collaborative model building accomplishes a number of things. It gives them a feeling of ownership. They will have a much better understanding of just what their model can do and what it cannot do. If they are involved in model building, they will know the assumptions built into their model.

Being involved in a modeling exercise is a way to understand better the impacts of various assumptions one must make when developing and running models. While there may be no agreement on the best of various assumptions to make, stakeholders can learn which of those assumptions matter and which do not. In addition, the involvement of stakeholders in the process of model development will create discussions that will lead toward a better understanding of everyone’s interests and concerns. Though such model building exercises, it is just possible those involved will reach not only a better understanding of everyone’s concerns, but also a common or “shared” vision of at least how their system (as represented by their model, of course) works.

1.5.5.6 Models for Adaptive Management

Recent emphasis has shifted from structural engineering solutions to more nonstructural alternatives , especially for environmental and ecosystem restoration. Part of this shift reflects the desire to keep more options open for future generations. It reflects the desire to be adaptive to new information and to respond to surprises—impacts not forecasted. As we learn more about how river basins, estuaries, and coastal zones work, and how humans can better manage those resources, we do not want to regret what we have done in the past that may preclude this adaptation.

In some situations, it may be desirable to create a “rolling” plan—one based on the results of an optimization or simulation model of a particular water resource system that can be updated at any time. This permits responses to resource management and regulatory questions when they are asked, not just at times when new planning and management exercises take place. While this appears to be desirable, will planning and management organizations have the financing and support to maintain and update the modeling software used to estimate various impacts, collect and analyze new data, and maintain the expertise, all of which are necessary for continuous planning (rolling plans)?

1.6 Planning and Management Characteristics

1.6.1 integrated policies and development plans.

Clearly, a portion of any water resources planning and management study report should contain a discussion of the particular site-specific water resource management issues and options. Another part of the report might include a prioritized list of strategies for addressing existing problems and available development or management opportunities in the basin.

Recent emphasis has shifted from structural engineering solutions to more nonstructural alternatives , especially for environmental and ecosystem restoration. Part of this shift reflects the desire to keep more options open for future generations. It reflects the desire to be adaptive to new information and to respond to surprises—impacts not forecasted. As we learn more about how river basins, estuaries, and coastal zones work, and how humans can better manage their water resources, we do not want to be regretting what we have done in the past that may preclude this adaptation.

Consideration also needs to be given to improving the quality of the water resources planning and management review process and focusing on outcomes themselves rather than output measures. One of the outcomes should be an increased understanding of some of the relationships between various human activities and the hydrology and ecology of the basin, estuary, or coastal zone. Models developed for predicting the economic as well as ecologic interactions and impacts due to changes in land and water management and use could be used to address questions such as:

What are the hydrologic, ecologic, and economic consequences of clustering or dispersing human land uses such as urban and commercial developments and large residential areas? Similarly, what are the consequences of concentrated versus dispersed patterns of reserve lands, stream buffers, and forestland?

What are the costs and ecological benefits of a conservation strategy based on near-stream measures (e.g., riparian buffers) versus near-source (e.g., upland/site edge) measures? What is the relative cost of forgone upland development versus forgone valley or riparian development? Do costs strongly limit the use of stream buffer zones as mitigating for agriculture , residential, and urban developments?

Should large intensive developments be best located in upland or valley areas? Does the answer differ depending on economic, environmental, or aquatic ecosystem perspectives? From the same perspectives, is the most efficient and desirable landscape highly fragmented or highly zoned with centers of economic activity?

To what extent can riparian conservation and enhancement mitigate upland human land use effects? How do the costs of upland controls compare with the costs of riparian mitigation measures?

What are the economic and environmental quality trade-offs associated with different areas of different classes of land use such as commercial/urban, residential, agriculture , and forest?

Can adverse effects on hydrology, aquatic ecology, and water quality of urban areas be better mitigated with upstream or downstream management approaches ? Can land controls like stream buffers be used at reasonable cost within urban areas, and if so, how effective are they?

Is there a threshold size for residential/commercial areas that yield marked ecological effects?

What are the ecological states at the landscape scale that once attained become irreversible with reasonable mitigation measures? For example, once stream segments in an urban setting become highly altered by direct and indirect effects (e.g., channel bank protection and straightening and urban runoff), can they be restored with feasible changes in urban land use or mitigation measures?

Mitigating flood risk by minimizing floodplain developments coincides with conservation of aquatic life in streams. What are the economic costs of this type of risk avoidance?

What are the economic limitations and ecologic benefits of having light residential zones between waterways and commercial, urban, or agriculture lands?

What are the economic development decisions that are irreversible on the landscape? For example, once land is used for commercial development, it is normally too costly to return it to agricultural land. This would identify limits on planning and management for conservation and development.

What are the associated ecological and economic impacts of the trend in residential, commercial and forests lands replacing agricultural lands?

The answers to these and similar questions may well differ in different regions. However, if we can address them on a regional scale, i.e., in multiple river basins, we just might begin to understand and predict better the interactions among economy, environment ecology, and people as a function of how we manage and use its land and water. This in turn may help us better manage and use our land and water resources for the betterment of all—now and on into the future.

1.6.2 Sustainability

Sustainable water resource systems are those designed and managed to best serve people living in the future as well as those of us living today. The actions that we as a society take now to satisfy our own needs and desires should not only depend on what those actions will do for us but also on how they will affect our descendants. This consideration of the long-term impacts on future generations of actions taken now is the essence of sustainable development. While the word “sustainability ” can mean different things to different people, it always includes a consideration of the welfare of those living in the future. While the debate over a more precise definition of sustainability will continue, and questions over just what it is that should be sustained may remain unanswered, this should not delay progress toward achieving water resource systems that we judge best serves those of us living today as well as our children and their children living in the future.

The concept of environmental and ecological sustainability has largely resulted from a growing concern about the long-run health of our planet. There is increasing evidence that our present resource use and management activities and actions, even at local levels , can significantly affect the welfare of those living within much larger regions in the future. Water resource management problems at a river basin level are rarely purely technical and of interest only to those living within the individual river basins where those problems exist. They are increasingly related to broader societal structures, demands, and goals.

What would future generations like us to do for them? We do not know, but we can guess. As uncertain as these guesses will be, we should take them into account as we act to satisfy our own immediate needs, demands, and desires. There may be trade-offs between what we wish to do for ourselves in our current generation versus what we think future generations might wish us to do for them. These trade-offs , if any, between what present and future generations would like should be considered. Once identified, or at least estimated, just what decisions to make should be debated and decided in the political arena. There is no scientific theory to help us identify which trade-offs, if any, are optimal .

The inclusion of sustainability criteria along with the more common economic, environmental, ecological, and social criteria used to evaluate alternative water resources development and management strategies may identify a need to change how we commonly develop and use our water resources. We need to consider the impacts of change itself. Change over time is certain; just what it will be is uncertain. These changes will impact the physical, biological, and social dimensions of water resource systems. An essential aspect in the planning, design and management of sustainable systems is the anticipation of change. This includes change due to geomorphologic processes, to aging of infrastructure, to shifts in demands or desires of a changing society, and even due to increased variability of water supplies, possibly because of a changing climate. Change is an essential feature of sustainable water resources development and management.

Sustainable water resource systems are those designed and operated in ways that make them more adaptive, robust , and resilient to an uncertain and changing future. Sustainable water resource systems must be capable of effectively functioning under conditions of changing supplies, management objectives, and demands. Sustainable systems, like any others, may fail, but when they fail they must be capable of recovering and operating properly without undue costs.

In the face of certain changes, but with uncertain impacts, an evolving and adaptive strategy for water resources development, management, and use is a necessary condition of sustainable development. Conversely, inflexibility in the face of new information and new objectives and new social and political environments is an indication of reduced system sustainability. Adaptive management is a process of adjusting management actions and directions, as appropriate, in light of new information on the current and likely future condition of our total environment and on our progress toward meeting our goals and objectives. Water resources development and management decisions can be viewed as experiments, subject to modification—but with goals clearly in mind. Adaptive management recognizes the limitations of current knowledge and experience and that we learn by experimenting. It helps us move toward meeting our changing goals over time in the face of this incomplete knowledge and uncertainty. It accepts the fact that there is a continual need to review and revise management approaches because of the changing as well as uncertain nature of our socioeconomic and natural environments.

Changing the social and institutional components of water resource systems are often the most challenging because they involve changing the way individuals think and act. Any process involving change will require that we change our institutions—the rules under which we as a society function. Individuals are primarily responsible for, and adaptive to, changing political and social situations. Sustainability requires that public and private institutions also change over time in ways that are responsive to the needs of individuals and society.

Given the uncertainty of what future generations will want, and the economic, environmental, and ecological problems they will face, a guiding principle for the achievement of sustainable water resource systems is to provide options that allow future generations to alter such systems. One of the best ways to do this is to interfere as little as possible with the proper functioning of natural life cycles within river basins, estuaries, and coastal zones . Throughout the water resource system planning and management process, it is important to identify all the beneficial and adverse ecological, economic, environmental, and social effects—especially the long-term effects—associated with any proposed planning and management project.

1.7 Meeting the Planning and Management Challenges—A Summary

Planning (the formulation of development and management plans and policies) is an important and often indispensable means to support and improve operational management. Planning provides an opportunity to:

assess the current state of the water resources and the conflicts and priorities over their use, formulate visions, set goals and targets , and thus orient operational management,

provide a framework for organizing policy relevant research and public participation,

increase the legitimacy, public acceptance of, or even support for how the resources are to be allocated or controlled, especially in times of stress, and

facilitate the interaction, discussion, and coordination among managers and stakeholders, and generate a common point of reference—a management plan or policy.

Many of the concerns and issues being addressed by water resources planners and managers today are similar to those faced by planners and managers in the past. But some are different. Most of the new ones are the result of two trends: (1) a growing concern for the sustainability of natural ecosystems and (2) an increased recognition for the need of the bottom-up “grassroots” participatory approach to planning, managing, and decision-making.

Today planners work for economic development and prosperity as they did in the past, keeping in mind environmental impacts and goals as they have done in the past, but now recognizing ecological impacts and values as well. Water resources management may still be focused on controlling and mitigating the adverse impacts of floods and droughts and water pollution, on producing hydropower, on developing irrigation, on controlling erosion and sediment, and on promoting navigation , but only as these and similar activities are compatible with healthy ecosystems. Natural ecosystems generally benefit from the variability of natural hydrologic regimes. Other users prefer less variability. Much of our engineering infrastructure is operated so as to reduce hydrologic variability . Today water resource systems are increasing, required to provide rather than reduce hydrologic (and accompanying sediment load) variability. Reservoir operators, for example, can modify their water release policies to increase this variability. Farmers and land use developers must minimize rather than encourage land-disturbing activities. Floodplains may need to get wet occasionally. Rivers and streams may need to meander and fish species requiring habitats along the full length of rivers to complete their life cycles must have access to those habitats. Clearly these ecological objectives, added to all the other economic and environmental ones, can only compound the conflicts and issues with respect to land and water management and use.

So, how can we manage all this conflict and uncertainty? We know that water resources planning and management should be founded on sound science, efficient public program administration, and broad participation of stakeholders . Yet obtaining each of these three conditions is a difficult challenge. While the natural and social sciences can help us predict the economic, environmental, and ecological impacts of alternative decisions, those predictions are never certain. In addition, these sciences offer no help in determining the best decision to make in the face of multiple conflicting goals held by multiple stakeholders—goals that have changed, and no doubt will continue to change. Water resources planning and management and decision-making are not as easy as “we professionals can tell you what to do. All you need is the will to do it.” Very often it is not clear what should be done. Professionals administering the science, often from public agencies, nongovernmental organizations, or even from universities, are merely among all the stakeholders having an interest in and contributing to the management of water.

Each governmental agency, consulting firm, environmental interest group, and citizen typically has its own limitations, authorities, expertise and conflicts with other people, agencies and organizations, all tending to detract from achieving a fully integrated approach to water resources planning and management. But just because of this, the participation and contributions of all these stakeholders are needed. They must come together in a partnership if indeed an integrated approach to water resources planning and management is to be achieved and sustained. All views must be heard, considered, and acted upon by all involved in the water resources planning and management process.

Water resources planning and management is not simply the application and implementation of science. It is creating a social environment that gets all of us who should be involved, from the beginning, in a continuing planning process. This process is one of

educating ourselves about how our systems work and function,

identifying existing or potential options and opportunities for enhancement and resource development and use,

resolving the inevitable problems and conflicts that will result over who gets what and when and who pays who for what and when,

making and implementing decisions, and finally of

monitoring the impacts of those decisions.

This process is repeated as surprises or new opportunities or new knowledge dictates.

Successful water resources planning and management requires the active participation of all community institutions involved in economic development and resource management. How can this begin at the local stakeholder level? How does anyone get others interested in preventing problems before those problems are apparent, or especially before “unacceptable” solutions are offered to deal with them? And how do you deal with the inevitable group or groups of stakeholders who see it in their best interest not to participate in the planning process, but to just criticize it from the outside? Who is in a position at the local level to provide that leadership and needed financial support? In some regions, nongovernmental institutions have been instrumental in initiating and coordinating this process at local grassroot levels .

Water resources planning and management processes should identify a vision that guides development and operational activities in the affected region. Planning and management processes should

recognize and address the goals and expectations of the region’s stakeholders,

identify and respond to the region’s water-related problems,

function effectively within the region’s legal/institutional frameworks,

accommodate both short- and long-term issues,

generate a diverse menu of alternatives ,

integrate the biotic and abiotic parts of the basin,

take into account the allocation of water for all needs, including those of natural systems,

be stakeholder-driven,

take a global perspective,

be flexible and adaptable,

drive regulatory processes, not be driven by them,

be the basis for policy making,

foster coordination among planning partners and consistency among related plans,

be accommodating of multiple objectives,

be a synthesizer, recognize and deal with conflicts, and

produce recommendations that can be implemented.

All too often integrated planning processes are hampered by the separation of planning, management and implementing authorities, turf-protection attitudes, shortsighted focusing of efforts, lack of objectivity on the part of planners, and inadequate funding. These deficiencies need addressing if integrated holistic planning and management is to be more than just something to write about.

Effective water resources planning and management is a challenge today, and will be an increasing challenge into the foreseeable future. This book introduces some of the tools that are being used to meet these challenges. We consider it only a first step toward becoming an accomplished planner or manager.

ADB (Asia Development Bank). (2016). Asian Water Development Outlook, Strengthening Water Security in Asia and the Pacific . Mandaluyong City, Philippines.

Google Scholar  

ASCE (American Society of Civil Engineers). (1998). Sustainability criteria for water resource systems . Reston, VA: ASCE.

Gulbenkian Think Tank (GTT). (2014). Water and the future of humanity . Revaluating Water Security, Calouste Gulbenkian Foundation, New York: Springer. ISBN: 978-3-319-01456-2. doi: 10.1007/978-3-319-01457-9_1

GWP (Global Water Partnership). (2000). Integrated water resources management. TAC Background Papers No. 4. Stockholm, Sweden: GWP.

IPPC. (2007). Report of the intergovernmental panel on climate change , May.

NRC (National Research Council). (2001). Compensating for wetland losses under the clean water act . Committee on Mitigating Wetland Losses, Board on Environmental Studies and Toxicology, Water Science and Technology Board.

Orr, S., Pittock, J., Chapagain, A., & Dumaresq, D. (2012). Dams on the Mekong River: Lost fish protein and the implications for land and water resources, Global Environmental Change, 22 , 925–932.

UN-Water. (2013). UN-water analytical brief on water security and the global water agenda .

van Beek, E., & Arriens, W. L. (2014). Water security, putting the concept into practise . TEC Background Paper No. 20. Stockholm: GWP.

Winemiller, K. O., McIntyre, P. B. , Castello, L., Fluet-Chouinard, E., Giarrizzo, T., Nam, S., et al. (2016). Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong Basin-scale planning is needed to minimize impacts in mega-diverse rivers. In Insights perspectives (Vol. 351 Issue 6269 p. 129). AAAS Science. sciencemag.org. January 8, 2016.

Additional References (Further Reading)

Abdullah, A., Masih, I.,Van Der Zaag, P., Karim, U. F.A., Popescu, I., Suhail, Q. A. (2015). Shatt al Arab River system under escalating pressure: A preliminary exploration of the issues and options for mitigation. International Journal of River Basin Management, 13 (2), 215–227.

Abu-Zeid, M. A., & Biswas, A. K. (Eds.). (1996). River basin planning and management . Calcutta: Oxford University Press.

American Society of Civil Engineers (ASCE). (1998). Sustainability criteria for water resource systems . Reston, VA: ASCE Press.

American Society of Civil Engineers (ASCE). (2011). Toward a sustainable water future: Visions for 2050 . Reston, VA, USA: ASCE Press.

Barrow, C. J. (1998). River basin development planning and management: A critical review. World-Development, Oxford, United Kingdom, 26 (1), 171–186.

Bateman, B., & Rancier, R. (Eds.). (2012). Case studies in integrated water resources management: From local stewardship to national vision . American Water Resources Association Policy Committee, 4 West Federal Street, P.O. Box 1626, Middleburg, Virginia 20118-1626, 60 pp.

Bates, B. C., Kundzewicz, Z. W., Wu, S., & Palutikof, J. P. (2008). Climate change and water . IPCC Technical Paper VI. Geneva, Switzerland: Intergovernmental Panel on Climate Change.

Biswas, A. K. (Ed.). (1997). Water resources: Environmental planning, management, and development (738 pp). New York, NY: McGraw-Hill.

Cai, X., Vogel, R., & Ranjithan, R. (Eds.). (2013). Role of systems analysis in watershed management. Journal of Water Resources Planning and Management, 139 (5), 461–592.

Chartres, C., & Varma, S. (2010). Out of water: From abundance to scarcity and how to solve the world’s water problems . Upper Saddle River, NJ, USA: Pearson Education Inc.

Cooper, A. B., & Bottcher, A. B. (1993). Basin-scale modeling as a tool for water-resource planning. Journal of Water Resources Planning and Management (ASCE), 119 (3), 306–323. May/June 6 fig, 4 tab, 41 ref.

Priscoli, J. D. (2004). What is public participation in water resources management and why is it important? Water International, 29 (2).

Diamantini, C., & Zanon, B. (1996). River basin planning in Italy: Resource and risk management. European-Environment (United Kingdom), 6 (4), 119–125.

Eckstein, O. (1958). Water resource development: The economics of project evaluation . Cambridge, MA: Harvard University Press.

Frederick, K. D., Major, D. C., & Stakhiv, E. Z. (1997). Water resources planning principles and evaluation criteria for climate change: Summary and conclusions. Climate Change, 37 (1), 291–313.

Article   Google Scholar  

Gershon, M., & Duckstein, L. (1983). Multiobjective approaches to river basin planning. Journal-Water-Resources-Planning-Management-Division, American Society of Civil Engineers USA), 109 (1), 13–28.

Gleick, P. H. (2002). Soft water paths. Nature, 418 , 373.

Gleick, P. H. (2003). Water use. Annual Review of Environment and Resources, 28 , 275–314.

Gleick, P. H., & Palaniappan, M. (2010). Peak water: Conceptual and practical limits to freshwater withdrawal and use. Proceedings of the National Academy of Sciences of the United States of America, 107 (25), 11155–11162.

Global Water Partnership (GWP). (2000). Water as a social and economic good: How to put the principle into practice . TAC Background Papers No. 2. Stockholm, Sweden: GWP.

Global Water Partnership (GWP). (2000). Effective water governance . TAC Background Papers No. 7. Stockholm, Sweden: GWP.

Global Water Partnership (GWP). (2012). The handbook for integrated water resources management in transboundary basins of rivers, lakes and aquifers (120 pp). International Office for Water (Permanent Technical Secretariat of the International Network of Basin Organizations). ISBN: 978-91-85321-85-8.

Goulter, I. C. (1985). Equity issues in the implementation of river basin planning. Strategies for river basin management: Environmental integration of land and water in a river basin (pp. 287–292, 15 refs.). Dordrecht, Holland: D. Reidel Publishing Co.

Gulbenkian Think Tank. (2014). Water and the future of humanity. Revisiting water security (241 pp). New York: Springer. doi: 10.1007/978-3-319-01457-9

Haasnoot, M., Kwakkel, J. H., Walker, W. E., & ter Maat, J. (2013). Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Global Environmental Change, 23 , 485–498.

Habersack, H., Haspel, D., & Campbell, I. (Eds.). (2013). Integrated management of large river systems. International Journal of River Basin Management, 11 (2), 137–236.

Hoekstra, A. Y., & Chapagain, A. K. (2008). Globalization of water. Sharing the planet’s freshwater resources . Oxford, UK: Blackwell Publishing.

Hoekstra, A. Y., & Mekonnem, M. M. (2012). The water footprint of humanity. Proceedings of the National Academy of Sciences, Washington DC, 109 (9), 3232–3237.

Howe, C. W. (1996). Water resources planning in a federation of states: Equity versus efficiency. Natural Resources Journal, 36 (1), 29–36.

Huaicheng, Guo, & Beanlands, G. (1994). A comparative study on Canadian and Chinese river basin planning. Journal of Environmental Science China, 6 (2), 224–233.

IPCC (Intergovernmental Panel on Climate Change). (2001). Climate change 2001: Synthesis report, summary for policymakers. Third Assessment Report, IPCC.

IPCC (Intergovernmental Panel on Climate Change). (2007). Climate change 2007: The physical science basis. Fourth Assessment Report, IPCC.

IWMI (International Water Management Institute). (2007). Water for food, water for life. A comprehensive assessment of water management in agriculture . London, UK: Earthscan, and Colombo, Sri Lanka: IWMI.

Karamouz, M., Szidarovszky, F., & Banafsheh, Z. (2003). Water resources systems analysis . Boca Raton, FL: Lewis.

Kulshreshtha, S. (1998). A global outlook for water resources to the year 2025. Water Resources Management, 12 (3), 167–184.

Krutilla, J. V., & Eckstein, O. (1958). Multiple purpose river development . Baltimore, MD: Johns Hopkins Press.

Lee, D. J., & Dinar, A. (1996). Integrated models of river basin planning, development, and management. Water International, 21 (4), 213–222. Also see: (1995). Review of integrated approaches to river basin planning, development and management . World Bank, Agriculture and Natural Resources Department, Washington, DC.

Lins, H. F., Wolock, D. M., & McCabe, G. J. (1997). Scale and modeling issues in water resources planning. Climate Change, 37 (1), 63–88.

Loucks, D. P., Stedinger, J.R., & Haith, D.A. (1981). Water resources systems planning and analysis (559 pp). Englewood Cliffs, NJ: Prentice-Hall.

Loucks, D. P., & da Costa, J. R. (Eds.). (1991). Decision support systems: Water resources planning and research . Berlin: Springer.

Loucks, D. P. (Ed.). (1998). Restoration of degraded rivers: Challenges, issues and experiences (484 pp). Dordrecht, NL: Kluwer Academic Publishers.

Maidment, D. R. (Ed.). (1993). Handbook of hydrology . New York, NY: McGraw-Hill.

Maass, A., et al. (1962). Design of water resource systems . Cambridge, MA: Harvard University Press.

Book   Google Scholar  

Major, D. C., & Lenton, R. L. (Eds.). (1979). Applied water resource systems planning (248 pp). Englewood Cliffs, NJ: Prentice-Hall, Inc.

Mays, L. W. (Ed.). (1996). Water Resources Handbook . NY, NY: McGraw-Hill.

McMillan, T. (1990). Water resource planning in Canada. Journal of Soil and Water Conservation, 45 (6),614–616.

Mimikou, M. A., Baltas, E. A., & Tsihrintzis, V. A. (2016). Hydrology and water resource systems analysis (456 pp). CRC Press.

Mitchell, B. (1983). Comprehensive river basin planning in Canada: Problems and opportunities. Water International, 8 (4), 146–153.

MRC (Mekong River Commission) Secretariat. (2009). Inception report: MRC SEA for hydropower on the Mekong mainstream . Phnom Penh, Cambodia: MRC and International Center for Environmental Management.

National Research Council (NRC). (2001). Compensating for Wetland Losses Under the Clean Water Act (348 pp). Committee on Mitigating Wetland Losses, Board on Environmental Studies and Toxicology, Water Science and Technology Board.

Nijhuis, M. (2015). Harnessing the Mekong, or killing it? National Geographic, Journal of National Geographic Society, 227 (5), 102–129.

O’Riordan, J. (1981). New strategies for water resource planning in British Columbia. Canadian Water Resources Journal, 6 (4), 13–43. 6 Figs, 5 Tabs.

Razavian, D.,Bleed, A. S., Supalla, R. J., & Gollehon, N. R. (1990). Multistage screening process for river basin planning. Journal of Water Resources Planning and Management (ASCE), 116 (3), 323–334. May/June 3 fig, 1 tab, 19 refs, 3 append.

Reitsma, R. F., & Carron, J. C. (1997). Object-oriented simulation and evaluation of river basin operations. Journal of Geographic Information and Decision Analysis, 1 (1), 9–24.

Reynolds, P. J. (1985). Ecosystem approaches to river basin planning strategies for river basin management: Environmental integration of land and water in a river basin (pp. 41–48, 1 fig, 18 refs). Dordrecht, Holland: D. Reidel Publishing Co.

Sadoff, C. W., Hall, J. W., Grey, D., Aerts, J. C. J. H., Ait-Kadi, M., Brown, C., et al. (2015). Securing water, sustaining growth: Report of the GWP/OECD task force on water security and sustainable growth (180 pp). UK: University of Oxford.

Saha, S. K., & Barrow, C. J. (Eds.). (1981). River basin planning: Theory and practice (357 pp). Chichester, UK: Wiley Interscience.

Savenije, H. H. G., & van der Zaag, P. (Eds.). (1998). The management of shared river basins (164 pp). The Hague, NL: Ministry of Foreign Affairs, Neda.

Schramm, G. (1980). Integrated river basin planning in a holistic universe. Natural Resources Journal, 20 (4), 787–806. 2 Fig, 1 tab, 48 refs.

Smith, S. C., & Castle, E. N. (Eds.). (1964). Economics and public policy in water resources development . Ames, Iowa: Iowa University Press.

Somlyody, L. (1997). Use of optimization models in river basin water quality planning. In M. B. Beck & P. Lessard (Eds.), WATERMATEX ‘97. Systems analysis and computing in water quality management. Towards a new agenda (391 pp).

Stout, G.E. (1998). Sustainable development requires the full cooperation of water users. Water International, 23 (1), 3–7.

Thanh, N. C., & Biswas, A. K. (Eds.). (1990). Environmentally-sound water management (276 pp). Delhi: Oxford University Press.

Thiessen, E. M., Loucks, D. P., & Stedinger, J. R. (1998). Computer-assisted negotiations of water resources conflicts. Group Decision and Negotiation, 7 (2).

Thissen, W. A. H., & Walker, W. E. (Eds.). (2013). Public policy analysis: New developments (286 pp). New York, Heidelberg, Dordrecht, London: Springer. ISBN: 978-1-4614-4601-9; ISBN: 978-1-4614-4602-6 (eBook). doi: 10.1007/978-1-4614-4602-6

Tolley, G. S., & Riggs, F. E. (Eds.). (1961). Economics of watershed planning . Ames, Iowa: Iowa State University Press.

UN WWAP (United Nations World Water Assessment Programme). (2009). The United Nations World Water Development Report 3: Water in a changing world . Paris, France: UNESCO and London, UK: Earthscan.

UN WWAP (United Nations World Water Assessment Programme). (2011). World water scenarios to 2050, exploring alternative futures of the world’s water and its use to 2050 . Paris, France: UNESCO.

UN WWAP (United Nations World Water Assessment Programme). (2012). The United Nations World Water Development Report 4: Managing water under risk and uncertainty . Paris, France: UNESCO.

UNDP (United Nations Development Programme). (2011). Human Development Report. In Sustainability and equity: A better future for all . New York, NY, USA: UNDP.

UNEP (United Nations Environment Programme). (2002). Global environmental outlook 3: Past, present and future perspectives . London, UK: Earthscan and Nairobi, Kenya: UNEP.

UNEP (United Nations Environment Programme). (2006). Marine and coastal ecosystems and human well-being: A synthesis report based on the findings of the millennium ecosystem assessment . Nairobi, Kenya: UNEP.

UNEP (United Nations Environment Programme). (2009). Towards sustainable production and sustainable use of resources: Assessing biofuels . France: UNEP, produced by the International Panel for Sustainable Resource Management, Division of Technology Industry and Economics, France.

Viessman, W. (1996). Integrated water management. Water Resources Update, (106), 2–12).

Viessman, W. (1998). Water policies for the future. Water Resources Update, (111), 4–7, 104–110.

Vörösmarty, C. J., Green, P., Salisbury, J., & Lammers, R. B. (2000). Global water resources: Vulnerability from climate change and population growth. Science, 289 (5477), 284–288.

Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., et al. (2010). Global threats to human water security and river biodiversity. Nature, 467 , 555–561.

Walker, W. E., Haasnoot, M., & Kwakkel, J. H. (2013). Adapt or perish: A review of planning approaches for adaptation under deep uncertainty. Sustainability, 5 , 955–979.

Watkins, D. W. Jr. (Ed.). (2013). Water resources systems analysis through case studies: Data and models for decision making (168 pp). Reston, VA: ASCE Press.

WCD. (2000). Dams and developments — A new framework for decision-making : The report of the World Commission on Dams . UK: Earthscan.

White, G. F. et al. (1999). Water for the future: The West Bank and Gaza Strip, Israel, and Jordan . Water Science and Technology Board and the Board on Environmental Studies and Toxicology, National Research Council, National Academy Press, Washington, DC.

Wong, E. (2013). Pollution rising, Chinese fear for soil and food. NY Times . December 31, 2013.

Wood, A. W., Lettenmaier, D. P., & Palmer, R. N. (1997). Assessing climate change implications for water resources planning. Climate Change, 37 (1), 203–228.

Wright, W. C., Cohen, R., & Heath, J. H. (1982). Decentralizing water resource planning and management. Journal of the American Water Works Association, 74 (7), 6, 334–345. July, 5 Fig, 2 Tab, 37 Ref.

WWAP, (United Nations World Water Assessment Programme). (2012). World water development report 4, 2012. Managing   water under uncertainty and   risk (867 pp). Paris: UNESCO.

WWAP (United Nations World Water Assessment Programme). (2015). World water development report 2015. Water for a sustainable world (224 pp; Case studies, 61 pp). Paris: UNESCO.

WWAP (United Nations World Water Assessment Programme). (2014). The United Nations world water development report 2014: Water and energy (133 pp). Paris: UNESCO.

Xie, J., Liebenthal, A., Warford, J. J., et al. (2009). Addressing China’s water scarcity: Recommendations for selected water resource management issues . Washington, DC, USA: World Bank.

Zhang, R., Zhou, J., Zhang, H., Liao, X., & Wang, X. (2014). Optimal operation of large-scale cascaded hydropower systems in the Upper Reaches of the Yangtze River, China. Journal of Water Resources Planning and Management, 140 (4), 480–495.

Download references

Author information

Authors and affiliations.

Cornell University, Ithaca, NY, USA

Daniel P. Loucks

Deltares, Delft, The Netherlands

Eelco van Beek

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Daniel P. Loucks or Eelco van Beek .

How would you define “Integrated Water Resources Management” and what distinguishes it from “Sustainable Water Resources Management”?

Can you identify some common water management issues that are found in many parts of the world?

Comment on the common practice of governments giving aid to those in drought or flood areas without any incentives to alter land use management practices in anticipation of the next drought or flood.

What tools and information are available for developing integrated water resources plans and management policies?

What structural and nonstructural measures can be taken to address water resources issues?

Find the following statistics:

Percent of all freshwater resources worldwide available for drinking;

Number of people who die each year from diseases associated with unsafe drinking water;

Percent of total freshwater resources in polar regions;

Per capita annual withdrawal of cubic meters of freshwater in various countries;

Average world per capita annual withdrawal of cubic meters of freshwater;

Tons of pollutants entering lakes and rivers daily in various regions;

Average number of gallons of water consumed by humans in a lifetime;

Average number of kilometers per day a woman in a developing country must walk to fetch fresh water.

Identify and briefly describe the six greatest rivers in the world.

Identify some of the major water resource management issues in the region where you live. What management alternatives might effectively reduce some of the problems or provide additional economic, environmental, or social benefits.

Describe some water resource systems consisting of various interdependent natural, physical, and social components. What are the inputs to the systems and what are their outputs? How did you decide what to include in the system and what not to include?

Sustainability is a concept applied to renewable resource management. In your words define what that means and how it can be used in a changing and uncertain environment both with respect to water supplies and demands. Over what space and timescales is it applicable, and how can one decide whether or not some plan or management policy will be sustainable? How does this concept relate to the adaptive management concept?

Identify and discuss briefly some of the major issues and challenges facing water managers today.

Rights and permissions

Open Access    This chapter is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( http://creativecommons.org/licenses/by-nc/4.0/ ), which permits any noncommercial use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the work's Creative Commons license, unless indicated otherwise in the credit line; if such material is not included in the work’s Creative Commons license and the respective action is not permitted by statutory regulation, users will need to obtain permission from the license holder to duplicate, adapt or reproduce the material.

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Loucks, D.P., van Beek, E. (2017). Water Resources Planning and Management: An Overview. In: Water Resource Systems Planning and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-44234-1_1

Download citation

DOI : https://doi.org/10.1007/978-3-319-44234-1_1

Published : 04 March 2017

Publisher Name : Springer, Cham

Print ISBN : 978-3-319-44232-7

Online ISBN : 978-3-319-44234-1

eBook Packages : Engineering Engineering (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

UN. Welcome to the United Nations. It's your world.

  • ON THE DECADE
  • About the Decade
  • Decade's Milestones
  • Climate change
  • THE DECADE'S CAMPAIGN
  • You make the Decade!
  • Who has joined?
  • Decade's logo
  • Water for Life Voices
  • REPORTING ON PROGRESS
  • From Member States
  • From Friends of Water
  • From the UN system
  • THE DECADE'S PROGRAMMES
  • UNW-DPAC: Advocacy and Communication
  • UNW-DPC: Capacity development
  • FOCUS AREAS
  • Access to sanitation
  • Financing water
  • Gender and water
  • Human right to water
  • Integrated Water Resources Management
  • Transboundary waters
  • Water and cities
  • Water and energy
  • Water and food security
  • Water and sustainable development
  • Water and the green economy
  • Water cooperation
  • Water quality
  • Water scarcity
  • FOCUS REGIONS
  • Asia and the Pacific
  • Latin America and the Caribbean
  • RESOURCES FOR
  • Kids and Youth
  • UN e-RESOURCES
  • UN Publications
  • UN Photobanks
  • UN Video Library
  • UN Websites

Integrated Water Resources Management (IWRM)

Water is a key driver of economic and social development while it also has a basic function in maintaining the integrity of the natural environment. However water is only one of a number of vital natural resources and it is imperative that water issues are not considered in isolation.

Managers, whether in the government or private sectors, have to make difficult decisions on water allocation. More and more they have to apportion diminishing supplies between ever-increasing demands. Drivers such as demographic and climatic changes further increase the stress on water resources. The traditional fragmented approach is no longer viable and a more holistic approach to water management is essential.

This is the rationale for the Integrated Water Resources Management (IWRM) approach that has now been accepted internationally as the way forward for efficient, equitable and sustainable development and management of the world's limited water resources and for coping with conflicting demands.

Stages in IWRM planning and implementation Graph

Stages in IWRM planning and implementation

There are great differences in water availability from region to region - from the extremes of deserts to tropical forests. In addition there is variability of supply through time as a result both of seasonal variation and inter-annual variation. All too often the magnitude of variability and the timing and duration of periods of high and low supply are not predictable; this equates to unreliability of the resource which poses great challenges to water managers in particular and to societies as a whole. Most developed countries have, in large measure, artificially overcome natural variability by supply-side infrastructure to assure reliable supply and reduce risks, albeit at high cost and often with negative impacts on the environment and sometimes on human health and livelihoods. Many less developed countries, and some developed countries, are now finding that supply-side solutions alone are not adequate to address the ever increasing demands from demographic, economic and climatic pressures; waste-water treatment, water recycling and demand management measures are being introduced to counter the challenges of inadequate supply.

In addition to problems of water quantity there are also problems of water quality. Pollution of water sources is posing major problems for water users as well as for maintaining natural ecosystems.

In many regions the availability of water in both quantity and quality is being severely affected by climate variability and climate change, with more or less precipitation in different regions and more extreme weather events. In many regions, too, demand is increasing as a result of population growth and other demographic changes (in particular urbanization) and agricultural and industrial expansion following changes in consumption and production patterns. As a result some regions are now in a perpetual state of demand outstripping supply and in many more regions that is the case at critical times of the year or in years of low water availability.

  • Status Report on Integrated Water Resources Management and Water Efficiency Plans. UN-Water. 2008
  • Roadmapping for Advancing Integrated Water Resources Management (IWRM) Processes. UN-Water, GWP. 2007

What is "IWRM"?

IWRM is an empirical concept which was built up from the on-the-ground experience of practitioners. Although many parts of the concept have been around for several decades - in fact since the first global water conference in Mar del Plata in 1977 - it was not until after Agenda 21 and the World Summit on Sustainable Development in 1992 in Rio that the concept was made the object of extensive discussions as to what it means in practice. The Global Water Partnership's definition of IWRM is widely accepted. It states: 'IWRM is a process which promotes the co-ordinated development and management of water, land and related resources, in order to maximize the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems.'

Source Integrated Water Resources Management in Action. WWAP, DHI Water Policy, UNEP-DHI Centre for Water and Environment. 2009

UN initiatives that are helping to raise the issue...

  • UN-Water Task Force on Indicators, Monitoring and Reporting (2008-2010) In 2006 a Task Force on IWRM was created by UN-Water, with members drawn from UN-Water agencies and from partner organizations. In May 2008, the Task Force on IWRM completed its mandate when it presented the 'Status Report on Integrated Water Resources Management and Water Efficiency Plans' at the sixteenth session of the Commission on Sustainable Development. In 2008, UN-Water combined the Task Force on IWRM and the Task Force on Monitoring to establish the Task Force on Indicators, Monitoring and Reporting.

To know more

Integrated Water Resources Management in Eastern Europe, the Caucasus and Central Asia. European Union Water Initiative National Policy Dialogues progress report 2013.

IWRM at the river basin level

Introduction to the IWRM guidelines at river basin level

Cases from the regions

Roadmaps for water management in West Africa. Case studies from The Gambia, Guinea-Bissau and Sierra Leone. Development of IWRM Plans

>> Water for Life Voices campaign >> Submit your voice! >> Your #WaterForLifeVoices on Flickr

World Water Day

>> Water at Rio+20

Flickr

5-6 December 2013: Closing Ceremony of the International Year of Water Cooperation 20-21 August 2013: International High-Level Conference on Water Cooperation. Dushanbe, Tajikistan 8-10 January 2013: Preparing for the 2013 International Year. Water Cooperation: Making it Happen! Conference. Zaragoza, Spain >> Draft Resolution on the implementation of the IYWC >> IYWC official website

>> Decade's weekly The Decade's weekly brings you every week the latest news from the Decade.

UN Documentation Centre on Water and Sanitation website

>> UN Documentation Centre on Water and Sanitation The UN Water Library provides access to water and sanitation related publications produced by the United Nations system. This virtual library is currently available in English and in Spanish but publications are accessible in different languages where available.-->

Secretary-General Ban Ki-moon speaks at the General Assembly's thematic debate, The Road to Rio+20 and beyond, on the upcoming UN Rio+20 Conference on Sustainable Development

"Rio+20 is one month away […] We have the opportunity to forge agreements and bold action on many thematic issues […] We should endorse action on universal access to safe drinking water and sanitation. This is closely linked with the achievement of universal health goals and the reduction of poverty." UN Secretary-General's address to the Informal Thematic Debate of the 66th Session of the General Assembly on "The Road to Rio+20 and Beyond" New York, 22 May 2012

Ban Ki-moon. UN Secretary-General

"In the next twenty years, the world will need at least 50 per cent more food, 45 per cent more energy, 30 per cent more water and many millions of new jobs. Our challenge at Rio+20 and beyond is to take a holistic, integrated approach to these linked challenges ­ driving at the interrelations such that solutions to one problem translate into progress on all." UN Secretary-General Ban Ki-moon on the occasion of International Mother Day, 22 April 2012

>> Water in the Green Economy in Practice: Towards Rio+20. 3-5 October 2011. Zaragoza, Spain

>> UN-Water: The Road to Rio. Water for Development and Poverty Eradication. 16 November 2011. Bonn, Germany

Interview series on Water in Rio+20: Youth Group

Water cooperation 2013: International Year of Water Cooperation

Sustainable Development 15-17 January 2015: UN-Water International Zaragoza Conference ‘Water and Sustainable Development: From vision to action’

22 March 2015: World Water Day on Water and Sustainable Development

Biodiversity 2011-2020: UN Decade on Biodiversity

Deserts and Desertification 2010-2020: UN Decade for Deserts and the Fight Against Desertification

Energy 2014-2024: Decade on Sustainable Energy for All 22 March 2014: World Water Day on 'Water and Energy'

Sanitation 2011-2015: Sustainable sanitation: The Five-Year-Drive to 2015 19 November 2014: World Toilet Day

Copyright | Terms of use | Privacy notice | Site Index | Fraud alert | Help

Department of Earth Sciences

Service navigation.

  • Legal Notice
  • Privacy Policy
  • Accessibility Statement
  • Integrated Water Resource Management - from traditional knowledge to modern techniques

Path Navigation

Case studies

Rainwater harvesting facilities in the village of Epyeshona - household  approach

Rainwater harvesting facilities in the village of Epyeshona - household approach Image Credit: CuveWaters 2012

In this chapter several case studies of IWRM-projects from different areas of the world are presented. Every project focusses on various aspects regarding to the specific conditions and problems occur. Some of the shown studies are very comprehensive (e.g. SMART or CuveWaters), thus only short overviews of the activities and measures applied are given.

  • GEF Pacific IWRM Project - Tuvalu
  • SMART - IWRM in the Lower Jordan Valley
  • Tacaná Watersheds: Guatemala & Mexico
  • Integrated Water Resources Management for Central Asia: Model Region Mongolia (MoMo)
  • CuveWaters - Integrated Water Resources Management in the Cuvelai-Etosha Basin (Central Northern Namibia)

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Published: 31 January 2023

Global water resources and the role of groundwater in a resilient water future

  • Bridget R. Scanlon   ORCID: orcid.org/0000-0002-1234-4199 1 ,
  • Sarah Fakhreddine 1 , 2 ,
  • Ashraf Rateb 1 ,
  • Inge de Graaf   ORCID: orcid.org/0000-0001-7748-868X 3 ,
  • Jay Famiglietti 4 ,
  • Tom Gleeson 5 ,
  • R. Quentin Grafton 6 ,
  • Esteban Jobbagy 7 ,
  • Seifu Kebede 8 ,
  • Seshagiri Rao Kolusu 9 ,
  • Leonard F. Konikow 10 ,
  • Di Long   ORCID: orcid.org/0000-0001-9033-5039 11 ,
  • Mesfin Mekonnen   ORCID: orcid.org/0000-0002-3573-9759 12 ,
  • Hannes Müller Schmied 13 , 14 ,
  • Abhijit Mukherjee 15 ,
  • Alan MacDonald   ORCID: orcid.org/0000-0001-6636-1499 16 ,
  • Robert C. Reedy 1 ,
  • Mohammad Shamsudduha 17 ,
  • Craig T. Simmons 18 ,
  • Alex Sun 1 ,
  • Richard G. Taylor 19 ,
  • Karen G. Villholth 20 ,
  • Charles J. Vörösmarty 21 &
  • Chunmiao Zheng   ORCID: orcid.org/0000-0001-5839-1305 22  

Nature Reviews Earth & Environment volume  4 ,  pages 87–101 ( 2023 ) Cite this article

16k Accesses

198 Citations

288 Altmetric

Metrics details

  • Hydrogeology
  • Water resources

An Author Correction to this article was published on 29 March 2023

This article has been updated

Water is a critical resource, but ensuring its availability faces challenges from climate extremes and human intervention. In this Review, we evaluate the current and historical evolution of water resources, considering surface water and groundwater as a single, interconnected resource. Total water storage trends have varied across regions over the past century. Satellite data from the Gravity Recovery and Climate Experiment (GRACE) show declining, stable and rising trends in total water storage over the past two decades in various regions globally. Groundwater monitoring provides longer-term context over the past century, showing rising water storage in northwest India, central Pakistan and the northwest United States, and declining water storage in the US High Plains and Central Valley. Climate variability causes some changes in water storage, but human intervention, particularly irrigation, is a major driver. Water-resource resilience can be increased by diversifying management strategies. These approaches include green solutions, such as forest and wetland preservation, and grey solutions, such as increasing supplies (desalination, wastewater reuse), enhancing storage in surface reservoirs and depleted aquifers, and transporting water. A diverse portfolio of these solutions, in tandem with managing groundwater and surface water as a single resource, can address human and ecosystem needs while building a resilient water system.

Net trends in total water storage data from the GRACE satellite mission range from −310 km 3 to 260 km 3 total over a 19-year record in different regions globally, caused by climate and human intervention.

Groundwater and surface water are strongly linked, with 85% of groundwater withdrawals sourced from surface water capture and reduced evapotranspiration, and the remaining 15% derived from aquifer depletion.

Climate and human interventions caused loss of ~90,000 km 2 of surface water area between 1984 and 2015, while 184,000 km 2 of new surface water area developed elsewhere, primarily through filling reservoirs.

Human intervention affects water resources directly through water use, particularly irrigation, and indirectly through land-use change, such as agricultural expansion and urbanization.

Strategies for increasing water-resource resilience include preserving and restoring forests and wetlands, and conjunctive surface water and groundwater management.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

92,52 € per year

only 7,71 € per issue

Buy this article

  • Purchase on Springer Link
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

case study of water resources

Similar content being viewed by others

case study of water resources

Environmental flow limits to global groundwater pumping

case study of water resources

Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers

case study of water resources

Global peak water limit of future groundwater withdrawals

Change history, 29 march 2023.

A Correction to this paper has been published: https://doi.org/10.1038/s43017-023-00418-9

Vorosmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467 , 555–561 (2010).

Article   Google Scholar  

Doell, P., Mueller Schmied, H., Schuh, C., Portmann, F. T. & Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 50 , 5698–5720 (2014).

Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. 37 , L20402 (2010).

Douville, H. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1055–1210 (IPCC, Cambridge Univ. Press, 2021).

Olivier, D. W. & Xu, Y. X. Making effective use of groundwater to avoid another water supply crisis in Cape Town, South Africa. Hydrogeol. J. 27 , 823–826 (2019).

Ozment, S. et al. Natural infrastructure in Sao Paulo’s water system. World Resources Institute Report 2013–2014: Interim Findings (2018).

Pascale, S., Kapnick, S. B., Delworth, T. L. & Cooke, W. F. Increasing risk of another Cape Town ‘Day Zero’ drought in the 21st century. Proc. Natl Acad. Sci. USA 117 , 29495 (2020).

Alley, W. M., Reilly, T. E. & Franke, O. L. Sustainability of ground-water resources. US Geological Survey Circular 1186 (1999).

Breslin, S. COP26 has 4 goals. Water is central to all of them. SIWI News https://siwi.org/latest/cop26-has-4-goals-water-is-central-to-all-of-them/ (2021).

Global Risks 2021 16th edition (World Economic Forum, 2021); https://www.weforum.org/reports/the-global-risks-report-2021/

The Water Challenge: The Roundtable on Water Financing (OECD, 2022); https://www.oecd.org/water/roundtable-on-financing-water.htm

The United Nations World Water Development Report 2018: Nature-Based Solutions for Water (United Nations World Water Assessment Program/UNESCO, 2018).

Browder, G., Ozment, S., Rehberger-Bescos, I., Gartner, T. & Lange, G. M. Integrating Green and Gray: Creating Next Generation Infrastructure (World Bank and World Resources Institute, 2019); https://openknowledge.worldbank.org/handle/10986/31430

Making Every Drop Count: Agenda for Water Action (High Level Panel on Water, United Nations and World Bank, 2018).

Lederer, E. M. Next UN assembly president warns world in dangerous crisis. Washington Post https://www.washingtonpost.com/world/next-un-assembly-president-warns-world-in-dangerous-crisis/2022/06/07/55075dce-e6b6-11ec-a422-11bbb91db30b_story.html (7 June 2022).

Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 9 , 358–369 (2019).

Wada, Y. & Bierkens, M. F. P. Sustainability of global water use: past reconstruction and future projections. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/9/10/104003 (2014).

Mekonnen, M. M. & Hoekstra, A. Y. Blue water footprint linked to national consumption and international trade is unsustainable. Nat. Food 1 , 792–800 (2020).

Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557 , 651–659 (2018).

Save, H., Bettadpur, S. & Tapley, B. D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 121 , 7547–7569 (2016).

Tapley, B. D., Bettadpur, S., Watkins, M. & Reigber, C. The Gravity Recovery And Climate Experiment: mission overview and early results. Geophys. Res. Lett. https://doi.org/10.1029/2004gl019920 (2004).

Richey, A. S. et al. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51 , 5217–5238 (2015).

Shamsudduha, M. & Taylor, R. G. Groundwater storage dynamics in the world’s large aquifer systems from GRACE: uncertainty and role of extreme precipitation. Earth Syst. Dyn. 11 , 755–774 (2020).

Vishwakarma, B. D., Bates, P., Sneeuw, N., Westaway, R. M. & Bamber, J. L. Re-assessing global water storage trends from GRACE time series. Environ. Res. Lett. 16 , 034005 (2021).

Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540 , 418–436 (2016).

Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9 , 494–502 (2011).

Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. USA 115 , E1080–E1089 (2018).

Winter, T. C., Harvey, J. W., Franke, O. L. & Alley, W. M. Ground Water and Surface Water: A Single Resource . Circular 1139 (United States Geological Survey, 1998).

Konikow, L. F. Overestimated water storage. Nat. Geosci. 6 , 3 (2013).

Konikow, L. F. Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys. Res. Lett. https://doi.org/10.1029/2011gl048604 (2011).

Pokhrel, Y. N. et al. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci. 5 , 389–392 (2012).

de Graaf, I. E. M. et al. A global-scale two-layer transient groundwater model: development and application to groundwater depletion. Adv. Water Resour. 102 , 53–67 (2017).

Rateb, A. et al. Comparison of groundwater storage changes from GRACE satellites with monitoring and modeling of major U.S. aquifers. Water Resour. Res. https://doi.org/10.1029/2020WR027556 (2020).

de Graaf, I. E. M., Gleeson, T., van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574 , 90–94 (2019).

Sophocleous, M. From safe yield to sustainable development of water resources — the Kansas experience. J. Hydrol. 235 , 27–43 (2000).

Konikow, L. F. & Bredehoeft, J. D. Groundwater Resource Development: Effects and Sustainability (The Groundwater Project, 2020).

MacAllister, D. J., Krishan, G., Basharat, M., Cuba, D. & MacDonald, A. M. A century of groundwater accumulation in Pakistan and northwest India. Nat. Geosci. https://doi.org/10.1038/s41561-022-00926-1 (2022).

Scanlon, B. R. et al. Effects of climate and irrigation on GRACE-based estimates of water storage changes in major US aquifers. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac16ff (2021).

McGuire, V. L. Water-Level and Recoverable Water In Storage Changes, High Plains Aquifer, Predevelopment to 2015 and 2013–15 . US Geological Survey Scientific Investigations Report 2017–5040 (2017); https://doi.org/10.3133/sir20175040

Faunt, C. C. Groundwater availability of the Central Valley Aquifer, California. US Geol. Surv. Prof. Pap . 1766 (2009).

Vorosmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289 , 284–288 (2000).

Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. https://doi.org/10.1126/sciadv.1500323 (2016).

Vorosmarty, C. J. & Sahagian, D. Anthropogenic disturbance of the terrestrial water cycle. Bioscience 50 , 753–765 (2000).

Gronwall, J. & Danert, K. Regarding groundwater and drinking water access through a human rights lens: self-supply as a norm. Water https://doi.org/10.3390/w12020419 (2020).

van Vliet, M. T. H. et al. Global water scarcity including surface water quality and expansions of clean water technologies. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abbfc3 (2021).

Podgorski, J. & Berg, M. Global threat of arsenic in groundwater. Science 368 , 845–850 (2020).

Yapiyev, V., Sagintayev, Z., Inglezakis, V. J., Samarkhanov, K. & Verhoef, A. Essentials of endorheic basins and lakes: a review in the context of current and future water resource management and mitigation activities in Central Asia. Water https://doi.org/10.3390/w9100798 (2017).

Pauloo, R. A., Fogg, G. E., Guo, Z. L. & Harter, T. Anthropogenic basin closure and groundwater salinization (ABCSAL). J. Hydrol. https://doi.org/10.1016/j.jhydrol.2020.125787 (2021).

Cao, T. Z., Han, D. M. & Song, X. F. Past, present, and future of global seawater intrusion research: a bibliometric analysis. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2021.126844 (2021).

Werner, A. D. et al. Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Resour. 51 , 3–26 (2013).

Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19 , 5686–5699 (2006).

Fan, X., Duan, Q. Y., Shen, C. P., Wu, Y. & Xing, C. Global surface air temperatures in CMIP6: historical performance and future changes. Environ. Res. Lett. 15 , 104056 (2020).

Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. https://doi.org/10.1038/s41598-020-70816-2 (2020).

Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368 , 314 (2020).

Arias, P. A. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 33−144 (IPCC, Cambridge Univ. Press, 2021).

van Dijk, A. et al. The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 49 , 1040–1057 (2013).

Scanlon, B. R. et al. Hydrologic implications of GRACE satellite data in the Colorado River Basin. Water Resour. Res. 51 , 9891–9903 (2015).

Rateb, A., Scanlon, B. R. & Kuo, C. Y. Multi-decadal assessment of water budget and hydrological extremes in the Tigris-Euphrates Basin using satellites, modeling, and in-situ data. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144337 (2021).

Anyamba, A., Glennie, E. & Small, J. Teleconnections and interannual transitions as observed in African vegetation: 2015–2017. Remote Sens. https://doi.org/10.3390/rs10071038 (2018).

Scanlon, B. R. et al. Linkages between GRACE water storage, hydrologic extremes, and climate teleconnections in major African aquifers. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac3bfc (2022).

Ul Hassan, W. & Nayak, M. A. Global teleconnections in droughts caused by oceanic and atmospheric circulation patterns. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abc9e2 (2021).

Shen, Z. X. et al. Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia. Nat. Commun. 13 , 1849 (2022).

Dettinger, M. D. Atmospheric rivers as drought busters on the US West Coast. J. Hydrometeorol. 14 , 1721–1732 (2013).

Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3 , 322–329 (2013).

Cuthbert, M. O. et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572 , 230 (2019).

Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592 , 726 (2021).

Zhao, F., Long, D., Li, X., Huang, Q. & Han, P. Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations. Remote. Sens. Environ. 270 , 112853 (2022).

Li, X. Y. et al. Climate change threatens terrestrial water storage over the Tibetan Plateau. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01443-0 (2022).

Yao, T. D. et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-022-00299-4 (2022).

Immerzeel, W. W., van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328 , 1382–1385 (2010).

Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577 , 364 (2020).

Dery, S. J. et al. Detection of runoff timing changes in pluvial, nival, and glacial rivers of western Canada. Water Resour. Res. https://doi.org/10.1029/2008wr006975 (2009).

Siebert, S. et al. Groundwater use for irrigation – a global inventory. Hydrol. Earth Syst. Sci. 7 , 3977–4021 (2010).

Google Scholar  

Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109 , 9320–9325 (2012).

Dahlke, H. E. et al. in Advanced Tools for Integrated Water Resources Management Vol. 3 (eds Friesen, J. & Rodriguez-Sinobas, L.) 215–275 (Elsevier, 2018).

Reddy, V. R., Pavelic, P. & Hanjra, M. A. Underground taming of floods for irrigation (UTFI) in the river basins of South Asia: institutionalising approaches and policies for sustainable water management and livelihood enhancement. Water Policy 20 , 369–387 (2018).

McDonald, R. I., Weber, K. F., Padowski, J., Boucher, T. & Shemie, D. Estimating watershed degradation over the last century and its impact on water-treatment costs for the world’s large cities. Proc. Natl Acad. Sci. USA 113 , 9117–9122 (2016).

The State of the World’s Forests 2020. Forests, Biodiversity, and Peopl e (FAO/UNEP, 2020).

Convention on Wetlands. Global Wetland Outlook: Special Edition 2021 (Secretariat of the Convention on Wetlands, 2021).

Scanlon, B. R., Jolly, I., Sophocleous, M. & Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour. Res. https://doi.org/10.1029/2006WR005486 (2007).

Nosetto, M. D., Paez, R. A., Ballesteros, S. I. & Jobbagy, E. G. Higher water-table levels and flooding risk under grain vs. livestock production systems in the subhumid plains of the Pampas. Agric. Ecosyst. Environ. 206 , 60–70 (2015).

Favreau, G. et al. Land clearing, climate variability, and water resources increase in semiarid southwest Niger: a review. Water Resour. Res. https://doi.org/10.1029/2007wr006785 (2009).

Walker, C. D., Zhang, l, Ellis, T. W., Hatton, T. J. & Petheram, C. Estimating impacts of changed land use on recharge: review of modelling and other approaches appropriate for management of dryland salinity. Hydrogeol. J. 10 , 68–90 (2002).

Nosetto, M. D., Jobbagy, E. G., Jackson, R. B. & Sznaider, G. A. Reciprocal influence of crops and shallow ground water in sandy landscapes of the Inland Pampas. Field Crops Res. 113 , 138–148 (2009).

Gimenez, R., Mercau, J., Nosetto, M., Paez, R. & Jobbagy, E. The ecohydrological imprint of deforestation in the semiarid Chaco: insights from the last forest remnants of a highly cultivated landscape. Hydrol. Process. 30 , 2603–2616 (2016).

Eilers, R. G., Eilers, W. D. & Fitzgerald, M. M. A salinity risk index for soils of the Canadian prairies. Hydrogeol. J. 5 , 68–79 (1997).

Progress on Household Drinking Water, Sanitation and Hygiene 2000–2020: Five Years into the SDGs (WHO/UNICEF, 2021).

Cobbing, J. & Hiller, B. Waking a sleeping giant: realizing the potential of groundwater in sub-Saharan Africa. World Dev. 122 , 597–613 (2019).

Rockström, J. & Falkenmark, M. Agriculture: increase water harvesting in Africa. Nature 519 , 283–285 (2015).

MacAllister, D. J., MacDonald, A. M., Kebede, S., Godfrey, S. & Calow, R. Comparative performance of rural water supplies during drought. Nat. Commun. 11 , 1099 (2020).

Aboah, M. & Miyittah, M. K. Estimating global water, sanitation, and hygiene levels and related risks on human health, using global indicators data from 1990 to 2020. J. Water Health 20 , 1091–1101 (2022).

Abell, R. et al. Beyond the Source: The Environmental, Economic and Community Benefits of Source Water Protection (The Nature Conservancy, 2017).

Herrera-Garcia, G. et al. Mapping the global threat of land subsidence. Science 371 , 34–36 (2021).

Scanlon, B. R., Reedy, R. C., Faunt, C. C., Pool, D. & Uhlman, K. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona. Environ. Res. Lett. 11 , 035013 (2016).

Qadir, M. et al. Global and regional potential of wastewater as a water, nutrient and energy source. Nat. Resour. Forum 44 , 40–51 (2020).

Water Reuse within a Circular Economy Context . Global Water Security Issues Series 2 (UNESCO, 2020).

Jones, E. R., van Vliet, M. T. H., Qadir, M. & Bierkens, M. F. P. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst. Sci. Data 13 , 237–254 (2021).

Jeuland, M. Challenges to wastewater reuse in the Middle East and North Africa. Middle East. Dev. J. 7 , 1–25 (2015).

Zhang, Y. & Shen, Y. Wastewater irrigation: past, present, and future. WIREs Water 6 , e1234 (2019).

Fito, J. & Van Hulle, S. W. H. Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability. Environ. Dev. Sust. 23 , 2949–2972 (2021).

Gao, L., Yoshikawa, S., Iseri, Y., Fujimori, S. & Kanae, S. An economic assessment of the global potential for seawater desalination to 2050. Water https://doi.org/10.3390/w9100763 (2017).

Ahdab, Y. D., Thiel, G. P., Bohlke, J. K., Stanton, J. & Lienhard, J. H. Minimum energy requirements for desalination of brackish groundwater in the United States with comparison to international datasets. Water Res. 141 , 387–404 (2018).

Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V. & Kang, S. M. The state of desalination and brine production: a global outlook. Sci. Total Environ. 657 , 1343–1356 (2019).

Lin, S. S. et al. Seawater desalination technology and engineering in China: a review. Desalination https://doi.org/10.1016/j.desal.2020.114728 (2021).

Martinez-Alvarez, V., Martin-Gorriz, B. & Soto-Garcia, M. Seawater desalination for crop irrigation — a review of current experiences and revealed key issues. Desalination 381 , 58–70 (2016).

Smith, K., Liu, S. M., Hu, H. Y., Dong, X. & Wen, X. H. Water and energy recovery: the future of wastewater in China. Sci. Total Environ. 637 , 1466–1470 (2018).

Pulido-Bosch, A. et al. Impacts of agricultural irrigation on groundwater salinity. Environ/ Earth Sci. https://doi.org/10.1007/s12665-018-7386-6 (2018).

Kurnik, J. The Next California: Phase 1: Investigating Potential in the Mid-Mississippi Delta River Region (The Markets Institute at WWF, 2020); https://www.worldwildlife.org/publications/the-next-california-phase-1-investigating-potential-in-the-mid-mississippi-delta-river-region

Senay, G. B., Schauer, M., Friedrichs, M., Velpuri, N. M. & Singh, R. K. Satellite-based water use dynamics using historical Landsat data (1984–2014) in the southwestern United States. Remote Sens. Environ. 202 , 98–112 (2017).

Gebremichael, M., Krishnamurthy, P. K., Ghebremichael, L. T. & Alam, S. What drives crop land use change during multi-year droughts in California’s Central Valley? Prices or concern for water? Remote Sens. https://doi.org/10.3390/rs13040650 (2021).

Brauman, K. A., Siebert, S. & Foley, J. A. Improvements in crop water productivity increase water sustainability and food security — a global analysis. Environ. Res. Lett. 8 , 024030 (2013).

Mekonnen, M. M., Hoekstra, A. Y., Neale, C. M. U., Ray, C. & Yang, H. S. Water productivity benchmarks: the case of maize and soybean in Nebraska. Agric. Water Manag. https://doi.org/10.1016/j.agwat.2020.106122 (2020).

Colaizzi, P. D., Gowda, P. H., Marek, T. H. & Porter, D. O. Irrigation in the Texas High Plains: a brief history and potential reductions in demand. Irrig. Drain. 58 , 257–274 (2008).

Scanlon, B. R., Gates, J. B., Reedy, R. C., Jackson, A. & Bordovsky, J. Effects of irrigated agroecosystems: (2). Quality of soil water and groundwater in the southern High Plains, Texas. Water Resour. Res. 46 , W09538 (2010).

Ward, F. A. & Pulido-Velazquez, M. Water conservation in irrigation can increase water use. Proc. Natl Acad. Sci. USA 105 , 18215–18220 (2008).

Grafton, R. Q. et al. The paradox of irrigation efficiency. Science 361 , 748–750 (2018).

Alcott, B. in The Jevons Paradox and the Myth of Resource Efficiency Improvements (eds Polimeni, J. M., Mayumi, K., & Giampetro, M.) 7–78 (Earthscan, 2008).

Aarnoudse, E. & Bluemling, B. Controlling Groundwater Through Smart Card Machines: The Case of Water Quotas and Pricing Mechanisms in Gansu Province, China . Groundwater Solutions Initiative for Policy and Practice (GRIPP) Case Profile Series 02 (International Water Management Institute, 2017); https://doi.org/10.5337/2016.224

Kinzelbach, W., Wang, H., Li, Y., Wang, L. & Li, N. Groundwater Overexploitation in the North China Plain: A Path to Sustainability (Springer, 2021).

McDougall, R., Kristiansen, P. & Rader, R. Small-scale urban agriculture results in high yields but requires judicious management of inputs to achieve sustainability. Proc. Natl Acad. Sci. USA 116 , 129–134 (2019).

Langemeyer, J., Madrid-Lopez, C., Mendoza Beltran, A. & Villalba Mendez, G. Urban agriculture — a necessary pathway towards urban resilience and global sustainability? Landsc. Urban Plan. 210 , 104055 (2021).

Palmer, L. Urban agriculture growth in US cities. Nat. Sust. 1 , 5–7 (2018).

Grafius, D. R. et al. Estimating food production in an urban landscape. Sci. Rep. 10 , 5141 (2020).

The State of Food Insecurity in the World 2015 (FAO/IFAD/WFP, 2015).

Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438 , 477–489 (2012).

Gleick, P. H. Global freshwater resources: soft-path solutions for the 21st century. Science 302 , 1524–1528 (2003).

Miralles-Wilhelm, F. Nature-Based Solutions in Agriculture — Sustainable Management and Conservation of Land, Water, and Biodiversity (FAO/The Nature Conservancy, 2021).

McDonald, R. I. & Shemie, D. Urban Water Blueprint: Mapping Conservation Solutions to the Global Water Challenge (The Nature Conservancy, 2014); http://water.nature.org/waterblueprint

Kane, M. & Erickson, J. D. Urban metabolism and payment for ecosystem services: history and policy analysis of the New York city water supply. Adv. Econ. Environ. Resour. 7 , 307–328 (2007).

Greater Cape Town Water Fund: Business Case: Assessing the Return on Investment for Ecological Infrastructure Restoration (The Nature Conservancy, 2019).

Hu, J., Lu, Y. H., Fu, B. J., Comber, A. J. & Harris, P. Quantifying the effect of ecological restoration on runoff and sediment yields: a meta-analysis for the Loess Plateau of China. Prog. Phys. Geogr. Earth Environ. 41 , 753–774 (2017).

Liu, W. W. et al. Improving wetland ecosystem health in China. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2020.106184 (2020).

Cities100: Chennai Is Restoring Waterbodies to Protect Against Flooding and Drought . C40 Knowledge Hub: Nordic Sustainability, South and West Asia, Chennai, Case Studies and Best Practice Examples https://www.c40knowledgehub.org/s/article/Cities100-Chennai-is-restoring-waterbodies-to-protect-against-flooding-and-drought?language=en_US (2019).

Chung, M. G., Frank, K. A., Pokhrel, Y., Dietz, T. & Liu, J. G. Natural infrastructure in sustaining global urban freshwater ecosystem services. Nat. Sust. 4 , 1068 (2021).

Qi, Y. F. et al. Addressing challenges of urban water management in Chinese sponge cities via nature-based solutions. Water https://doi.org/10.3390/w12102788 (2020).

Acreman, M. et al. Evidence for the effectiveness of nature-based solutions to water issues in Africa. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac0210 (2021).

Livneh, B. & Badger, A. M. Drought less predictable under declining future snowpack. Nat. Clim. Change 10 , 452–458 (2020).

Mulligan, M., van Soesbergen, A. & Sáenz, L. GOODD, a global dataset of more than 38,000 georeferenced dams. Sci. Data 7 , 31 (2020).

International Commission on Large Dams https://www.icold-cigb.org/ (2022).

Yang, G., Guo, S., Liu, P. & Block, P. Integration and evaluation of forecast-informed multiobjective reservoir operations. J. Water Resour. Plan. Manag. 146 , 04020038 (2020).

Delaney, C. J. et al. Forecast informed reservoir operations using ensemble streamflow predictions for a multipurpose reservoir in northern California. Water Resour. Res . https://doi.org/10.1029/2019wr026604 (2020).

Amarasinghe, U. A., Muthuwatta, L., Surinaidu, L., Anand, S. & Jain, S. K. Reviving the Ganges water machine: potential. Hydrol. Earth Syst. Sci. 20 , 1085–1101 (2016).

Shamsudduha, M. et al. The Bengal water machine: quantified freshwater capture in Bangladesh. Science 377 , 1315–1319 (2022).

Chao, B. F., Wu, Y. H. & Li, Y. S. Impact of artificial reservoir water impoundment on global sea level. Science 320 , 212–214 (2008).

Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77 , 161–170 (2015).

Zarfl, C. et al. Future large hydropower dams impact global freshwater megafauna. Sci. Rep. https://doi.org/10.1038/s41598-019-54980-8 (2019).

Wheeler, K. G., Jeuland, M., Hall, J. W., Zagona, E. & Whittington, D. Understanding and managing new risks on the Nile with the Grand Ethiopian Renaissance Dam. Nat. Commun. https://doi.org/10.1038/s41467-020-19089-x (2020).

Di Baldassarre, G. et al. Water shortages worsened by reservoir effects. Nat. Sust. 1 , 617–622 (2018).

Dahlke, H. E., Brown, A. G., Orloff, S., Putnam, D. & O’Geen, T. Managed winter flooding of alfalfa recharges groundwater with minimal crop damage. Calif. Agric. 72 , 65–75 (2018).

Yang, Q. & Scanlon, B. R. How much water can be captured from flood flows to store in depleted aquifers for mitigating floods and droughts? A case study from Texas, US. Environ. Res. Lett. 14 , 054011 (2019).

Dillon, P. et al. Sixty years of global progress in managed aquifer recharge. Hydrogeol. J. https://doi.org/10.1007/s10040-018-1841-z. (2018).

Groundwater Replenishment System Technical Brochure, https://www.ocwd.com/media/10443/gwrs-technical-brochure-2021.pdf (2021).

Konikow, L. F. Groundwater Depletion in the United States (1900–2008) . US Geological Survey Scientific Investigation Report 2013–5079, http://pubs.usgs.gov/sir/2013/5079 (2013).

Hartog, N. & Stuyfzand, P. J. Water quality donsiderations on the rise as the use of managed aquifer recharge systems widens. Water 9 , 808 (2017).

Shumilova, O., Tockner, K., Thieme, M., Koska, A. & Zarfl, C. Global water transfer megaprojects: a potential solution for the water–food–energy nexus? Front. Environ. Sci. https://doi.org/10.3389/fenvs.2018.00150 (2018).

Long, D. et al. South-to-north water diversion stabilizing Beijing’s groundwater levels. Nat. Commun. https://doi.org/10.1038/s41467-020-17428-6 (2020).

Zhuang, W. Eco-environmental impact of inter-basin water transfer projects: a review. Environ. Sci. Pollut. Res. 23 , 12867–12879 (2016).

Hoekstra, A. Y. Virtual Water Trade : Proceedings of the International Expert Meeting on Virtual Water Trade (UNESCO-IHE, 2003).

Oki, T. & Kanae, S. Virtual water trade and world water resources. Water Sci. Technol. 49 , 203–209 (2004).

Dolan, F. et al. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. https://doi.org/10.1038/s41467-021-22194-0 (2021).

Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109 , 3232–3237 (2012).

Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543 , 700–704 (2017).

Hanasaki, N., Inuzuka, T., Kanae, S. & Oki, T. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J. Hydrol. 384 , 232–244 (2010).

Mekonnen, M. M. & Gerbens-Leenes, W. The water footprint of global food production. Water https://doi.org/10.3390/w12102696 (2020).

Australian Water Markets Report: 2019-20 Review and 2020-21 Outlook (Aither, 2020); https://aither.com.au/wp-content/uploads/2020/08/2020-Water-Markets-Report.pdf

Grafton, R. Q. & Wheeler, S. A. Economics of water recovery in the Murray–Darling Basin, Australia. Annu. Rev. Resour. Econ. 10 , 487–510 (2018).

Moench, M. Water and the potential for social instability: livelihoods, migration and the building of society. Nat. Resour. Forum 26 , 195–204 (2002).

Water Markets in Australia: A Short History (National Water Commission, 2011).

Kundzewicz, Z. W. & Döll, P. Will groundwater ease freshwater stress under climate change? Hydrol. Sci. J. 54 , 665–675 (2009).

A Snapshot of the World’s Water Quality: Towards a Global Assessment (UNEP, 2016).

Summary Progress Update 2021: SDG 6 — Water and Sanitation for All (UN-Water, 2021).

GEMStat: Global Environmental Monitoring System, https://gemstat.org/ (UNEP, 2022).

Akhmouch, A. & Correia, F. N. The 12 OECD principles on water governance — when science meets policy. Util. Policy 43 , 14–20 (2016).

Lankford, B., Bakker, K., Zeitoun, M. & Conway, B. D. Water Security: Principles, Perspectives, and Practices (Routledge, 2013).

Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3 , 19 (2022).

Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339 , 940–943 (2013).

Download references

Author information

Authors and affiliations.

Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA

Bridget R. Scanlon, Sarah Fakhreddine, Ashraf Rateb, Robert C. Reedy & Alex Sun

Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

Sarah Fakhreddine

Water Systems and Global Change, Wageningen University, Wageningen, The Netherlands

Inge de Graaf

Global Institute for Water Security, National Hydrology Research Center, University of Saskatchewan, Saskatoon, Canada

Jay Famiglietti

Department of Civil Engineering, University of Victoria, Victoria, British Columbia, Canada

Tom Gleeson

Crawford School of Public Policy, Australian National University, Canberra, ACT, Australia

R. Quentin Grafton

Grupo de Estudios Ambientales, IMASL, CONICET, Universidad Nacional de San Luis, San Luis, Argentina

Esteban Jobbagy

Center for Water Resources Research, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu Natal, Durban, South Africa

Seifu Kebede

UK Meteorological Office, Exeter, UK

Seshagiri Rao Kolusu

Leonard Konikow Hydrogeologist, Reston, VA, USA

Leonard F. Konikow

Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Department of Civil, Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA

Mesfin Mekonnen

Institute of Physical Geography, Goethe University Frankfurt, Frankfurt am Main, Frankfurt, Germany

Hannes Müller Schmied

Senckenberg Leibniz Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Frankfurt, Germany

School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India

Abhijit Mukherjee

British Geological Survey, Lyell Centre, Edinburgh, UK

Alan MacDonald

Institute for Risk and Disaster Reduction, University College London, London, UK

Mohammad Shamsudduha

National Centre for Groundwater Research and Training (NCGRT), College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia

Craig T. Simmons

Department of Geography, University College London, London, UK

Richard G. Taylor

Water Cycle Innovation Ltd, Johannesburg, Gauten, South Africa

Karen G. Villholth

Environmental Sciences Initiative, Advanced Science Research Center at the CUNY Graduate Center, New York, NY, USA

Charles J. Vörösmarty

School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China

Chunmiao Zheng

You can also search for this author in PubMed   Google Scholar

Contributions

B.R.S. conceptualized the review and coordinated input. S.F. reviewed many of the topics and developed some of the figures. A.R. analysed GRACE satellite data and M.S. reviewed this output. Q.G. provided input on water economics. E.J. reviewed impacts of land-use change. S.R.K. provided data on future precipitation changes. L.F.K. provided detailed information on surface water/groundwater interactions. M.M. provided data on water trade. C.J.V. provided input on green and grey solutions. All authors reviewed the paper and provided edits.

Corresponding author

Correspondence to Bridget R. Scanlon .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature Reviews Earth & Environment thanks Helen Dahlke, Diana Allen, who co-reviewed with Aspen Anderson, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information, supplementary tables , rights and permissions.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article.

Scanlon, B.R., Fakhreddine, S., Rateb, A. et al. Global water resources and the role of groundwater in a resilient water future. Nat Rev Earth Environ 4 , 87–101 (2023). https://doi.org/10.1038/s43017-022-00378-6

Download citation

Accepted : 17 November 2022

Published : 31 January 2023

Issue Date : February 2023

DOI : https://doi.org/10.1038/s43017-022-00378-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Severe magnitude of dental and skeletal fluorosis and its impact on society and environment in a part of manbhum-singhbhum plateau, india.

  • Arijit Ghosh
  • Soumyajit Patra
  • Biswajit Bera

BMC Public Health (2024)

Rapid groundwater decline and some cases of recovery in aquifers globally

  • Scott Jasechko
  • Hansjörg Seybold
  • James W. Kirchner

Nature (2024)

Majority of global river flow sustained by groundwater

  • Xiaomang Liu
  • Sujan Koirala

Nature Geoscience (2024)

Winter snow deficit was a harbinger of summer 2022 socio-hydrologic drought in the Po Basin, Italy

  • Francesco Avanzi
  • Francesca Munerol
  • Luca Ferraris

Communications Earth & Environment (2024)

Moving from fit to fitness for governing water in the Anthropocene

  • Michele-Lee Moore
  • Lan Wang-Erlandsson
  • Shuchi Vora

Nature Water (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

case study of water resources

U.S. flag

An official website of the United States government

Here's how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Home

  •   Facebook
  •   Twitter
  •   Linkedin
  •   Digg
  •   Reddit
  •   Pinterest
  •   Email

Latest Earthquakes |    Chat Share Social Media  

Evolving issues and practices in managing ground-water resources: Case studies on the role of science

Hydrologic stresses throughout the 20th century and presently (2003) have caused the depletion and degradation of our Nation’s vital ground-water resources in many areas. Management strategies have been and are being implemented to optimize use of our ground-water resources with respect to achieving sustainability while mitigating the consequences of future withdrawals. The seven case studies presented herein show how the U.S. Geological Survey (USGS) in cooperation with local, State and other Federal agencies, as well as the private sector, have addressed some of the complexities of ground-water management using scientifically-based hydrologic studies and hydrologic monitoring. It is clear that the managed conjunctive use of our combined ground-water and surface-water supplies, and the artificial recharge of our ground-water systems present both challenges and opportunities. How well we manage these options depends upon best science practices, improved understanding of the resources, and the informed consensus of all stakeholders.

Citation Information

Publication Year 2003
Title Evolving issues and practices in managing ground-water resources: Case studies on the role of science
DOI
Authors Devin L. Galloway, William M. Alley, Paul M. Barlow, Thomas E. Reilly, Patrick Tucci
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Circular
Series Number 1247
Index ID
Record Source
USGS Organization Ohio-Kentucky-Indiana Water Science Center

Related Content

Devin lynn galloway, scientist emeritus, paul barlow (former employee), chief, hydrologic interpretive branch.

Content Search

Case study: strengthening a city's water resources and flood management capacity.

Keeping a city safe from flood and waterborne diseases requires a holistic approach to water resources management.

The protection of water resources is necessary for sustainable economic growth and better living conditions in cities. This is what the residents of Jiaozhou, a city in the People’s Republic of China, realized in the late 1990s when they started experiencing flooding and a high incidence of waterborne diseases.

The city government had already implemented water conservation and management projects, such as centralized wastewater treatment. However, they recognized the need to further improve their environmental management strategies to sustain their initial efforts.

A project supported by the Asian Development Bank (ADB) helped Jiaozhou take an integrated water management approach to reduce pollution and sustain river and coastal ecosystems.

Project information

  • 40017-013: China, People's Republic of: Qingdao Water Resources and Wetland Protection

Jiaozhou, one of the five county-cities of Qingdao municipality, lies above Jiaozhou Bay, southeast of Shandong Peninsula. Qingdao (dubbed as “Eastern Switzerland”) surrounds Jiaozhou Bay in the Yellow Sea. This city has experienced rapid economic growth, averaging about 20% per annum in real terms since 2004, well above the national average. In 2007, the city’s population was 891,800—estimated to be increasing at an average annual rate of 1.12%. Rapid growth has resulted in considerable environmental stresses which threatened to erode progress in the area.

Development Challenges

Jiaozhou has faced flooding every 3 years, costing the city an average of more than CNY200 million (about US$28.7 million) in damages. The rate of waterborne diseases due to untreated wastewater and poor sanitation in the city is above the national average.

Jiaozhou Bay’s wetlands are seriously degraded, deteriorating by about 0.9% every year. These coastal wetlands are the most important marine ecosystem in the Qingdao coastal region and the Shandong Peninsula. They provide breeding grounds for fish and shellfish and temporary shelter for migratory birds. They are also important for coastal biodiversity preservation, nutrients absorption to prevent eutrophication in the bay, and flood and coastal protection—which is increasingly significant to coastal cities as sea levels continue to rise as a result of global warming.

Moreover, water management efforts were fragmented. Strategies and implementation activities were uncoordinated as the different tasks (water supply, wastewater management, and drainage) associated with water management were handled by different agencies.

Through the ADB-funded Qingdao Water Resources and Wetland Protection Project , Jiaozhou City adopted a holistic and integrated approach to water management of river basins and coastal zones, reduced land-based pollution sources particularly from industrial and urban sources, and reformed institutional and financial management to facilitate sustainable environmental management.

Reduced flooding and more sustainable flood management

The project aimed to integrate water and ecosystem management through structural and non-structural measures. Through the project, 18.4 km of river courses were rehabilitated through river dredging, embankment works, and greening (Yunxi River 8.3 km, Hucheng River 3.9 km, Wushui River 3.2 km, and Hucheng River branch 3.0 km). A river monitoring and administration center was established to provide data on water quality and real-time river flow to facilitate the operation of control gates for flood prevention. The Erli'he flood retention facilities were upgraded from 0.20 million cubic meters (m3) to 0.80 million m3. Storm sewerage facilities comprising 11.4 km were also constructed. The water quality of the rivers within Jiaozhou City has improved compared to pre-project levels. The operation and maintenance of the river works is the responsibility of the Jiaozhou City Construction Bureau. The city government levies a flood control management fee on all enterprises in the city, and this, together with wastewater collection fees are more than adequate to cover the operation and maintenance costs of the infrastructure constructed under the project.

Riverbank walkways, cycle paths, and other public amenity areas were constructed. Riverbank greening was also implemented. These complemented the rehabilitation of river embankments transforming the area into a place of interest in the urban city.

The project protected over 480,000 residents from flooding and associated loss of assets and livelihoods and hazards resulting from poor drainage.

Improvements in the project area led to an increase in the construction or improvement of residential and commercial buildings, influx of people, more business activities, and higher land and property value

Reduced water pollution and improved wastewater management

Interceptor sewers, 27.7 km long along river embankments, were installed to collect and transport sewerage to the existing wastewater trunk sewerage system (15.9 km along the embankments of the Yunxi River, Hucheng River, and Hucheng River tributaries, plus 11.8 km expanding the existing trunk sewerage system). In addition, a 1.7 km interceptor sewer was constructed on the Hucheng River branch.

The project incorporated a public-private partnership (PPP) model in wastewater treatment through a build-operate-transfer (BOT) arrangement with a 20-year contract. Wastewater services were also converted into commercial companies. This expanded the capacity of the existing wastewater treatment plant from 50,000 m3 to 100,000 m3. The treatment level was upgraded from class II to class IB and adapted to treat stormwater flows. This improved the water quality in the local river systems.

Improved wastewater and sewage treatment contributed to better sanitation. According to the Jiaozhou City Center for Disease Control and Prevention, the incidence of water-borne diseases decreased by 96% from 0.2888 per 10,000 people in 2008 to 0.01142 per 10,000 people in 2016 because of the project.

Moreover, the project reduced the extent of environmental degradation in the coastal wetlands. An assessment in 2018 revealed that 72% of Jiaozhou Bay has improved its water quality⁠—6 percentage points higher than 2015’s.

Improved capacity for integrated water and ecosystem management

Aside from flood protection infrastructure, artificial wetlands (Shaohai National Wetland Park, Erle’hi River Southwest Wetland Park, Yunxi Downstream Wetland Park) were constructed to enhance the coastal ecosystem. A Handbook for the Shaohai Lake Ecosystem Management and Operation was developed to help the Shaohai Lake Management Office in their monitoring efforts.

An integrated information system for flood, water, and wastewater management was also launched in 2017.

Staff from the city government and project management office were trained on environmental protection and management and flood control. The same training was conducted for 413 participants from 9 villages, of which 161 (39%) were men and 252 (61%) were women. Likewise, public awareness and consultation were held in 8 villages with 196 participants, of which 73 (37%) were men and 123 (63%) were women.

The path to sustainable cities requires an integrated approach to water resources and environmental protection. Though it is an internationally accepted framework, this approach in practice has plenty of room for innovation. One is involving the people who benefited from project outcomes in the operation and recovery of costs for new investments.

Having reliable projections about local development scenarios based on careful project planning and analysis can help local governments in maximizing the potential of a water resource or environmental management investment particularly in fast-growing areas like Qingdao.

ADB. 2008. Report and Recommendation of the President to the Board of Directors: Proposed Loan to the People’s Republic of China for the Qingdao Water Resources and Wetland Protection Project . Manila.

ADB. 2019. Completion Report: Qingdao Water Resources and Wetland Protection Project in the People’s Republic of China . Manila.

Ask the Expert

Rabindra P. Osti

Senior Water Resources Specialist, East Asia Department, Asian Development Bank

Mr. Osti has been working on water-related projects at ADB’s East Asia Department since 2015. Prior to his current role, he worked as a consultant for some of World Bank’s South Asia, South-East Asia, and East Asia projects. He also served in various capacities for the United Nations.

Related Content

China + 3 more

Elevating River Basin Governance and Cooperation in the HKH region: Summary Report I, Yarlung-Tsangpo-Siang-Brahmaputra-Jamuna River Basin

Disaster management reference handbook (april 2022) - northeast asia, climate risk country profile - china.

China + 15 more

UNICEF East Asia and Pacific Region - Novel Coronavirus (COVID-19) Situation Report No. 6 (Reporting Period: 25 April – 8 May)

Case for Case Studies in Water Resources Planning and Management Education

  • Journal of Water Resources Planning and Management 133(2)

David W Watkins at Michigan Technological University

  • Michigan Technological University

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

David Pulido-velazquez

  • Alok Bhandari

L. E. Erickson

  • J. P. Mohsen
  • Benjamin S. Bloom
  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

COMMENTS

  1. Full article: Water resources systems analysis through case studies

    The presented case studies include the following eight water resources engineering problems: analysis of combined sewer overflow, flood control, agricultural water supply, water quality management, complex water resources management policy analysis, water dispute resolution, urban water management, reservoir management and rural water supply.

  2. PDF Cases in Water Conservation

    Summary of Conservation Case Studies. water rates, a public education program, a high-efficiency plumbing program, landscaping programs, and large-use programs. drawdown so that the level of water demand should stay constant until 2005. Peak demand is down 14% from 1990.

  3. PDF Case Study: Water Resource Planning and Natural Resource Management

    STEP 2: CONVENE STAKEHOLDERS AND DEVELOP A PLAN FORWARD. Stratus Consulting, who managed this pilot study, worked with Matji and Associates to convene stakeholders from national and regional government and the Watergy program to discuss potential future impacts (through 2050) of climate change on the Olifants Basin, a major local water resource.

  4. Water management: Current and future challenges and research directions

    Water Resources Research is an AGU hydrology journal publishing original research articles and commentaries on hydrology, water resources, and the social sciences of water. ... Fortunately studies of the role of water in ecosystems are improving our ability to value it and to understand large scale, ... This is particularly the case with IWRM ...

  5. PDF Case study: Integrated Water Resources Management in Myanmar

    Case study: Integrated Water Resources Management in Myanmar Speaker: Htun Lwin Oo ... abundant water resources and cultivable land, and favorable climate. Myanmar is a forest-

  6. Water resource management: IWRM strategies for improved water ...

    Objective The analytical study systematically reviewed the evidence about the IWRM strategy model. The study analysed the IWRM strategy, policy advances and practical implications it had, since inception on effective water management in East, West and Southern Africa. Methods The study adopted the Preferred Reporting Items for Systematic Review and Meta-analysis Protocols (PRISMA-P) and the ...

  7. PDF Case Studies in Integrated Water Resources Management

    Source: GWP Technical Committee (2005, p. 19-22). Figure 2 Map of the Case Studies. Management instruments include: (1) assessing water resources availability and needs, (2) developing IWRM plans that balance economic, social and environmental needs, (3) implementing water efficiency measures to control demand,

  8. Integrated water resources management

    Five case studies from around the world - 1) Vanuatu, 2) Lower Mekong River Basin (shared by Cambodia, Laos, Thailand and Viet Nam), 3) Uruguay and 4) North Darfur (Sudan) and 5) Amazon Basin - showcase the importance of aligning integrated water resources management (IWRM) and climate change adaptation (CCA) measures in order to build environmental, social and economic resilience to the ...

  9. Water Resources Systems Analysis through Case Studies

    Abstract. Water Resources Systems Analysis through Case Studies: Data and Models for Decision Making consists of 10 case studies suitable for the classroom to demonstrate engineers' use of widely available modeling software in evaluating complex environmental and water resources systems. Simulation and optimization models, visualization tools ...

  10. Sustainable Water Resources Management, Volume 3: Case Studies on a New

    The report uses examples and perspectives from two case study communities (Tucson/Pima County, Arizona and Northern Kentucky) to offer real world context. Published by Electric Power Research Institute (EPRI). 172 pages. ... This study, the third phase of the Sustainable Water Resources Management project, created a platform for communities to ...

  11. Water Resources Planning and Management: An Overview

    Water resource systems have benefited both people and their economies for many centuries. The services provided by such systems are multiple. ... Case studies in integrated water resources management: From local stewardship to national vision. American Water Resources Association Policy Committee, 4 West Federal Street, P.O. Box 1626 ...

  12. Integrated Water Resources Management (IWRM)

    Integrated Water Resources Management (IWRM). ... supply and in many more regions that is the case at critical times of the year or in years of low water availability. ... case studies showing ...

  13. Case studies • Integrated Water Resource Management

    In this chapter several case studies of IWRM-projects from different areas of the world are presented. Every project focusses on various aspects regarding to the specific conditions and problems occur. Some of the shown studies are very comprehensive (e.g. SMART or CuveWaters), thus only short overviews of the activities and measures applied ...

  14. Global water resources and the role of groundwater in a ...

    When degraded surface water quality was included in water scarcity studies, the global population affected by water scarcity increased from 30% to 40% in one study 45 and from 33% to 65% in ...

  15. PDF Case Studies in EWRS web

    INTRODUCTION. An attractive approach to the development of case studies for use in a course in environmental and water resource systems (EWRS) involves the use of existing journal articles and textbook chapters which contain enough information for a student to reproduce the study within the context of a typical semester project.

  16. Case study: Innovative Water Resource Management Mechanism in Rural

    The community participation in irrigation water resource management proved to be suitable for small scale farms. It still needs to be tested in medium and large agriculture schemes. Significance of this case to IWRM This case indicates that the direct involvement of water users will result in rational use of water resources.

  17. Case Studies

    Resources. Case Studies. Innovation Resources. Technology Deliverables. Topics. Column. Advanced Treatment. ... Our cutting-edge research builds a body of science with direct, actionable results. View the case studies below to learn more. Subscriber ... Distributed Water Case Studies. Case Study. 09/16/2020. 09/16/2020. View All. 6666 W. Quincy ...

  18. PDF Ecosystem Approaches in Integrated Water Resources Management

    transboundary watershed managers focus on an IWRM framework that looks at traditional water resources such as water quantity, navigation, and hydropower. This is evident from this review of seven case studies of prominent transboundary basins in which IWRM commitments are being implemented.

  19. 5 Case Studies

    Ground water protection programs in Florida are implemented at federal, state, regional, and local levels and involve both regulatory and nonregulatory approaches. The most significant nonregulatory effort involves more than 30 ground water studies being conducted in collaboration with the Water Resources Division of the U.S. Geological Survey.

  20. Evolving issues and practices in managing ground-water resources: Case

    The seven case studies presented herein show how the U.S. Geological Survey (USGS) in cooperation with local, State and other Federal agencies, as well as the private sector, have addressed some of the complexities of ground-water management using scientifically-based hydrologic studies and hydrologic monitoring.

  21. PDF Case Studies on Water Resource Planning

    The report is primarily intended for water resource professionals and decision-makers in developing countries who are responsible for reforms in national/regional water sectors and for planning and management of water resources. 1.3 The case study countries/regions Four developing countries/regions were selected for study, namely: • Zimbabwe

  22. Case Study: Strengthening a City's Water Resources and ...

    The protection of water resources is necessary for sustainable economic growth and better living conditions in cities. This is what the residents of Jiaozhou, a city in the People's Republic of ...

  23. Case for Case Studies in Water Resources Planning and ...

    Case for Case Studies in Water Resources Planning and Management Education. March 2007. Journal of Water Resources Planning and Management 133 (2) DOI: 10.1061/ (ASCE)0733-9496 (2007)133:2 (93 ...

  24. PDF IUWM Case Studies

    IUWM Case Studies Page 3 of 28 Introduction ajasthan covers 10.5% of the country's geographical area, but has only 1.16% of its water resources. It is the driest state, with nearly 70% of the area classified as arid or semi-arid. The state has always been a water-deficit area. It receives an average

  25. Case for Case Studies in Water Resources Planning and Management

    Business, law, and medical education have long traditions of using real or simulated case studies to teach students. The Harvard Business School is widely noted for pioneering the case method of instruction (Christensen 1986), and the college now develops approximately 350 cases each year for business courses worldwide.A typical business student may be exposed to as many as 500 cases in an MBA ...