• Published on May 29, 2023
  • May 29, 2023

What Part of the Brain Controls Thinking? Here’s How It Affects You

A man working on his laptop to show what part of the brain controls thinking

Jump to section

Rapid Transformational Hypnotherapy for Abundance

With more than 86 billion functional neurons, the brain is the most complex organ in the human body that deals with thinking. It controls everything it does and thinks.

In other words, it’s the “boss of your body.” So, many people wonder, “What part of the brain controls thinking?”

The thing is, this particular organ plays such a crucial role in our whole system. It develops functions for the five senses: sight, sound, touch, taste, and hearing. And it helps primary functions such as breathing, talking, storing memories, and thinking.

It’s our most precious gift, according to Jim Kwik , international brain coach and trainer of Mindvalley’s Superbrain Quest. Why? Simply because it’s what “ allows us to learn, love, think, create, and even to experience joy. ”

Not only that, it’s “ the gateway to our emotions, to our capacity for deeply experiencing life, to our ability to have lasting intimacy ,” as well as helping us innovate, grow, and accomplish. 

Which Part of the Brain Controls Thinking?

The brain consists of three main parts:

  • The cerebrum. It’s the outer part of the brain, which consists of the frontal, parietal, temporal, and occipital lobes.
  • The cerebellum. It’s located at the bottom of the brain, near the back of your head.  
  • The brain stem. This third part is located beneath the cerebrum and in front of the cerebellum in the brain stem.

Parts of the brain that controls thinking

These three parts control processes in the body, including movement, memory, and thinking.

The role of the cerebrum

The cerebrum makes up more than 85% of the brain’s weight. It’s the part of the brain that controls daily activities such as reading, learning, and speech. It also assists planned muscle movements such as walking, running, and body movement.

The cerebrum is the thinking part of the brain. It helps you play chess, solve a crossword puzzle, or figure out your next move in a complex video game.

The cerebrum has two hemispheres—the left hemisphere and the right hemisphere. Each hemisphere controls the opposite side of the body. 

The two hemispheres have four sections called lobes—frontal, parietal, occipital, and temporal. Each of these lobes controls specific aspects of the thinking process.

The role of the cerebellum

If the brain is a super-efficient, bustling office complex, the cerebellum is the office’s facilities manager, maintaining the heartbeat of operations.

It works behind the scenes, taking care of fine motor movements, balance, and coordination. You know, the day-to-day tasks, like making sure you can navigate through your house without bumping into furniture or helping you catch a football mid-air on a Sunday afternoon.

Although it isn’t directly involved in thinking, the cerebellum plays an important role in this process. This part of the brain takes up to 10% of its total volume yet contains more than half of all the neurons in the brain.

Scientists have discovered that the “unconscious” cerebellum interacts with the “conscious” cerebrum to perform functions. The cerebellum carries out planned muscle movements such as running and jumping. That’s why sometimes scientists call it the “thinking cerebellum.”

Research nowadays suggests that the cerebellum is a key player in predicting our emotional reactions. The study found that “the cerebellum, which was initially considered to be mainly involved in motor coordination and execution, is now recognized as an associative center for higher cognitive and emotional functions even in the developing brain.”

The brainstem

Tucked away at the base of our brain is the brainstem. It connects the brain to the spinal cord and holds the reins of many automatic, essential bodily functions.

Here’s one way to look at it: Imagine your body as a busy city. The brainstem, then, would be akin to its efficient and diligent city hall, managing essential services like heart rate, breathing, and blood pressure. 

These are our body’s critical life-support systems, running constantly in the background, much like a city’s water and power supply.

The brainstem also acts as a vital communication highway, ferrying messages between the brain and the rest of the body. It’s a bit like the city’s central post office, handling the constant flow of information to and from various parts of the body.

Within its compact structure, the brainstem houses numerous nuclei involved in different functions and relaying sensory information. It’s also where cranial nerves originate, controlling functions from eye movement to facial sensations and movements.

Other Brain Regions You Should Know About

Different brain activities are linked to different parts of the brain. Here are a few of the main ones explained:

Which part of the brain controls critical thinking?

When it comes to which part of the brain controls critical thinking and intelligence, we have to consider that the prefrontal cortex, anterior cingulate cortex, and parietal lobe work together like a highly trained Olympic relay team. 

Each player has its own role: the prefrontal cortex in decision-making, the anterior cingulate cortex in conflict detection, and the parietal lobe in information processing. Understanding this synchrony can unlock our true critical thinking potential. 

Which part of the brain controls memory?

When it comes to the art of memory, we turn our attention to the hippocampus. 

Nestled deep within the brain, this small region takes on the monumental task of memory formation and recall. It stores information of past experiences and opens up the space to create new ones.

Learn more: What Part of the Brain Controls Memory?

Which part of the brain controls breathing?

Breathe in, breathe out—a simple act that sustains life and is meticulously regulated by the medulla oblongata in our brainstem.

This unsung hero of our nervous system ensures the continuity of this essential function, similar to the ceaseless rhythm of the ocean tides. Acknowledging its role can help us appreciate the fascinating intricacies of our bodies.

Learn more: What Part of the Brain Controls Breathing?

Which part of the brain deals with emotions?

Now, you know which parts of the brain control thinking and memory. But what about our emotions?

All positive and negative emotions and spontaneous feelings, from excitement to sadness, are processed in the limbic system. This system controls your emotions and interacts with other parts of the brain. 

At the same time, another part of the brain called the amygdala handles emotional reactions such as love, hate, and sexual desire.

Learn more: The Anatomy of Feelings: What Part of the Brain Controls Emotions?

Woman reading a book to show which part of the brain controls thinking

Unleash Your Superbrain

With centuries of research, the human brain remains the biggest mystery in the world. It is the most complex part of the body and controls movement, sight, and thinking. And of course, it’s the part of our system that’s most closely related to our minds. 

And as Jim says, “We need to understand how our minds work so we can work our minds better.” 

If you need some guidance to start unlocking your superbrain and mind, Mindvalley is the place to be. With transformational quests such as Superbrain , guided by Jim Kwik, you’ll master your mind’s functions in no time. And you can embark on a journey of:

  • Techniques for supercharging your memory, focus, and learning capacity
  • The most beneficial brain diet
  • How to clear your mind of unwanted thoughts
  • How to transform the way your brain is wired
  • Achieving top performance when learning

By unlocking your free access , you can sample classes from this program and many others. All you have to do is open your mind to your greatest potential. And don’t be afraid to take the first step.

Welcome in.

Take the next step: enroll for free

what part of brain is critical thinking

Discover Powerful Hacks to Unlock Your Superbrain to Learn Faster, Comprehend More and Forget Less

Join the foremost expert in memory improvement and brain performance, Jim Kwik, in a free masterclass that will dive into the one skill you will ever need — learning how to learn Enroll for free

' src=

Alexandra Tudor

Picture of Alexandra Tudor

Jim Kwik is a brain coach and a world expert in speed reading, memory improvement, and optimal brain performance.

Known as the “boy with the broken brain” due to a childhood injury, Jim discovered strategies to dramatically enhance his mental performance.

He is now committed, through programs like Mindvalley’s Superbrain and Speed Reading Quest , to helping people improve their memory, learn to speed-read, increase their decision-making skills, and turn on their superbrain.

He has also shared his techniques with Hollywood actors, Fortune 500 companies, and trailblazing entrepreneurs like Elon Musk and Richard Branson to reach their highest level of mental performance. He is also one of the most sought-after trainers for top organizations like Harvard University, Nike, Virgin, and GE.

How we reviewed this article

2020 study: the cerebellum’s role in movement and cognition, consensus paper: the cerebellum’s role in movement and cognition, you might also like.

A living room using feng shui to remove negative energy

Get Started

  • Try Mindvalley for Free
  • Free Masterclasses
  • Coaching Certifications
  • Vishen Lakhiani
  • The Mindvalley Show
  • Partnerships
  • In English 🇺🇸
  • En Español 🇪🇸
  • Editorial Standards
  • © 2024 Mindvalley, Inc.
  • English (EN)

Fact-Checking: Our Process

Mindvalley is committed to providing reliable and trustworthy content. 

We rely heavily on evidence-based sources, including peer-reviewed studies and insights from recognized experts in various personal growth fields. Our goal is to keep the information we share both current and factual. 

The Mindvalley fact-checking guidelines are based on:

  • Content Foundation: Our articles build upon Mindvalley’s quest content, which are meticulously crafted and vetted by industry experts to ensure foundational credibility and reliability.
  • Research and Sources: Our team delves into credible research, ensuring every piece is grounded in facts and evidence, offering a holistic view on personal growth topics.
  • Continuous Updates: In the dynamic landscape of personal development, we are committed to keeping our content fresh. We often revisit and update our resources to stay abreast of the latest developments.
  • External Contributions: We welcome insights from external contributors who share our passion for personal transformation and consciousness elevation.
  • Product Recommendations and Affiliations: Recommendations come after thoughtful consideration and alignment with Mindvalley’s ethos, grounded in ethical choices.

To learn more about our dedication to reliable reporting, you can read our detailed editorial standards .

what part of brain is critical thinking

Which Part of the Brain is Related to Critical Thinking?

Which Part of the Brain is Related to Critical Thinking?

The brain is a complex organ divided into many, many different regions and subregions. While we are far from understanding the brain’s functions completely, we do know that some regions are responsible, or at least primarily responsible, for certain things.

A Little Anatomy: Regions of The Brain

The brain is divided into four lobes: The frontal, temporal, parietal, and occipital lobes. It is important to remember that the brain consists of a left and right side, or hemisphere, so there is a left and right temporal lobe, occipital lobe, and so on.

Functions of The Brain’s Regions

The big divisions of the brain into lobes contain a lot of different structures, each with their own names. The important one for now is the PFC, which is located in the very anterior (or forward-facing) portion of the frontal lobe. As a whole, the frontal lobe is responsible for higher-order cognition, including critical thinking, responding appropriately in social situations, and so much more.

But how do we know the PFC is responsible for critical thinking?

Learning About The Brain’s Functions

There are a few ways scientists can determine which areas of the brain control what functions. One way is to conduct a research study by which participants complete various tasks while undergoing brain imaging. The imaging can show which regions were most active while the participant performed certain tasks.

Another way is to conduct similar tests for people who have suffered brain damage. This damage might be from a stroke, brain tumor, trauma, or other injury. It could even be due to prior brain surgery that required removing a certain part of the brain.

In other words, critical thinking is not really a single activity. It can be about choosing an appropriate response in a social scenario just as much as it can be about taking a math test and using reasoning to determine the best way to solve an equation.

Translational Research

Translational research is research done on non-humans that are meant to apply to, or translate to, human beings, at least somewhat. Mice and rats are often used for this type of research, but other non-human animals can be and are used as well.

There are plenty of research studies on executive functioning that combine cognitive tasks with brain imaging to narrow down which regions are most active during a given task. These studies, especially in people who have suffered damage to their PFC, have shown us that the  PFC plays a primary role in critical thinking because when the PFC is damaged, executive functioning diminishes greatly or is absent completely.

Research on both humans and non-human animals has been done, and all point to the importance of the PFC in critical thinking.

https://mayfieldclinic.com/pe-anatbrain.htm

You may also like

Enhancing critical listening skills: techniques for effective comprehension, the future of critical thinking: trends and predictions for 2023 and beyond, divergent vs convergent thinking – what are they and how are they different, critical thinking vs lateral thinking, download this free ebook.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

Logo of jintell

Critical Thinking: A Model of Intelligence for Solving Real-World Problems

Diane f. halpern.

1 Department of Psychology, Claremont McKenna College, Emerita, Altadena, CA 91001, USA

Dana S. Dunn

2 Department of Psychology, Moravian College, Bethlehem, PA 18018, USA; ude.naivarom@nnud

Most theories of intelligence do not directly address the question of whether people with high intelligence can successfully solve real world problems. A high IQ is correlated with many important outcomes (e.g., academic prominence, reduced crime), but it does not protect against cognitive biases, partisan thinking, reactance, or confirmation bias, among others. There are several newer theories that directly address the question about solving real-world problems. Prominent among them is Sternberg’s adaptive intelligence with “adaptation to the environment” as the central premise, a construct that does not exist on standardized IQ tests. Similarly, some scholars argue that standardized tests of intelligence are not measures of rational thought—the sort of skill/ability that would be needed to address complex real-world problems. Other investigators advocate for critical thinking as a model of intelligence specifically designed for addressing real-world problems. Yes, intelligence (i.e., critical thinking) can be enhanced and used for solving a real-world problem such as COVID-19, which we use as an example of contemporary problems that need a new approach.

1. Introduction

The editors of this Special Issue asked authors to respond to a deceptively simple statement: “How Intelligence Can Be a Solution to Consequential World Problems.” This statement holds many complexities, including how intelligence is defined and which theories are designed to address real-world problems.

2. The Problem with Using Standardized IQ Measures for Real-World Problems

For the most part, we identify high intelligence as having a high score on a standardized test of intelligence. Like any test score, IQ can only reflect what is on the given test. Most contemporary standardized measures of intelligence include vocabulary, working memory, spatial skills, analogies, processing speed, and puzzle-like elements (e.g., Wechsler Adult Intelligence Scale Fourth Edition; see ( Drozdick et al. 2012 )). Measures of IQ correlate with many important outcomes, including academic performance ( Kretzschmar et al. 2016 ), job-related skills ( Hunter and Schmidt 1996 ), reduced likelihood of criminal behavior ( Burhan et al. 2014 ), and for those with exceptionally high IQs, obtaining a doctorate and publishing scholarly articles ( McCabe et al. 2020 ). Gottfredson ( 1997, p. 81 ) summarized these effects when she said the “predictive validity of g is ubiquitous.” More recent research using longitudinal data, found that general mental abilities and specific abilities are good predictors of several work variables including job prestige, and income ( Lang and Kell 2020 ). Although assessments of IQ are useful in many contexts, having a high IQ does not protect against falling for common cognitive fallacies (e.g., blind spot bias, reactance, anecdotal reasoning), relying on biased and blatantly one-sided information sources, failing to consider information that does not conform to one’s preferred view of reality (confirmation bias), resisting pressure to think and act in a certain way, among others. This point was clearly articulated by Stanovich ( 2009, p. 3 ) when he stated that,” IQ tests measure only a small set of the thinking abilities that people need.”

3. Which Theories of Intelligence Are Relevant to the Question?

Most theories of intelligence do not directly address the question of whether people with high intelligence can successfully solve real world problems. For example, Grossmann et al. ( 2013 ) cite many studies in which IQ scores have not predicted well-being, including life satisfaction and longevity. Using a stratified random sample of Americans, these investigators found that wise reasoning is associated with life satisfaction, and that “there was no association between intelligence and well-being” (p. 944). (critical thinking [CT] is often referred to as “wise reasoning” or “rational thinking,”). Similar results were reported by Wirthwein and Rost ( 2011 ) who compared life satisfaction in several domains for gifted adults and adults of average intelligence. There were no differences in any of the measures of subjective well-being, except for leisure, which was significantly lower for the gifted adults. Additional research in a series of experiments by Stanovich and West ( 2008 ) found that participants with high cognitive ability were as likely as others to endorse positions that are consistent with their biases, and they were equally likely to prefer one-sided arguments over those that provided a balanced argument. There are several newer theories that directly address the question about solving real-world problems. Prominent among them is Sternberg’s adaptive intelligence with “adaptation to the environment” as the central premise, a construct that does not exist on standardized IQ tests (e.g., Sternberg 2019 ). Similarly, Stanovich and West ( 2014 ) argue that standardized tests of intelligence are not measures of rational thought—the sort of skill/ability that would be needed to address complex real-world problems. Halpern and Butler ( 2020 ) advocate for CT as a useful model of intelligence for addressing real-world problems because it was designed for this purpose. Although there is much overlap among these more recent theories, often using different terms for similar concepts, we use Halpern and Butler’s conceptualization to make our point: Yes, intelligence (i.e., CT) can be enhanced and used for solving a real-world problem like COVID-19.

4. Critical Thinking as an Applied Model for Intelligence

One definition of intelligence that directly addresses the question about intelligence and real-world problem solving comes from Nickerson ( 2020, p. 205 ): “the ability to learn, to reason well, to solve novel problems, and to deal effectively with novel problems—often unpredictable—that confront one in daily life.” Using this definition, the question of whether intelligent thinking can solve a world problem like the novel coronavirus is a resounding “yes” because solutions to real-world novel problems are part of his definition. This is a popular idea in the general public. For example, over 1000 business managers and hiring executives said that they want employees who can think critically based on the belief that CT skills will help them solve work-related problems ( Hart Research Associates 2018 ).

We define CT as the use of those cognitive skills or strategies that increase the probability of a desirable outcome. It is used to describe thinking that is purposeful, reasoned, and goal directed--the kind of thinking involved in solving problems, formulating inferences, calculating likelihoods, and making decisions, when the thinker is using skills that are thoughtful and effective for the particular context and type of thinking task. International surveys conducted by the OECD ( 2019, p. 16 ) established “key information-processing competencies” that are “highly transferable, in that they are relevant to many social contexts and work situations; and ‘learnable’ and therefore subject to the influence of policy.” One of these skills is problem solving, which is one subset of CT skills.

The CT model of intelligence is comprised of two components: (1) understanding information at a deep, meaningful level and (2) appropriate use of CT skills. The underlying idea is that CT skills can be identified, taught, and learned, and when they are recognized and applied in novel settings, the individual is demonstrating intelligent thought. CT skills include judging the credibility of an information source, making cost–benefit calculations, recognizing regression to the mean, understanding the limits of extrapolation, muting reactance responses, using analogical reasoning, rating the strength of reasons that support and fail to support a conclusion, and recognizing hindsight bias or confirmation bias, among others. Critical thinkers use these skills appropriately, without prompting, and usually with conscious intent in a variety of settings.

One of the key concepts in this model is that CT skills transfer in appropriate situations. Thus, assessments using situational judgments are needed to assess whether particular skills have transferred to a novel situation where it is appropriate. In an assessment created by the first author ( Halpern 2018 ), short paragraphs provide information about 20 different everyday scenarios (e.g., A speaker at the meeting of your local school board reported that when drug use rises, grades decline; so schools need to enforce a “war on drugs” to improve student grades); participants provide two response formats for every scenario: (a) constructed responses where they respond with short written responses, followed by (b) forced choice responses (e.g., multiple choice, rating or ranking of alternatives) for the same situations.

There is a large and growing empirical literature to support the assertion that CT skills can be learned and will transfer (when taught for transfer). See for example, Holmes et al. ( 2015 ), who wrote in the prestigious Proceedings of the National Academy of Sciences , that there was “significant and sustained improvement in students’ critical thinking behavior” (p. 11,199) for students who received CT instruction. Abrami et al. ( 2015, para. 1 ) concluded from a meta-analysis that “there are effective strategies for teaching CT skills, both generic and content specific, and CT dispositions, at all educational levels and across all disciplinary areas.” Abrami et al. ( 2008, para. 1 ), included 341 effect sizes in a meta-analysis. They wrote: “findings make it clear that improvement in students’ CT skills and dispositions cannot be a matter of implicit expectation.” A strong test of whether CT skills can be used for real-word problems comes from research by Butler et al. ( 2017 ). Community adults and college students (N = 244) completed several scales including an assessment of CT, an intelligence test, and an inventory of real-life events. Both CT scores and intelligence scores predicted individual outcomes on the inventory of real-life events, but CT was a stronger predictor.

Heijltjes et al. ( 2015, p. 487 ) randomly assigned participants to either a CT instruction group or one of six other control conditions. They found that “only participants assigned to CT instruction improved their reasoning skills.” Similarly, when Halpern et al. ( 2012 ) used random assignment of participants to either a learning group where they were taught scientific reasoning skills using a game format or a control condition (which also used computerized learning and was similar in length), participants in the scientific skills learning group showed higher proportional learning gains than students who did not play the game. As the body of additional supportive research is too large to report here, interested readers can find additional lists of CT skills and support for the assertion that these skills can be learned and will transfer in Halpern and Dunn ( Forthcoming ). There is a clear need for more high-quality research on the application and transfer of CT and its relationship to IQ.

5. Pandemics: COVID-19 as a Consequential Real-World Problem

A pandemic occurs when a disease runs rampant over an entire country or even the world. Pandemics have occurred throughout history: At the time of writing this article, COVID-19 is a world-wide pandemic whose actual death rate is unknown but estimated with projections of several million over the course of 2021 and beyond ( Mega 2020 ). Although vaccines are available, it will take some time to inoculate most or much of the world’s population. Since March 2020, national and international health agencies have created a list of actions that can slow and hopefully stop the spread of COVID (e.g., wearing face masks, practicing social distancing, avoiding group gatherings), yet many people in the United States and other countries have resisted their advice.

Could instruction in CT encourage more people to accept and comply with simple life-saving measures? There are many possible reasons to believe that by increasing citizens’ CT abilities, this problematic trend can be reversed for, at least, some unknown percentage of the population. We recognize the long history of social and cognitive research showing that changing attitudes and behaviors is difficult, and it would be unrealistic to expect that individuals with extreme beliefs supported by their social group and consistent with their political ideologies are likely to change. For example, an Iranian cleric and an orthodox rabbi both claimed (separately) that the COVID-19 vaccine can make people gay ( Marr 2021 ). These unfounded opinions are based on deeply held prejudicial beliefs that we expect to be resistant to CT. We are targeting those individuals who beliefs are less extreme and may be based on reasonable reservations, such as concern about the hasty development of the vaccine and the lack of long-term data on its effects. There should be some unknown proportion of individuals who can change their COVID-19-related beliefs and actions with appropriate instruction in CT. CT can be a (partial) antidote for the chaos of the modern world with armies of bots creating content on social media, political and other forces deliberately attempting to confuse issues, and almost all media labeled “fake news” by social influencers (i.e., people with followers that sometimes run to millions on various social media). Here, are some CT skills that could be helpful in getting more people to think more critically about pandemic-related issues.

Reasoning by Analogy and Judging the Credibility of the Source of Information

Early communications about the ability of masks to prevent the spread of COVID from national health agencies were not consistent. In many regions of the world, the benefits of wearing masks incited prolonged and acrimonious debates ( Tang 2020 ). However, after the initial confusion, virtually all of the global and national health organizations (e.g., WHO, National Health Service in the U. K., U. S. Centers for Disease Control and Prevention) endorse masks as a way to slow the spread of COVID ( Cheng et al. 2020 ; Chu et al. 2020 ). However, as we know, some people do not trust governmental agencies and often cite the conflicting information that was originally given as a reason for not wearing a mask. There are varied reasons for refusing to wear a mask, but the one most often cited is that it is against civil liberties ( Smith 2020 ). Reasoning by analogy is an appropriate CT skill for evaluating this belief (and a key skill in legal thinking). It might be useful to cite some of the many laws that already regulate our behavior such as, requiring health inspections for restaurants, setting speed limits, mandating seat belts when riding in a car, and establishing the age at which someone can consume alcohol. Individuals would be asked to consider how the mandate to wear a mask compares to these and other regulatory laws.

Another reason why some people resist the measures suggested by virtually every health agency concerns questions about whom to believe. Could training in CT change the beliefs and actions of even a small percentage of those opposed to wearing masks? Such training would include considering the following questions with practice across a wide domain of knowledge: (a) Does the source have sufficient expertise? (b) Is the expertise recent and relevant? (c) Is there a potential for gain by the information source, such as financial gain? (d) What would the ideal information source be and how close is the current source to the ideal? (e) Does the information source offer evidence that what they are recommending is likely to be correct? (f) Have you traced URLs to determine if the information in front of you really came from the alleged source?, etc. Of course, not everyone will respond in the same way to each question, so there is little likelihood that we would all think alike, but these questions provide a framework for evaluating credibility. Donovan et al. ( 2015 ) were successful using a similar approach to improve dynamic decision-making by asking participants to reflect on questions that relate to the decision. Imagine the effect of rigorous large-scale education in CT from elementary through secondary schools, as well as at the university-level. As stated above, empirical evidence has shown that people can become better thinkers with appropriate instruction in CT. With training, could we encourage some portion of the population to become more astute at judging the credibility of a source of information? It is an experiment worth trying.

6. Making Cost—Benefit Assessments for Actions That Would Slow the Spread of COVID-19

Historical records show that refusal to wear a mask during a pandemic is not a new reaction. The epidemic of 1918 also included mandates to wear masks, which drew public backlash. Then, as now, many people refused, even when they were told that it was a symbol of “wartime patriotism” because the 1918 pandemic occurred during World War I ( Lovelace 2020 ). CT instruction would include instruction in why and how to compute cost–benefit analyses. Estimates of “lives saved” by wearing a mask can be made meaningful with graphical displays that allow more people to understand large numbers. Gigerenzer ( 2020 ) found that people can understand risk ratios in medicine when the numbers are presented as frequencies instead of probabilities. If this information were used when presenting the likelihood of illness and death from COVID-19, could we increase the numbers of people who understand the severity of this disease? Small scale studies by Gigerenzer have shown that it is possible.

Analyzing Arguments to Determine Degree of Support for a Conclusion

The process of analyzing arguments requires that individuals rate the strength of support for and against a conclusion. By engaging in this practice, they must consider evidence and reasoning that may run counter to a preferred outcome. Kozyreva et al. ( 2020 ) call the deliberate failure to consider both supporting and conflicting data “deliberate ignorance”—avoiding or failing to consider information that could be useful in decision-making because it may collide with an existing belief. When applied to COVID-19, people would have to decide if the evidence for and against wearing a face mask is a reasonable way to stop the spread of this disease, and if they conclude that it is not, what are the costs and benefits of not wearing masks at a time when governmental health organizations are making them mandatory in public spaces? Again, we wonder if rigorous and systematic instruction in argument analysis would result in more positive attitudes and behaviors that relate to wearing a mask or other real-world problems. We believe that it is an experiment worth doing.

7. Conclusions

We believe that teaching CT is a worthwhile approach for educating the general public in order to improve reasoning and motivate actions to address, avert, or ameliorate real-world problems like the COVID-19 pandemic. Evidence suggests that CT can guide intelligent responses to societal and global problems. We are NOT claiming that CT skills will be a universal solution for the many real-world problems that we confront in contemporary society, or that everyone will substitute CT for other decision-making practices, but we do believe that systematic education in CT can help many people become better thinkers, and we believe that this is an important step toward creating a society that values and practices routine CT. The challenges are great, but the tools to tackle them are available, if we are willing to use them.

Author Contributions

Conceptualization, D.F.H. and D.S.D.; resources, D.F.H.; data curation, writing—original draft preparation, D.F.H.; writing—review and editing, D.F.H. and D.S.D. All authors have read and agreed to the published version of the manuscript.

This research received no external funding.

Institutional Review Board Statement

No IRB Review.

Informed Consent Statement

No Informed Consent.

Conflicts of Interest

The authors declare no conflict of interest.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Abrami Philip C., Bernard Robert M., Borokhovski Evgueni, Wade C. Anne, Surkes Michael A., Tamim Rana, Zhang Dai. Instructional interventions affecting critical thinking skills and dispositions: A Stage 1 meta-analysis. Review of Educational Research. 2008; 78 :1102–34. doi: 10.3102/0034654308326084. [ CrossRef ] [ Google Scholar ]
  • Abrami Philip C., Bernard Robert M., Borokhovski Evgueni, Waddington David I., Wade C. Anne. Strategies for teaching students to think critically: A meta-analysis. Review of Educational Research. 2015; 85 :275–341. doi: 10.3102/0034654314551063. [ CrossRef ] [ Google Scholar ]
  • Burhan Nik Ahmad Sufian, Kurniawan Yohan, Sidek Abdul Halim, Mohamad Mohd Rosli. Crimes and the Bell curve: Th e role of people with high, average, and low intelligence. Intelligence. 2014; 47 :12–22. doi: 10.1016/j.intell.2014.08.005. [ CrossRef ] [ Google Scholar ]
  • Butler Heather A., Pentoney Christopher, Bong Maebelle P. Predicting real-world outcomes: Critical thinking ability is a better predictor of life decisions than intelligence. Thinking Skills and Creativity. 2017; 25 :38–46. doi: 10.1016/j.tsc.2017.06.005. [ CrossRef ] [ Google Scholar ]
  • Cheng Vincent Chi-Chung, Wong Shuk-Ching, Chuang Vivien Wai-Man, So Simon Yung-Chun, Chen Jonathan Hon-Kwan, Sridhar Sidharth, To Kelvin Kai-Wwang, Chan Jasper Fuk-Wu, Hung Ivan Fan-Ngai, Ho Pak-Leung, et al. The role of community-wide wearing of face mask for control of coronavirus disease 2019 (COVID-19) epidemic due to SARS-CoV-2. Journal of Infectious Disease. 2020; 81 :107–14. doi: 10.1016/j.jinf.2020.04.024. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Chu Derek K., Aki Elie A., Duda Stephanie, Solo Karla, Yaacoub Sally, Schunemann Holger J. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A system atic review and meta-analysis. Lancet. 2020; 395 :1973–87. doi: 10.1016/S0140-6736(20)31142-9. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Donovan Sarah J., Guss C. Dominick, Naslund Dag. Improving dynamic decision-making through training and self-re flection. Judgment and Decision Making. 2015; 10 :284–95. [ Google Scholar ]
  • Drozdick Lisa Whipple, Wahlstrom Dustin, Zhu Jianjun, Weiss Lawrence G. The Wechsler Adult Intelligence Scale—Fourth Edition and the Wechsler Memory Scale—Fourth Edition. In: Flanagan Dawn P., Harrison Patti L., editors. Contemporary Intellectual as Sessment: Theories, Tests, and Issues. The Guilford Press; New York: 2012. pp. 197–223. [ Google Scholar ]
  • Gigerenzer Gerd. When all is just a click away: Is critical thinking obsolete in the digital age? In: Sternberg Robert J., Halpern Diane F., editors. Critical Thinking IN Psychology. 2nd ed. Cambridge University Press; Cambridge: 2020. pp. 197–223. [ Google Scholar ]
  • Gottfredson Linda S. Why g matters: The complexity of everyday life. Intelligence. 1997; 24 :79–132. doi: 10.1016/S0160-2896(97)90014-3. [ CrossRef ] [ Google Scholar ]
  • Grossmann Igor, Varnum Michael E. W., Na Jinkyung, Kitayama Shinobu, Nisbett Richard E. A route to well-being: Intelligence ver sus wise reasoning. Journal of Experimental Psychology: General. 2013; 142 :944–53. doi: 10.1037/a0029560. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Halpern Diane F. Halpern Critical Thinking Assessment. Schuhfried Test Publishers; Modling: 2018. [(accessed on 30 March 2021)]. Available online: www.schuhfried.com [ Google Scholar ]
  • Halpern Diane F., Butler Heather A. Is critical thinking a better model of intelligence? In: Sternberg Robert J., editor. The nature of Intelligence. 2nd ed. Cambridge University Press; Cambridge: 2020. pp. 183–96. [ Google Scholar ]
  • Halpern Diane F., Dunn Dana S. Thought and Knowledge: An Introduction to Critical Thinking. 6th ed. Taylor & Francis; New York: Forthcoming. in press. [ Google Scholar ]
  • Halpern Diane F., Millis Keith, Graesser Arthur, Butler Heather, Forsyth Carol, Cai Zhiqiang. Operation ARA: A computerized learn ing game that teaches critical thinking and scientific reasoning. Thinking Skills and Creativity. 2012; 7 :93–100. doi: 10.1016/j.tsc.2012.03.006. [ CrossRef ] [ Google Scholar ]
  • Hart Research Associates [(accessed on 30 March 2021)]; Employers Express Confidence in Colleges and Universities: See College as Worth the Investment, New Research Finds. 2018 Aug 29; Available online: https://hartresearch.com/employers-express-confidence-in-colleges-and-universities-see-college-as-worth-the-investment-new-research-finds/
  • Heijltjes Anita, Gog Tamara van, Lippink Jimmie, Paas Fred. Unraveling the effects of critical thinking instructions, practice, and self-explanation on students’ reasoning performance. Instructional Science. 2015; 43 :487–506. doi: 10.1007/s11251-015-9347-8. [ CrossRef ] [ Google Scholar ]
  • Holmes Natasha G., Wieman Carl E., Bonn DougA. Teaching critical thinking. Proceedings of the National Academy of Sciences. 2015; 112 :11199–204. doi: 10.1073/pnas.1505329112. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hunter John E., Schmidt Frank L. Intelligence and job performance: Economic and social implications. Psychology, Public Policy, and Law. 1996; 2 :447–72. doi: 10.1037/1076-8971.2.3-4.447. [ CrossRef ] [ Google Scholar ]
  • Kozyreva Anastasia, Lewandowsky Stephan, Hertwig Ralph. Citizens versus the internet: Confronting digital challenges with cognitive tools. [(accessed on 30 March 2021)]; Psychological Science in the Public Interest. 2020 21 doi: 10.1177/1529100620946707. Available online: https://www.psychologi calscience.org/publications/confronting-digital-challenges-with-cognitive-tools.html [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kretzschmar Andre, Neubert Jonas C., Wusternberg Sascha, Greiff Samuel. Construct validity of complex problem- solv ing: A comprehensive view on different facts of intelligence and school grades. Intelligence. 2016; 54 :55–69. doi: 10.1016/j.intell.2015.11.004. [ CrossRef ] [ Google Scholar ]
  • Lang Jonas W.B., Kell Harrison J. General mental ability and specific abilities: Their relative importance for extrinsic career success. Journal of Applied Psychology. 2020; 105 :1047–61. doi: 10.1037/apl0000472. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lovelace Berkeley., Jr. Medical Historians Compare the Coronavirus to the 1918 Flu Pandemic: Both Were Highly Political. [(accessed on 30 March 2021)]; CNBC. 2020 Available online: https://www.cnbc.com/2020/09/28/comparing-1918-flu-vs-corona virus.html?fbclid=IwAR1RAVRUOIdN9qqvNnMPimf5Q4XfV-pn_qdC3DwcfnPu9kavwumDI2zq9Xs
  • Marr Rhuaridh. Iranian Cleric Claims COVID-19 Vaccine Can Make People Gay. [(accessed on 30 March 2021)]; Metro Weekly. 2021 Available online: https://www.metroweekly.com/2021/02/iranian-cleric-claims-covid-19-vaccine-can-make-people-gay/
  • McCabe Kira O., Lubinski David, Benbow Camilla P. Who shines most among the brightest?: A 25-year longitudinal study of elite STEM graduate students. Journal of Personality and Social Psychology. 2020; 119 :390–416. doi: 10.1037/pspp0000239. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mega Emiliano R. COVID Has Killed more than One Million People. How Many more will Die? [(accessed on 30 March 2021)]; Nature. 2020 Available online: https://www.nature.com/articles/d41586-020-02762-y [ PubMed ]
  • Nickerson Raymond S. Developing intelligence through instruction. In: Sternberg Robert J., editor. The Cambridge Handbook of Intelligence. 2nd ed. Cambridge University Press; Cambridge: 2020. pp. 205–37. [ Google Scholar ]
  • OECD . The Survey of Adult Skills: Reader’s Companion. 3rd ed. OECD Publishing; Paris: 2019. OECD Skills Studies. [ CrossRef ] [ Google Scholar ]
  • Smith Matthew. Why won’t Britons Wear Face Masks? [(accessed on 30 March 2021)]; YouGov. 2020 Available online: https://yougov.co.uk/topics/health/articles-reports/2020/07/15/why-wont-britons-wear-face-masks
  • Stanovich Keith E. What Intelligence Tests Miss: The Psychology of Rational Thought. Yale University Press; New Haven: 2009. [ Google Scholar ]
  • Stanovich Keith E., West Richard F. On the failure of cognitive ability to predict my-side bias and one-sided thinking biases. Thinking & Reasoning. 2008; 14 :129–67. doi: 10.1080/13546780701679764. [ CrossRef ] [ Google Scholar ]
  • Stanovich Keith E., West Richard F. What intelligence tests miss. The Psychologist. 2014; 27 :80–83. doi: 10.5840/inquiryctnews201126216. [ CrossRef ] [ Google Scholar ]
  • Sternberg Robert J. A theory of adaptive intelligence and its relation to general intelligence. Journal of Intelligence. 2019; 7 :23. doi: 10.3390/jintelligence7040023. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Tang Julian W. COVID-19: Interpreting scientific evidence—Uncertainty, confusion, and delays. BMC Infectious Diseases. 2020; 20 :653. doi: 10.1186/s12879-020-05387-8. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wirthwein Linda, Rost Detlef H. Giftedness and subjective well-being: A study with adults. Learning and Individuals Differences. 2011; 21 :182–86. doi: 10.1016/j.lindif.2011.01.001. [ CrossRef ] [ Google Scholar ]

Table of Contents

How critical thinking skills develop: a brainy overview.

  • The Juice Team
  • December 17, 2020

Our greatest hope as parents and educators is that our children grow up to become high functioning members of society who can think intelligently, make educated decisions, and succeed in their chosen professions. The skill sets our children will need to develop to succeed in the 21st century are, however, different than those needed in previous decades. This change in skills demanded from the labor market has been the result of an economy transformed by ever-expanding automation, artificial intelligence, big data, and globalization. To succeed in our new, information-based economy, students will need skills beyond those traditionally tested in the classroom.

Comparing skill sets across several sources, including Forbes , Indeed , the World Bank , and Pearson & Nesta , it is clear that employers value high-order cognitive skills. Employers are seeking employees who can solve problems creatively, collaborate with team members effectively, work independently, and think critically among other interpersonal and interpersonal skills.

In order for us to best prepare our students for the opportunities and challenges awaiting them, we need to understand how higher-order thinking skills are developed. The brain can teach us a lot.

A Brief Overview of a Child’s Neurological Development 

what part of brain is critical thinking

While the brain takes nearly 25 years to fully develop, its most rapid changes occur during adolescence making it a critical period for students to engage in stimulating activities that promote thinking.

The Prefrontal Cortex: Home to Higher-Order Thinking

Put your hand on your forehead (as if you have a headache) – the area behind your hand is where your prefrontal cortex is located. The prefrontal cortex regulates our thoughts, emotions, and actions through extensive connections to other neural structures, and is the main center for critical thinking. Without it, we would not be able to perform many executive functions like problem-solving, reasoning, self-motivation, planning, decision-making, self-control, and the list goes on.

Compared to all other animals, the human brain has the greatest volume of prefrontal cortex — which is why humans have the greatest potential to think critically!

The prefrontal cortex is the last neural structure to mature. During adolescence, the prefrontal cortex both grows in a process called myelination and shrinks in a process called pruning . 

The Growing Adolescent Brain

New neural networks form when we repeat activities and link ideas. In a process called myelination, fatty “myelin sheaths” insulate connecting neurons to increase the speed and efficiency of the flow of information from one neural region to another. While myelination begins early in life and continues into adulthood, the production of myelin sheaths escalates during adolescence. Because myelination facilitates faster long-range connections in the brain, adolescents gain an increased ability to think abstractly and bring ideas together from different locations in the brain.

The Shrinking Adolescent Brain

During childhood and adolescents the brain soaks up information like a sponge, but there is only so much storage space in the brain. As a result, “ synaptic pruning ” occurs. This process is often referred to as the “ use it or lose it ” philosophy — the neural pathways that are underutilized are pruned or removed from the brain.

Basically, the brain decides which neural links to keep depending on how often they are used. So, if you want to speak a foreign language, play a musical instrument, or become a great athlete, you should engage in those activities before and during adolescence. 

Neurons that Fire Together, Wire Together

During this period of rapid neural development, learning actually changes how the adolescent brain is structured and how it functions. As teachers, parents, and mentors it is our responsibility to provide students with the foundational information and learning opportunities necessary to stimulate their developing neural networks of executive functions.

Neurons that fire together, wire together. Basically the more often you stimulate a neural-circuit in your brain, the stronger that circuit becomes. This phenomena explains why it becomes easier to speak a foreign language with practice and why learning how to play a second musical instrument is easier than learning how to play an instrument for the first time — practice strengthens the involved neural circuits.  

Given that schooling occurs when the brain is undergoing its most rapid period of growth, caregivers and educators play a critical part in changing adolescents’ neural structures and shaping their brain function. Research shows that “a well-developed prefrontal cortex with strong Executive Functions can improve both academic and life outcomes.”

Students, even if they don’t know it or admit it, need help in order to  take full advantage of this transformational period in their development.

what part of brain is critical thinking

How Can we Help Students Take Full Advantage of This Period of Rapid Brain Development?

1. encourage students to try many activities.

Many parents with student-athletes ask, “should my child play many sports or specialize?” Research has shown that children who play multiple sports become better athletes compared to those that focus on just one.

The same is true for the brain! Adolescents who are enrolled in a range of extracurricular activities engage more with their caregivers, learn more about their personal interests, are more active in their communities, and are less likely to engage in criminal activities.

2. Engage Adolescents in Conversation and Encourage Them to be Curious

MIT cognitive scientists have found that conversations between child and parent actually change the brain’s structure. Conversations that focus on solving problems collaboratively and building connections with others trigger physical and emotional changes in the brain enabling us to form relationships and think with empathy. Trust is mediated by the prefrontal cortex , so creating a safe-space where trust is present, is a prerequisite for the activation of the brain’s ability to think strategically, empathetically, and compassionately.

Asking adolescents open-ended questions is a great way to get your teen to think creatively without fear of giving a wrong answer. You can learn more about the power of understanding different perspectives here. (link to other blog post)

3. Create Safe and Secure Environments (with Reasonable Boundaries)

Creating a safe environment is important for more than just creating conversations. While the prefrontal cortex is developing, the amygdala (the brain region in charge of emotion) takes over. This explains why adolescents interpret most conversations and situations through an emotional, fear-attuned mind rather than a trust-seeking, rational one. By creating safe environments we help calm down the fear center of the brain and enhance learning. Furthermore given that the emotional and rational centers of the brain are not yet fully connected, it is normal for teens to act impulsively, engage in risk-taking behaviors, and feel overly self-conscious.

Creating safe spaces, defining boundaries, and creating opportunities for those boundaries to be negotiated, enables teens to take healthy risks and experiment with their sense of self, both of which contribute to healthy development. 

4. Promote Healthy Eating and Sleeping Habits 

The brain requires energy — sleep and healthy foods — to form new neural networks. Specifically, healthy fats like omega 3 fatty acids are used in the formation of myelin sheaths, which if you remember is what enables neural pathways to speed up connections between neurons and prevent connection interference. 

The brain only has so much room for new information — when we sleep the brain prunes (e.g. removes) unused networks and builds more streamlined efficient pathways. Thinking with a sleep-deprived brain is like trying to walk through a dense jungle. 

5. Provide Instructional and Motivational Feedback 

Given that the prefrontal cortex takes the longest time to mature, teens tend to process information with the amygdala, the brain’s center for processing emotion and fear. Because the connections between the prefrontal cortex, the brain’s rational part, and the amygdala are not yet fully formed a teen might misperceive a benign “hello” as “I’m watching you” or “I noticed that pimple.”  Additionally, until the prefrontal cortex is fully developed, teens might find it difficult to identify and balance short-term and long-term consequences of an action.

In a parenting guide published by Stanford Children’s Hospital , we learn that  “discussing the consequences of their actions can help teens link impulsive thinking with facts.” Our teens rely on us to point out these cognitive errors, and help guide them through complex decision-making. By setting good examples for our teens and providing feedback we can help rewire their brains in a healthy way.

Now you know how you can help teens maximize their brain potential! While adolescents are a crucial time to develop the brain, remember that everyone’s brain is plastic, including yours. No matter how old you are or what level your brain function is at today, your brain can improve. Stay engaged, stay curious, stay active, and read The Juice!

AWS Logo

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

  • The Big Think Interview
  • Your Brain on Money
  • Explore the Library
  • The Universe. A History.
  • The Progress Issue
  • A Brief History Of Quantum Mechanics
  • 6 Flaws In Our Understanding Of The Universe
  • Michio Kaku
  • Neil deGrasse Tyson
  • Michelle Thaller
  • Steven Pinker
  • Ray Kurzweil
  • Cornel West
  • Helen Fisher
  • Smart Skills
  • High Culture
  • The Present
  • Hard Science
  • Special Issues
  • Starts With A Bang
  • Everyday Philosophy
  • The Learning Curve
  • The Long Game
  • Perception Box
  • Strange Maps
  • Free Newsletters
  • Memberships

How to think effectively: Six stages of critical thinking

what part of brain is critical thinking

Credit: Elder / Paul

  • Researchers propose six levels of critical thinkers: Unreflective thinkers, Challenged thinkers, Beginning thinkers, Practicing thinkers, Advanced thinkers, and Master thinkers.
  • The framework comes from educational psychologists Linda Elder and Richard Paul.
  • Teaching critical thinking skills is a crucial challenge in our times.

The coronavirus has not only decimated our populations, its spread has also attacked the very nature of truth and stoked inherent tensions between many different groups of people, both at local and international levels. Spawning widespread conspiracy theories and obfuscation by governments, the virus has also been a vivid demonstration of the need for teaching critical thinking skills necessary to survive in the 21st century. The stage theory of critical thinking development, devised by psychologists Linda Elder and Richard Paul , can help us gauge the sophistication of our current mental approaches and provides a roadmap to the thinking of others.

The researchers identified six predictable levels of critical thinkers, from ones lower in depth and effort to the advanced mind-masters, who are always steps ahead.

As the scientists write , moving up on this pyramid of thinking “is dependent upon a necessary level of commitment on the part of an individual to develop as a critical thinker.” Using your mind more effectively is not automatic and “is unlikely to take place “subconsciously.” In other words – you have to put in the work and keep doing it, or you’ll lose the faculty.

Here’s how the stages of intellectual development break down:

Unreflective thinker

These are people who don’t reflect about thinking and the effect it has on their lives. As such, they form opinions and make decisions based on prejudices and misconceptions while their thinking doesn’t improve.

Unreflective thinkers lack crucial skills that would allow them to parse their thought processes. They also do not apply standards like accuracy, relevance, precision, and logic in a consistent fashion.

How many such people are out there? You probably can guess based on social media comments. As Elder and Paul write , “it is perfectly possible for students to graduate from high school, or even college, and still be largely unreflective thinkers.”

Challenged thinker

This next level up thinker has awareness of the importance of thinking on their existence and knows that deficiencies in thinking can bring about major issues. As the psychologists explain, to solve a problem, you must first admit you have one.

People at this intellectual stage begin to understand that “high quality thinking requires deliberate reflective thinking about thinking”, and can acknowledge that their own mental processes might have many flaws. They might not be able to identify all the flaws, however.

A challenged thinker may have a sense that solid thinking involves navigating assumptions, inferences, and points of view, but only on an initial level. They may also be able to spot some instances of their own self-deception. The true difficulty for thinkers of this category is in not “believing that their thinking is better than it actually is, making it more difficult to recognize the problems inherent in poor thinking,” explain the researchers.

Thinkers at this level can go beyond the nascent intellectual humility and actively look to take control of their thinking across areas of their lives. They know that their own thinking can have blind spots and other problems and take steps to address those, but in a limited capacity.

Beginning thinker

Beginning thinkers place more value in reason, becoming self-aware in their thoughts. They may also be able to start looking at the concepts and biases underlying their ideas. Additionally, such thinkers develop higher internal standards of clarity, accuracy and logic, realizing that their ego plays a key role in their decisions.

Another big aspect that differentiates this stronger thinker – some ability to take criticism of their mental approach, even though they still have work to do and might lack clear enough solutions to the issues they spot.

Practicing thinker

This more experienced kind of thinker not only appreciates their own deficiencies, but has skills to deal with them. A thinker of this level will practice better thinking habits and will analyze their mental processes with regularity.

While they might be able to express their mind’s strengths and weaknesses, as a negative, practicing thinkers might still not have a systematic way of gaining insight into their thoughts and can fall prey to egocentric and self-deceptive reasoning.

How do you get to this stage? An important trait to gain, say the psychologists, is “intellectual perseverance.” This quality can provide “the impetus for developing a realistic plan for systematic practice (with a view to taking greater command of one’s thinking).”

“We must teach in such a way that students come to understand the power in knowing that whenever humans reason, they have no choice but to use certain predictable structures of thought: that thinking is inevitably driven by the questions, that we seek answers to questions for some purpose, that to answer questions, we need information, that to use information we must interpret it (i.e., by making inferences), and that our inferences, in turn, are based on assumptions, and have implications, all of which involves ideas or concepts within some point of view,” explain Elder and Paul.

One doesn’t typically get to this stage until college and beyond, estimate the scientists. This higher-level thinker would have strong habits that would allow them to analyze their thinking with insight about different areas of life. They would be fair-minded and able to spot the prejudicial aspects in the points of view of others and their own understanding.

While they’d have a good handle on the role of their ego in the idea flow, such thinkers might still not be able to grasp all the influences that affect their mentality.

Advanced thinker

The advanced thinker is at ease with self-critique and does so systematically, looking to improve. Among key traits required for this level are “intellectual insight” to develop new thought habits, “ intellectual integrity” to “recognize areas of inconsistency and contradiction in one’s life,” intellectual empathy ” to put oneself in the place of others in order to genuinely understand them, and the “ intellectual courage” to confront ideas and beliefs they don’t necessarily believe in and have negative emotions towards.

Master thinker

This is the super-thinker, the one who is totally in control of how they process information and make decisions. Such people constantly seek to improve their thought skills, and through experience “regularly raise their thinking to the level of conscious realization.”

A master thinker achieves great insights into deep mental levels, strongly committed to being fair and gaining control over their own egocentrism.

Such a high-level thinker also exhibits superior practical knowledge and insight, always re-examining their assumptions for weaknesses, logic, and biases.

And, of course, a master thinker wouldn’t get upset with being intellectually confronted and spends a considerable amount of time analyzing their own responses.

“Why is this so important? Precisely because the human mind, left to its own, pursues that which is immediately easy, that which is comfortable, and that which serves its selfish interests. At the same time, it naturally resists that which is difficult to understand, that which involves complexity, that which requires entering the thinking and predicaments of others,” write the researchers.

So how do you become a master thinker? The psychologists think most students will never get there. But a lifetime of practicing the best intellectual traits can get you to that point when “people of good sense seek out master thinkers, for they recognize and value the ability of master thinkers to think through complex issues with judgment and insight.”

The significance of critical thinking in our daily lives, especially in these confusing times, so rife with quick and often-misleading information, cannot be overstated. The decisions we make today can truly be life and death.

A drawing shows a person's side profile on the left, with dashed lines leading to a second drawing on the right where the facial features are replaced by a question mark, hinting at a lack of perceptivity.

  • Partnerships

Critical thinking

Critical thinking

Effective lifelong learning

Executive summary

  • One of the most striking characteristics of the XX and XXI centuries is the “exponential growth” of knowledge generated in any discipline, which is available to most of the world’s citizens.
  • As it is no longer possible to comprehend all the information available, in relation to disciplines or even subdisciplines, education should promote the acquisition of learning abilities related to modes of thought rather than solely the accumulation or memorization of, in many cases, information that may be only infrequently useful.
  • One mode of thought, reflective thinking or critical thinking, is a metacognitive process—a set of habituated intellectual resources put purposefully into action—that enables a deeper understanding of new information. It also provides a secure foundation for more effective problem-solving, decision-making, and appropriate argumentation of ideas and opinions.
  • The global output of teaching critical thinking is adding new competences to everyone’s basic capacities for greater cognitive development and freedom.

“… Nothing better for the mental development of the child and the adolescent than to teach them superior ways of learning that complement, continue, rectify and elevate the spontaneous ways. Originality is a precious heritage that the pedagogue must not only guard, but lead, in the domain of values, to its maximum expression. And with superior ways of learning, culture and originality grow in parallel. To teach superior ways of learning is to add to the native powers, new powers for greater independence of the spirit in all its manifestations. It is teaching to move only upwards…Teaching to observe well, to think well, to feel good, to express oneself well and to act well is what, in sum, every pedagogical doctrine, new or old, revolutionary or conservative, of now and forever, is materialized.” (Clemente Estable, 1947 1 ).

Introduction and historical background

The brain is the organ that allows us to think. This confronts us with a philosophical challenge that has been accompanying human civilization for more than 2,500 years: H ow can the brain help us to understand how the brain enables us to understand? 2

Ancient Greek philosophers have already questioned themselves about the source of knowledge and cognitive functions and hypothesized about the fundamental role of the brain, in opposition to the heart or even the air or fire 3-6 . The Socratic method, involving the introspective scrutiny of thought guided by questioning, paved the long-lasting way to contemporary approaches and conceptions about “good thinking,” also called “reflective thinking,” 7 and more recently, “critical thinking” 8 .

As in any area of knowledge, most of the accumulated content—which is vast and always evolving—is nowadays accessible to everyone who has access to the internet. Thus, it can be argued that educational efforts should concentrate on improving the next generation’s modes of thinking. It is desirable to promote engagement with knowledge rather than transmitting the requirement of accumulating data—usually disposable information—through mastery or memorization 9 .

Critical thinking is a fundamental pillar in every field of learning within disciplines as diverse as science, technology, engineering, and mathematics as well as the humanities including literature, history, art, and philosophy 5,9,10 .

No matter the discipline, critical thinking pursues some end or purpose, such as answering a question, deciding, solving a problem, devising a plan, or carrying out a project to face present and future challenges 11 . Hence, it is also applicable to everyday life and is desirable for a plural society with citizenship literacy and scientific competence for participation in diverse situations, including dilemmas of scientific tenor 7,12 .

In spite of the explicit valuing of critical thinking, and iterative efforts to promote its effective incorporation in the curricula at different levels of education of science, humanities, and education itself, difficulties for deeper grasping of critical thinking and challenges for its fruitful integration in educational curricula persist 13,14 . Such difficulty is in part caused by a lack of consensus regarding a definition of critical thinking.

Defining critical thinking

Critical thinking is a mental process 11 like creative thinking, intuition, and emotional reasoning, all of which are important to the psychological life of an individual 10 . It pertains to a family of forms of higher order thinking, including problem-solving, creative thinking, and decision-making 15 . However, there is not a single or direct definition of critical thinking, probably reflecting the emphasis made on different features or aspects by several authors from diverse disciplines as education, philosophy, and neurosciences 7,10,16-18 .

Some of the distinguishing features of critical thinking and critical thinkers are ( 7, 11, 12, 16, 19, 20 ; see Figure 1):

Figure 1. Diagram of the principal features of critical thinking, including some of the necessary cognitive functions and intellectual resources. The arrows indicate the main mechanisms of modulation: top-down, involving the effect of upper on lower level intellectual resources (for example, the effect of metacognition on motivation that in turn affects perception), and bottom-up (such as the influence of self-analysis and habituation on self-regulation and metacognition).

  • Critical thinkers pursue some end or purpose such as answering a question, making a decision, solving a problem, devising a plan, or carrying out a project to cope with present or future challenges.
  • Accordingly, critical thinking is purposively put into action and driven by .
  • As a result of this top-down influence, critical thinking is an attitude which does not occur spontaneously.
  • Critical thinking also involves the knowledge, acquisition, and improvement of a spectrum of intellectual resources such as: –  methods of logical inquiry; – information literacy to gather significant information about the problem and the context for embracing comprehensive background knowledge; – operational knowledge of processing skills for generation of concepts and beliefs: analysis, evaluation, inference, reflective judgment.
  • To accomplish these intellectual resources, critical thinkers need to put into action the most basic cognitive functions such as perception, motor coordination and action, sensory-motor coordination, language perception and production, memory, and decision-making.
  • Critical thinkers apply these procedures and methods in a systematic and reasonable way.
  • As a result, critical thinking is not an immediate cognitive event but a process .
  • The main outcome of critical thinking is a reflective, ordered, causal flow of ideas .
  • Critical thinkers self-analyze and self-assess the mode of thinking.
  • Consequently, critical thinking is a metacognitive process .
  • Self-evaluation launches a bottom-up process for modulation and improvement of critical thinking, enabling greater adaptability to different situations.
  • Thus, critical thinking also requires training and habituation .
  • As a global outcome, critical thinking, as a metacognitive process, also refines self-regulation (i.e., the ability to understand and control our learning environments) 20 .

In sum, critical thinking is a purposeful, intellectually demanding, disciplined, plastic, and trainable mode of thinking in which motivation, self-analysis, and self-regulation play key roles. Several of these aspects were stressed by Santiago Ramón y Cajal (see Figure 2A). Cajal—founder of modern neuroscience and Nobel Prize of Medicine in 1906—hypothesized about the role of brain plasticity, metanalysis habituation, and self-regulation for the acquisition of knowledge about objects or problems: “When one thinks about the curious property that man possesses of changing and refining his mental activity in relation to a profoundly meditated object or problem, one cannot but suspect that the brain, thanks to its plasticity, evolves anatomically and dynamically, adapting progressively to the subject. This adequate and specific organization acquired by the nerve cells eventually produces what I would call professional talent or adaptation, and has its own will, that is, the energetic resolution to adapt our understanding to the nature of the matter.” 20

Figure 2. Left: Portrait of Santiago Ramón y Cajal. Oil painted by the Spanish Postimpressionist painter Joaquín Sorolla in 1906, the year Cajal received the Nobel Prize in Medicine21. Right: Microphotography of an original preparation of Cajal showing a pyramidal neuron of the human brain cortex. Staining: Golgi staining. Original handwritten label: Pyramid. Boy22.

Figure 2. Left: Portrait of Santiago Ramón y Cajal. Oil painted by the Spanish Postimpressionist painter Joaquín Sorolla in 1906, the year Cajal received the Nobel Prize in Medicine 21 . Right: Microphotography of an original preparation of Cajal showing a pyramidal neuron of the human brain cortex. Staining: Golgi staining. Original handwritten label: Pyramid. Boy 22 .

Neural basis of critical thinking

Figure 3. Mapping of cognitive functions. The diagram superposed on the lateral view of the human brain indicates the location of distributed neural assemblies activated in relation to cognitive functions. Note that the indicated cognitive functions are involved in the same or successive phases of critical thinking. (Modified from ref. 26 ).

The cognitive functions and intellectual resources involved in critical thinking are emergent properties of the human brain’s structure and function which depend on the activity of its building blocks, the neurons (see Figure 2B). Neurons are specialized cells which are almost equal in number to nonneuronal cells in human brains. Of the total amount of 86 billon neurons, 19% form the cerebral cortex and 78% the cerebellum 23 . Neurons are interconnected and intercommunicate through specialized junctions called synapses, of which there are about 0,15 quadrillion in the cerebral cortex 24 and more than 3 trillion in the cerebellar cortex (considering the total number of Purkinje cells and the total amount of synapses/Purkinje cell 25 ). These stellar numbers help us imagine the density of the entangled brain web. This web is not fully active at any time. Instead, distributed groups of neurons or “distributed neural assemblies” are more active at certain topographies when particular cognitive functions are taking place 26 . Considering the spectrum of cognitive functions involved in the process of critical thinking, it will increase activation in much of the brain cortex (see Figure 3).

Teaching critical thinking

 “It is not enough to know how we learn, we must know how to teach.” (Tracey Tokuhama-Espinosa, 2010 27 ).

Teachers have the invaluable potential power of fostering knowledge in the next generations of students and citizens. However, this power is expressed when teachers, instead of teaching what they know—and hence limiting students’ knowledge to their own—teach students to think critically and so open up the possibility that students’ knowledge will expand beyond the borders of the teachers’ own knowledge 28 . Thus, it is important to be aware that—similar to electrical circuits and Ohm’s law—the wealth and depth of students’ knowledge that is achieved or expressed depends not only on the energy or effort that students put in the task but also their own (internal) resistance as well as teachers’ (external) resistance. This metaphor exemplifies that the expected outcomes of education may be better achieved if teachers are familiar with the foundations of critical thinking, better appreciate its worth, and themselves become proficient at thinking critically, particularly in relation to their professional activity.

Now more than ever it is possible for teachers to build a framework to improve the teaching and learning of critical thinking in the classroom 29 thanks to a wealth of information and guidelines resulting from contributions of diverse disciplines since the renewed interest in critical thinking and its promotion in education pioneered by Dewey 7 at the dawn of the 20th century.  According to Boisvert (1999 28 ), up to the 1980s, education focused on the abilities of critical thinking as goals to achieve.

Since then, a growing movement of critical thinking has been characterized by iterative attempts to define critical thinking, as well as by instructing teachers about this process and how to teach it. In parallel, several tools for assessment have been created 11, 30, 31, 32, 33 .

Nevertheless, the long-lasting aim has not been achieved. In trying to envisage more fruitful strategies, it is worth noting the difficulty of transmitting critical thinking as just a skill that can be trained without considering the context. On the contrary, the domain of knowledge and the development of critical thinking should be considered in parallel as related intellectual resources—as pointed out by Willimham 33 . It is worth pointing out that, parallel to the critical thinking movement, there has been an increasing simultaneous interest in the neural bases of critical thinking, leading to the emergence 5,34 of “educational neuroscience” 35 and “brain, mind and education” 36 . These interdisciplinary fields have been elucidating the fundamental mechanisms involved in critical thinking as well as the role of factors that impact on this ability. This, along with the tight collaboration between scientists and teachers, is forging a new (Machado) path or bridge over the “gulf” between these fields 35 .

References/Suggested Readings & Notes

  • Estable, C. 1947. Pedagogía de presión normativa y pedagogía de la personalidad y de la vocación. An. Ateneo Urug., 2ª ed., 1, 155-156. http://www.periodicas.edu.uy/Anales_Ateneo_Uruguay/pdfs/Anales_Ateneo_Uruguay_2a_epoca_n2.pdf
  • Shepherd, G, M. 1994. Neurobiology, 3rd edn , Oxford University Press.
  • Cope, E. M. 1875. Plato’s Phaedo, Literally translated , Cambridge University Press.
  • Adams, L. L. D. 1849. Hippocrates Translated from the Greek with a preliminary discourse and annotations. The Sydenham Society.
  • Vieira, R. M., Tenreiro-Vieira, C. & Martins, I. P. Critical thinking: conceptual clarification and its importance in science education. Science Education International 22,43–54 (2011).
  • Panegyres, K. P. & Panegyres, P. K. The ancient Greek discovery of the nervous system: Alcmaeon, Praxagoras and Herophilus. Journal of Clinical Neuroscience 29, 21–24 (2016).
  • Dewey, J. How we think. The Problem of Training Thought 14 (1910). doi:10.1037/10903-000
  • Glaser, E. M. (1941). An experiment in the development of critical thinking . New York: Columbia University Teachers College.
  • Edmonds, Michael, et al. History & Critical Thinking: A Handbook for Using Historical Documents to Improve Students’ Thinking Skills in the Secondary Grades. Wisconsin Historical Society, 2005. http://www.wisconsinhistory.org/pdfs/lessons/EDU-History-and-Critical-Thinking-Handbook.pdf
  • Mulnix, J. W. Thinking critically about critical thinking. Educational Philosophy and Theory 44, 464–479 (2012).
  • Bailin, S., Case, R., Coombs, J. R. & Daniels, L. B. Conceptualizing critical thinking.  Journal of Curriculum Studies 31, 285–302 (1999).
  • Dwyer, C. P., Hogan, M. J. & Stewart, I. An integrated critical thinking framework for the 21st century. Thinking Skills and Creativity 12, 43–52 (2014).
  • Paul, R. The state of critical thinking today. New Directions for Community Colleges 130, 27–39 (2005).
  • Lloyd, M. & Bahr, N. Thinking critically about critical thinking in higher education. International Journal for the Scholarship of Teaching & Learning 4, 1–16 (2010).
  • Rudd, R. D. Defining critical thinking. Techniques. 46 (2007).
  • Siegel, H. (1988) . Educating reason: Rationality, critical thinking, and education . Philosophy of education research library. Routledge Inc.
  • Siegel, H. in  International Encyclopedia of Education 141–145 (Elsevier Ltd, 2010). doi:10.1016/B978-0-08-044894-7.00582-0
  • Bailin, S. Critical thinking and science education. Science & Education (2002) 11: 361. https://doi.org/10.1023/A:1016042608621
  • Facione, P. A. Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction.  California Academic Press 1–19 (1990). doi:10.1080/00324728.2012.723893
  • Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: metacognition as part of a broader perspective on learning. Research in Science Education  36(1–2), 111–139. https://doi.org/10.1007/s11165-005-3917-8
  • Ramon y Cajal, S.  Recuerdos de mi vida .  Juan Fernández Santarén, Barcelona. Editorial Crítica ( 1899); Of Joaquín Sorolla y Bastida, Public domain, https://commons.wikimedia.org/w/index.php?curid=32562506).
  • From: http://www.montelouro.es/Cajal.html.
  • Herculano-Houzel, S. The human brain in numbers: a linearly scaled-up primate brain. Frontiers in Human Neuroscience 3, (2009).
  • Pakkenberg, B.  et al. Aging and the human neocortex. Experimental Gerontology 38, 95–99 (2003).
  • Nairn JG, Bedi KS, Mayhew TM, Campbell LF. On the number of Purkinje cells in the human cerebellum: unbiased estimates obtained by using the “fractionator”. J Comp Neurol. 290(4), 527-32 (1989).
  • Pulvermüller, F., Garagnani, M. & Wennekers, T. Thinking in circuits: toward neurobiological explanation in cognitive neuroscience.  Biological Cybernetics 108, 573–593 (2014).
  • Tokuhama-Espinosa, T. The New Science of Teaching and Learning: Using the Best of Mind, Brain, and Education Science in the Classroom.  Teachers College Press (2010).
  • Chavan, A. A. & Khandagale V. S. Development of critical thinking skill programme for the student teachers of diploma in teacher education colleges. Issues Ideas Educ. http://dspace.chitkara.edu.in/xmlui/handle/1/159.
  • Paul, R. & Elder, L. Guide for educators to critical thinking competency standards: standards, principles, performance indicators, and outcomes with a critical thinking master rubric. Foundation for Critical Thinking. (2007).
  • Paul, R. W. Critical Thinking: What Every Person Needs to Survive in a Rapidly Changing World. Foundation for Critical Thinking. (2000). Retrieved from http://assets00.grou.ps/0F2E3C/wysiwyg_files/FilesModule/criticalthinkingandwriting/20090921185639-uxlhmlnvedpammxrz/CritThink1.pdf
  • Paul, R. W., Elder, L. & Bartell, T. California Teacher Preparation for Instruction in Critical Thinking: Research Findings and Policy Recommendations. (1997). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1001.1087&rep=rep1&type=pdf
  • Vieira, R. M. Formação continuada de professores do 1.º e 2.º ciclos do Ensino Básico para uma educação em Ciências com orientação CTS/PC. Tese de doutoramento (não publicada), Universidade de Aveiro. (2003). Retrieved from: http://www.redalyc.org/pdf/374/37419205.pdf
  • Willingham, D. T. Critical Thinking: Why Is It So Hard to Teach? American Educator 31, 8-19. (2007). Retrieved from http://www.aft.org/sites/default/files/periodicals/Crit_Thinking.pdf
  • Zadina, J. N. The emerging role of educational neuroscience in education reform.  Psicología Educativa 21,71–77 (2015).
  • Goswami, U. Neurociencia y Educación: ¿podemos ir de la investigación básica a su aplicación? Un posible marco de referencia desde la investigación en dislexia.  Psicologia Educativa 21, 97–105 (2015).
  • Schwartz, M. Mind, brain and education: a decade of evolution. Mind, Brain, and Education 9, 64–71 (2015).

Why Critical Thinking Is Important (& How to Improve It)

Last updated May 1, 2023. Edited and medically reviewed by Patrick Alban, DC . Written by Deane Alban .

By improving the quality of your thoughts and your decisions, better critical thinking skills can bring about a big positive change in your life. Learn how.

The quality of your life largely depends on the quality of the decisions you make.

Amazingly, the average person makes roughly 35,000 conscious decisions every day! 

Imagine how much better your life would be if there were a way to make better decisions, day in and day out?

Well, there is and you do it by boosting a skill called critical thinking .

Learning to master critical thinking can have a profoundly positive impact on nearly every aspect of your life.

What Exactly Is Critical Thinking?

The first documented account of critical thinking is the teachings of Socrates as recorded by Plato. 

Over time, the definition of critical thinking has evolved.

Most definitions of critical thinking are fairly complex and best understood by philosophy majors or psychologists.

For example, the Foundation for Critical Thinking , a nonprofit think tank, offers this definition:

“Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action.”

If that makes your head spin, here are some definitions that you may relate to more easily.

Critical thinking is “reasonable, reflective thinking that is focused on deciding what to believe or do.”

WHAT'S THE BEST BRAIN SUPPLEMENT?

I hear this question often. Here's my answer:

#1 Live a brain-healthy lifestyle first (Be Brain Fit tells you how).

#2 Give Mind Lab Pro a try.

This brain supplement meets all 12 of my requirements for a high-quality brain supplement, including effectiveness, safety, purity, and value. So it's easier for you to be mentally sharper, positive, and more productive.

Choosing the right brain supplement is all about quality. See why I recommend Mind Lab Pro.

Or, a catchy way of defining critical thinking is “deciding what’s true and what you should do.”

But my favorite uber-simple definition is that critical thinking is simply “thinking about thinking.”

6 Major Benefits of Good Critical Thinking Skills

Whether or not you think critically can make the difference between success and failure in just about every area of your life.

Our human brains are imperfect and prone to irrationality, distortions, prejudices, and cognitive biases .

Cognitive biases are systematic patterns of irrational thinking.

While the number of cognitive biases varies depending on the source, Wikipedia, for example, lists nearly 200 of them ! 

Some of the most well-known cognitive biases include:

  • catastrophic thinking
  • confirmation bias
  • fear of missing out (FOMO)

Critical thinking will help you move past the limitations of irrational thinking.

Here are some of the most important ways critical thinking can impact your life.

1. Critical Thinking Is a Key to Career Success

There are many professions where critical thinking is an absolute must.

Lawyers, analysts, accountants, doctors, engineers, reporters, and scientists of all kinds must apply critical thinking frequently.

But critical thinking is a skill set that is becoming increasingly valuable in a growing number of professions.

Download, listen, relax ... Experience the power of hypnosis. Hypnosis Downloads. Try it now.

Critical thinking can help you in any profession where you must:

  • analyze information
  • systematically solve problems
  • generate innovative solutions
  • plan strategically
  • think creatively
  • present your work or ideas to others in a way that can be readily understood

And, as we enter the fourth industrial revolution , critical thinking has become one of the most sought-after skills.

chart showing the increase in demand for enterprise skills

According to the World Economic Forum , critical thinking and complex problem-solving are the two top in-demand skills that employers look for. 

Critical thinking is considered a soft or enterprise skill — a core attribute required to succeed in the workplace . 

NUTRITION FOR THE MIND/BODY CONNECTION

It’s almost impossible to live a lifestyle that provides all the nutrients needed for good brain health and performance. The reason? All of us confront multiple nutrient thieves — stress, poor diet, insomnia, pharmaceuticals, pollution, and more — that steal nutrients that the brain needs to thrive.

  • Provides the building blocks to create new brain cells and brain chemicals
  • Helps increase resilience to stress to avoid mental burnout
  • Supplies the brain with the fuel it needs for mental energy

A foundational principle of mental health and cognitive performance is to supply the body with the best nutrition possible. See why I recommend Performance Lab.

According to The University of Arizona, other soft skills include : 

  • interpersonal skills
  • communication skills
  • digital literacy

Critical thinking can help you develop the rest of these soft skills.

Developing your critical thinking can help you land a job since many employers will ask you interview questions or even give you a test to determine how well you can think critically.

It can also help you continually succeed in your career, since being a critical thinker is a powerful predictor of long-term success.

2. Critical Thinkers Make Better Decisions

Every day you make thousands of decisions.

Most of them are made by your subconscious , are not very important, and don’t require much thought, such as what to wear or what to have for lunch. 

But the most important decisions you make can be hard and require a lot of thought, such as when or if you should change jobs, relocate to a new city, buy a house, get married, or have kids.

At work, you may have to make decisions that can alter the course of your career or the lives of others.

Critical thinking helps you cope with everyday problems as they arise.

It promotes independent thinking and strengthens your inner “BS detector.”

It helps you make sense of the glut of data and information available, making you a smarter consumer who is less likely to fall for advertising hype, peer pressure, or scams.

Mind Lab Pro is the best nootropic supplement

3. Critical Thinking Can Make You Happier

Knowing and understanding yourself is an underappreciated path to happiness. 

We’ve already shown how your quality of life largely depends on the quality of your decisions, but equally as important is the quality of your thoughts.

Critical thinking is an excellent tool to help you better understand yourself and to learn to master your thoughts.

You can use critical thinking to free yourself from cognitive biases, negative thinking , and limiting beliefs that are holding you back in any area of your life.

Critical thinking can help you assess your strengths and weaknesses so that you know what you have to offer others and where you could use improvement.

Critical thinking will enable you to better express your thoughts, ideas, and beliefs.

Better communication helps others to understand you better, resulting in less frustration for both of you.

Critical thinking fosters creativity and out-of-the-box thinking that can be applied to any area of your life.

It gives you a process you can rely on, making decisions less stressful.

4. Critical Thinking Ensures That Your Opinions Are Well-Informed

We have access to more information than ever before .

Astoundingly, more data has been created in the past two years than in the entire previous history of mankind. 

Critical thinking can help you sort through the noise.

American politician, sociologist, and diplomat Daniel Patrick Moynihan once remarked , “You are entitled to your opinion. But you are not entitled to your own facts.” 

Critical thinking ensures your opinions are well-informed and based on the best available facts.

You’ll get a boost in confidence when you see that those around you trust your well-considered opinions.

5. Critical Thinking Improves Relationships

You might be concerned that critical thinking will turn you into a Spock-like character who is not very good at relationships.

But, in fact, the opposite is true.

Employing critical thinking makes you more open-minded and better able to understand others’ points of view.

Performance Lab NutriGenesis Multi is the best multivitamin for women

Critical thinkers are more empathetic and in a better position to get along with different kinds of people.

Critical thinking keeps you from jumping to conclusions.

You can be counted on to be the voice of reason when arguments get heated.

You’ll be better able to detect when others:

  • are being disingenuous
  • don’t have your best interests at heart
  • try to take advantage of or manipulate you

6. Critical Thinking Makes You a Better, More Informed Citizen

“An educated citizenry is a vital requisite for our survival as a free people.”

This quote has been incorrectly attributed to Thomas Jefferson , but regardless of the source, these words of wisdom are more relevant than ever. 

Critical thinkers are able to see both sides of any issue and are more likely to generate bipartisan solutions.

They are less likely to be swayed by propaganda or get swept up in mass hysteria.

They are in a better position to spot fake news when they see it.

5 Steps to Improve Your Critical Thinking Skills

Some people already have well-developed critical thinking skills.

These people are analytical, inquisitive, and open to new ideas.

And, even though they are confident in their own opinions, they seek the truth, even if it proves their existing ideas to be wrong.

They are able to connect the dots between ideas and detect inconsistencies in others’ thinking.

But regardless of the state of your critical thinking skills today, it’s a skill set you can develop.

While there are many techniques for thinking rationally, here’s a classic 5-step critical thinking process . 

Performance Lab NutriGenesis Multi is the best multivitamin for men

How to Improve Your Critical Thinking Skills

Clearly define your question or problem.

This step is so important that Albert Einstein famously quipped:

“If I had an hour to solve a problem, I’d spend 55 minutes thinking about the problem and 5 minutes thinking about solutions.”

Gather Information to Help You Weigh the Options

Consider only the most useful and reliable information from the most reputable sources.

Disregard the rest.

Apply the Information and Ask Critical Questions

Scrutinize all information carefully with a skeptic’s eye.

Not sure what questions to ask?

You can’t go wrong starting with the “5 Ws” that any good investigator asks: Who? What? Where? When? Why?

Then finish by asking “How?”

You’ll find more thought-provoking questions on this Critical Thinking Skills Cheatsheet .

Consider the Implications

Look for potential unintended consequences.

Do a thought experiment about how your solution could play out in both the short term and the long run.

Explore the Full Spectrum of Viewpoints

Examine why others are drawn to differing points of view.

This will help you objectively evaluate your own viewpoint.

You may find critical thinkers who take an opposing view and this can help you find gaps in your own logic.

Watch the Video

This TED-Ed video on YouTube elaborates on the five steps to improve your critical thinking.

Recommended: Upgrading brain health is key to making your brain work better.

  • Improve your mental clarity and focus.
  • Boost your memory and your ability to learn.
  • Increase your capacity to think critically, solve problems, and make decisions.

P.S. Like what you've read on this page? Get more like this -- Sign up for our emails .

IMAGES

  1. How Critical Thinking Skills Develop: A Brainy Overview

    what part of brain is critical thinking

  2. Which Part of the Brain Deals With Thinking?

    what part of brain is critical thinking

  3. Where is your Brain? by Alan Toops

    what part of brain is critical thinking

  4. Separating fact from fiction: A guide to critical thinking

    what part of brain is critical thinking

  5. Critical Thinking

    what part of brain is critical thinking

  6. What Is Critical Thinking And Creative Problem Solving : You Will Learn

    what part of brain is critical thinking

VIDEO

  1. 90�il Solve this question#viral #gk #shortsiq testlsat

  2. Your MIND is the MOST POWERFUL TOOL in your ARSENAL!

  3. Shocking Mahadev ji discovery riddlepuzzlebrain exercises

  4. ಕನ್ನಡ ಸಿನಿಮಾ ರಸಪ್ರಶ್ನೆ |General knowledge#gkquiz

  5. Are you smarter than 95%? #quiz #riddle #riddles #shorts #viral

  6. Unleash Your Brainpower

COMMENTS

  1. What Part of the Brain Controls Thinking? Here's How It ...

    When it comes to which part of the brain controls critical thinking and intelligence, we have to consider that the prefrontal cortex, anterior cingulate cortex, and parietal lobe work together like a highly trained Olympic relay team.

  2. Understanding How the Brain Thinks | Edutopia

    Neurologist and teacher Judy Willis describes how students' brains develop critical thinking skills and offers some instructional tips.

  3. part of the brain is related to critical thinking

    The region responsible for critical thinking is known as the prefrontal cortex, often abbreviated as PFC. Let’s delve into what that means. Contents. 1 A Little Anatomy: Regions of The Brain. 2 Functions of The Brain’s Regions. 3 Learning About The Brain’s Functions. 4 Translational Research. 5 A Summary.

  4. Critical Thinking: A Model of Intelligence for Solving Real ...

    One of these skills is problem solving, which is one subset of CT skills. The CT model of intelligence is comprised of two components: (1) understanding information at a deep, meaningful level and (2) appropriate use of CT skills.

  5. How Critical Thinking Skills Develop: A Brainy Overview

    The prefrontal cortex regulates our thoughts, emotions, and actions through extensive connections to other neural structures, and is the main center for critical thinking.

  6. Critical Thinking - Stanford Encyclopedia of Philosophy

    Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities.

  7. How to think effectively: Six stages of critical thinking

    Researchers propose six levels of critical thinkers: Unreflective thinkers, Challenged thinkers, Beginning thinkers, Practicing thinkers, Advanced thinkers, and Master thinkers. The framework...

  8. IBE — Science of learning portal — Critical thinking

    Critical thinkers self-analyze and self-assess the mode of thinking. Consequently, critical thinking is a metacognitive process. Self-evaluation launches a bottom-up process for modulation and improvement of critical thinking, enabling greater adaptability to different situations.

  9. Why Critical Thinking Is Important (& How to Improve It)

    Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action.”

  10. What Are Critical Thinking Skills, and Why Are They Important?

    Critical thinking is the ability to analyse information, identify biases, and solve problems effectively. It's a valuable skill in all aspects of life, from making everyday decisions to succeeding in your career. You can develop critical thinking skills by asking questions, actively listening, and practising logical reasoning.