Physical education, school physical activity, school sports and academic performance

Affiliation.

  • 1 Department of Physical Activity Sciences, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada. [email protected]
  • PMID: 18298849
  • PMCID: PMC2329661
  • DOI: 10.1186/1479-5868-5-10

Background: The purpose of this paper is to review relationships of academic performance and some of its determinants to participation in school-based physical activities, including physical education (PE), free school physical activity (PA) and school sports.

Methods: Linkages between academic achievement and involvement in PE, school PA and sport programmes have been examined, based on a systematic review of currently available literature, including a comprehensive search of MEDLINE (1966 to 2007), PSYCHINFO (1974 to 2007), SCHOLAR.GOOGLE.COM, and ERIC databases.

Results: Quasi-experimental data indicate that allocating up to an additional hour per day of curricular time to PA programmes does not affect the academic performance of primary school students negatively, even though the time allocated to other subjects usually shows a corresponding reduction. An additional curricular emphasis on PE may result in small absolute gains in grade point average (GPA), and such findings strongly suggest a relative increase in performance per unit of academic teaching time. Further, the overwhelmingly majority of such programmes have demonstrated an improvement in some measures of physical fitness (PF). Cross-sectional observations show a positive association between academic performance and PA, but PF does not seem to show such an association. PA has positive influences on concentration, memory and classroom behaviour. Data from quasi-experimental studies find support in mechanistic experiments on cognitive function, pointing to a positive relationship between PA and intellectual performance.

Conclusion: Given competent providers, PA can be added to the school curriculum by taking time from other subjects without risk of hindering student academic achievement. On the other hand, adding time to "academic" or "curricular" subjects by taking time from physical education programmes does not enhance grades in these subjects and may be detrimental to health.

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Physical education, school physical activity, school sports and academic performance

Profile image of romi cendra

2008, International Journal of Behavioral Nutrition and Physical Activity

Background The purpose of this paper is to review relationships of academic performance and some of its determinants to participation in school-based physical activities, including physical education (PE), free school physical activity (PA) and school sports. Methods Linkages between academic achievement and involvement in PE, school PA and sport programmes have been examined, based on a systematic review of currently available literature, including a comprehensive search of MEDLINE (1966 to 2007), PSYCHINFO (1974 to 2007), SCHOLAR.GOOGLE.COM, and ERIC databases. Results Quasi-experimental data indicate that allocating up to an additional hour per day of curricular time to PA programmes does not affect the academic performance of primary school students negatively, even though the time allocated to other subjects usually shows a corresponding reduction. An additional curricular emphasis on PE may result in small absolute gains in grade point average (GPA), and such findings strongly suggest a relative increase in performance per unit of academic teaching time. Further, the overwhelmingly majority of such programmes have demonstrated an improvement in some measures of physical fitness (PF). Cross-sectional observations show a positive association between academic performance and PA, but PF does not seem to show such an association. PA has positive influences on concentration, memory and classroom behaviour. Data from quasi-experimental studies find support in mechanistic experiments on cognitive function, pointing to a positive relationship between PA and intellectual performance. Conclusion Given competent providers, PA can be added to the school curriculum by taking time from other subjects without risk of hindering student academic achievement. On the other hand, adding time to "academic" or "curricular" subjects by taking time from physical education programmes does not enhance grades in these subjects and may be detrimental to health.

Related Papers

arrianne nicole erfe

physical education school physical activity school sports and academic performance

deju yemane

omar al jadaan

Retos: Nuevas Tendencias en Educación Física, Deportes y Recreación

Ricardo Catunda

IJIRT Journal

Understanding the impact between participation in physical fitness status, academic achievement and cognitive development is authentically important for educators, school psychologists and other stakeholders. Examining the link between participation in physical conditioning and academic achievement is important for school monitoring. The link between physical exercise, academic achievement and internal state has long been theorized to be of profound import in understanding academic development. This study aims specifically to emphasize the state of the relationship between physical exercise and the state of academic performance. Data studies, epitomized then, have plant those healthy statuses of physical exercise generally connect with psychological state and academic achievement. This study result has shown that there was a major relationship between fitness status and academic achievement and better academic achievement was related to progressive statuses of fitness status. Physical exercise statuses are capable to ameliorate bone and musculoskeletal function and help to relieve stress, depression, and frustration during academic learnedness. Generally, the antecedent study findings from large-scale experimental studies indicate that participation in physical exertion features a small to moderate effect in precluding and guidance of the chance of frustration, stress also anxiety which consecutively has a correlation on academic achievement and cerebral state. Physical exertion may be a fairly cheap and nonharmful life intervention that will fluently be enforced into academy settings.

ACPES Journal of Physical Education, Sport, and Health (AJPESH)

ANI MAZLINA DEWI MOHAMED

It is a common expectation that bookworm students can perform well and contribute more towards enhancement in academic performance instead of physically active student or best known as sport students. Thus, this study seeks to measure the level of physical activity and explore academic achievement, as well as to examine if there is a relationship between physically active students and academic achievement among student-athletes in a public secondary school in Kedah. Survey method was employed using a set of questionnaires. Purposive sampling method was used to gather information from 22 selected students-athletes involving 8 classes from various sports backgrounds. Results indicated that the associations of physical activity and fitness with cognitive function are relatively few but generally showed a positive association between physical activity and cognitive function of students.

Amanda Staiano

MOJ Sports Medicine

Fernando Maureira Cid

Medicine & Science in Sports & Exercise

Karri Silventoinen

Research Quarterly for …

seetharam gowda

RELATED PAPERS

Richard Lambert

Jonathan Leach

K. Ernstson, T. G. Shumilova, S. I. Isaenko, A. Neumair, M. A. Rappenglück;In: Modern problems of theoretical, experimental and applied mineralogy (Yushkin Memorial Seminar–2013): Proceedings of mineralogical seminar with international participation. Syktyvkar: IG Komi SC UB RAS, 2013, p. 369-371.

Kord Ernstson

Lena O Magnusson

Leslye Ursini

J. C. Mendioz

asie sadeghi

International braz j urol : official journal of the Brazilian Society of Urology

FAUSAT AKANJI

María Cecilia Paredes

Vezetéstudomány / Budapest Management Review

Judit Simon

BMC Gastroenterology

Miriam Troncoso

JOSE JUAN MARAÑON TELLEZ

Vera Antunes de Lima

Ernesto García Leiva

IEEE P2P 2013 Proceedings

William Javier Bedoya Mayor

Acta Crystallographica Section A Foundations of Crystallography

Janka Hradilova

Annals of Biomedical Engineering

Michael Harris

Oscar Enrique Mendez Hernandez

JOHN MWANGI

Journal of the American Society of Nephrology

Tidiane Sow

Quaternary International

jaishri sanwal

50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference

Journal of Saidu Medical College

Amina Ashraf

Journal of Neuro-oncology

Rubén Villa

Postharvest Biology and Technology

Sergio Mario Garrán

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Physical Education

Physical education is the foundation of a Comprehensive School Physical Activity Program. 1, 2 It is an academic subject characterized by a planned, sequential K–12 curriculum (course of study) that is based on the national standards for physical education. 2–4 Physical education provides cognitive content and instruction designed to develop motor skills, knowledge, and behaviors for physical activity and physical fitness. 2–4 Supporting schools to establish physical education daily can provide students with the ability and confidence to be physically active for a lifetime. 2–4

There are many benefits of physical education in schools. When students get physical education, they can 5-7 :

  • Increase their level of physical activity.
  • Improve their grades and standardized test scores.
  • Stay on-task in the classroom.

Increased time spent in physical education does not negatively affect students’ academic achievement.

Strengthen Physical Education in Schools [PDF – 437 KB] —This data brief defines physical education, provides a snapshot of current physical education practices in the United States, and highlights ways to improve physical education through national guidance and practical strategies and resources. This was developed by Springboard to Active Schools in collaboration with CDC.

Secular Changes in Physical Education Attendance Among U.S. High School Students, YRBS 1991–2013

Secular Changes in Physical Education Attendance Among U.S. High School Students Cover

The Secular Changes in Physical Education Attendance Among U.S. High School Students report [PDF – 3 MB] explains the secular changes (long-term trends) in physical education attendance among US high school students over the past two decades. Between 1991 and 2013, US high school students’ participation in school-based physical education classes remained stable, but at a level much lower than the national recommendation of daily physical education. In order to maximize the benefits of physical education, the adoption of policies and programs aimed at increasing participation in physical education among all US students should be prioritized. Download the report for detailed, nationwide findings.

Physical Education Analysis Tool (PECAT)

PECAT cover

The  Physical Education Curriculum Analysis Tool (PECAT) [PDF – 6 MB] is a self-assessment and planning guide developed by CDC. It is designed to help school districts and schools conduct clear, complete, and consistent analyses of physical education curricula, based upon national physical education standards.

Visit our PECAT page  to learn more about how schools can use this tool.

  • CDC Monitoring Student Fitness Levels1 [PDF – 1.64 MB]
  • CDC Ideas for Parents: Physical Education [PDF – 2 MB]
  • SHAPE America: The Essential Components of Physical Education (2015) [PDF – 391 KB]
  • SHAPE America: Appropriate Instructional Practice Guidelines for Elementary, Middle School, and High School Physical Education [PDF – 675 KB]
  • SHAPE America: National Standards and Grade-Level Outcomes for K–12 Physical Education 2014
  • SHAPE America: National Standards for K–12 Physical Education (2013)
  • SHAPE America Resources
  • Youth Compendium of Physical Activities for Physical Education Teachers (2018) [PDF – 145 KB]
  • Social Emotional Learning Policies and Physical Education
  • Centers for Disease Control and Prevention. A Guide for Developing Comprehensive School Physical Activity Programs . Atlanta, GA: Centers for Disease Control and Prevention, US Department of Health and Human Services; 2013.
  • Centers for Disease Control and Prevention. School health guidelines to promote healthy eating and physical activity. MMWR . 2011;60(RR05):1–76.
  • Institute of Medicine. Educating the Student Body: Taking Physical Activity and Physical Education to School . Washington, DC: The National Academies Press; 2013. Retrieved from  http://books.nap.edu/openbook.php?record_id=18314&page=R1 .
  • SHAPE America. T he Essential Components of Physical Education . Reston, VA: SHAPE America; 2015. Retrieved from   http://www.shapeamerica.org/upload/TheEssentialComponentsOfPhysicalEducation.pdf  [PDF – 392 KB].
  • Centers for Disease Control and Prevention. The Association Between School-Based Physical Activity, Including Physical Education, and Academic Performance . Atlanta, GA; Centers for Disease Control and Prevention, US Department of Health and Human Services; 2010.
  • Centers for Disease Control and Prevention. Health and Academic Achievement. Atlanta: US Department of Health and Human Services; 2014.
  • Michael SL, Merlo C, Basch C, et al. Critical connections: health and academics . Journal of School Health . 2015;85(11):740–758.

Please tell us what you think about the CDC Healthy Schools website.

Healthy Youth

To receive email updates about this page, enter your email address:

Exit Notification / Disclaimer Policy

  • The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
  • Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
  • You will be subject to the destination website's privacy policy when you follow the link.
  • CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.
  • Open access
  • Published: 25 February 2008

Physical education, school physical activity, school sports and academic performance

  • François Trudeau 1 &
  • Roy J Shephard 2  

International Journal of Behavioral Nutrition and Physical Activity volume  5 , Article number:  10 ( 2008 ) Cite this article

548k Accesses

417 Citations

55 Altmetric

Metrics details

The purpose of this paper is to review relationships of academic performance and some of its determinants to participation in school-based physical activities, including physical education (PE), free school physical activity (PA) and school sports.

Linkages between academic achievement and involvement in PE, school PA and sport programmes have been examined, based on a systematic review of currently available literature, including a comprehensive search of MEDLINE (1966 to 2007), PSYCHINFO (1974 to 2007), SCHOLAR.GOOGLE.COM, and ERIC databases.

Quasi-experimental data indicate that allocating up to an additional hour per day of curricular time to PA programmes does not affect the academic performance of primary school students negatively, even though the time allocated to other subjects usually shows a corresponding reduction. An additional curricular emphasis on PE may result in small absolute gains in grade point average (GPA), and such findings strongly suggest a relative increase in performance per unit of academic teaching time. Further, the overwhelmingly majority of such programmes have demonstrated an improvement in some measures of physical fitness (PF). Cross-sectional observations show a positive association between academic performance and PA, but PF does not seem to show such an association. PA has positive influences on concentration, memory and classroom behaviour. Data from quasi-experimental studies find support in mechanistic experiments on cognitive function, pointing to a positive relationship between PA and intellectual performance.

Given competent providers, PA can be added to the school curriculum by taking time from other subjects without risk of hindering student academic achievement. On the other hand, adding time to "academic" or "curricular" subjects by taking time from physical education programmes does not enhance grades in these subjects and may be detrimental to health.

The purpose of this paper is to review relationships between physical education (PE), school physical activity (PA), school sports and academic performance. These relationships have been the subject of extensive discussion between advocates and skeptics of PE, school PA and school sports programmes. Both elements of this discussion (academic achievement and physical activity) are independent determinants of a child's health. Our intent in this article is to assess the effects on academic achievement of school PA programmes (including PE and school sports), in both elementary and high schools. Previous reviews have examined relationships between PA and academic achievement. [ 1 – 4 ] Recent research results, echoed in the media, suggest that such activity may have a positive impact on learning and memory. It is now fairly well-recognized that PA is associated with the maintenance of cognitive function in older adults [ 5 ] and offers some protection against Alzheimer's disease. [ 6 ] Cognitive dysfunctions in older adults is becoming an urgent public health problem, given the ever-rising average life expectancy and the associated growth in the proportion of old and very old individuals in most societies. A positive association between PA and cognitive health is also suspected in younger subjects, but is not as well documented in this age group. Nevertheless, any positive influence of PA on the cognitive functions of children is important for at least 2 reasons: 1) It is a potential argument for increasing PE and/or other types of school PA without risk of decreasing academic progress, and 2) It may offer a way to reduce disruptive behaviour at school and the drop-out from educational programmes. Furthermore, an important by-product of an increased participation to school PA would be an enhanced level of physical fitness.

Search methods

The databases searched included MEDLINE (1966 to 2007), PSYCHINFO (1974 to 2007), SCHOLAR.GOOGLE.COM, and ERIC, as well as the extensive personal databases of the authors. The reference lists of the articles thus identified were also consulted to identify additional potentially-relevant research. Publications in languages other than English were considered where appropriate. For the purpose of this review, we use the term academic achievement to encompass academic success, school performance and all combinations of these terms.

The outcomes of school PA/PE and academic achievement, success or performance were actual or self-reported grade point average (GPA) and determinants of GPA that could potentially be changed by the interventions (concentration, learning, classroom behaviour, engagement in learning, self-esteem, etc.). The terms physical education, physical activity and sports are, for the purposes of this review, restricted to programmes offered within the school context (i.e. instructional physical education and extracurricular physical activity, including in-school physical activity programmes, intraschool and intramural sport).

Quasi-experimental and longitudinal studies

It is not surprising that no randomized controlled trials were identified, as they are not practicable in this type of research setting. Quasi-experimental protocols are usually indicated when causality cannot be tested by a random controlled trial in milieux such as the school setting. Seven quasi-experimental studies were identified (Table 1 ). Cross-sectional studies were also considered, as well as experimental or laboratory experiments on the determinants of academic performance (i.e. learning concentration, classroom behaviour, etc.).

The first documented quasi-experimental study relevant for to this paper was the Vanves (France) investigation; this involved a small group of schoolchildren tested during the 1950's. [ 7 ] Schoolchildren who spent mornings in the classroom and afternoons doing PE were said to perform better academically than children from a control class, but no further details were given. [ 7 ] Unfortunately, the specifics of these observations were not described in peer reviewed journals.

A second quasi-experimental study conducted in the Trois-Rivières region (Québec) between 1970 and 1977 involved 546 primary school students; this noted that students involved in an experimental 5 hours of physical education per week had a higher academic performance than their control counterparts who were enrolled in the normal school program for 40 min per week [ 8 ]. The supplemental 260 minutes allocated to PE was necessarily taken from time for other academic teaching (i.e. an average 14% curtailment of academic instruction). Despite this curricular change, during the last 5 years of primary school, the overall academic performance of the experimental students improved relative to the controls. During standardized Provincial examinations, children receiving the 5 hours/week of PE had higher scores in mathematics, but lower scores in English (their second language), despite the fact that 33 minutes were removed from mathematics instruction and none from English. [ 3 ]

A 2-year quasi-experimental study followed 759 Californian children in the 5th and 6th grades. [ 9 ] Subgroups of children were taught PE by either a professional physical educator (n = 178), a trained homeroom teacher (n = 312), or in the normal programme (n = 165). The professional physical educators, the trained teachers, and normal programmes offered, respectively, 80, 65, and 38 minutes per week of PE. As expected, those taught by the professional physical educators achieved greater fitness (cardiovascular and muscle endurance). [ 10 ] Also, the groups taught by the professional physical educators and trained teachers had smaller declines in academic performance despite allocating more time to PE. Four of 8 statistical comparisons disclosed an advantage for students in the experimental groups; one comparison was advantageous to control students, while the remaining 3 were equal. The group who spent the most time on PE (i.e. those with a professional physical educator) showed no negative effects on academic achievement and indeed the decline of academic results during the 2 years of the intervention was smaller than that observed in the control subjects. [ 9 ]

In South Australia, the 500-student SHAPE trial added 1.25 hours per day of endurance fitness training to the curriculum of 10-year-old primary school students. [ 11 ] Over the first 14 weeks of the study, the experimenatl group showed gains in physical work capacity and decreases in body fat relative to controls. Arithmetic and reading scores were not adversely affected by the substantial reallocation of curricular time in favour of PE. These physical benefits appeared to be maintained over the succeeding 2 years in a follow-up of 216 participants. These follow-up evaluations showed (non-significant) trends for better arithmetic and reading grades in experimental students, as well as beneficial changes in teachers' ratings of classroom behaviour. [ 12 ]

The 16-month Action School BC! project involved a population of 287 British Columbian primary school children (4th and 5th years: 9–11-years olds). PA was delivered by classroom teachers, amounting to 47 minutes more per week in interventional than in control schools (139 ± 62 vs. 92 ± 45 minutes, P < 0.001). [ 13 ] Despite a corresponding decrease in academic time, the academic performance of the experimental group, as measured by the Canadian Achievement Test, remained unchanged; indeed, data analysis revealed a trend towards an enhanced academic performance in the intervention schools (the average score rising from 1,595 to 1,672 units).

Another interventional study of 6 th grade (11 year-old) students covered a single school term. Fifty-five minutes/day of PE were included in the curriculum, vs. the same allocation of time for arts or computer sciences; the two groups performed equally well in mathematics, sciences and English. [ 14 ] Finally, an intervention in Israel involved 92 preschool and 266 first grade children. [ 15 ] The experimental manipulation here was a school-based movement education programme, and children in the experimental group showed greater reading skills and arithmetic scores than controls. [ 15 ]

Taken together, these quasi-experimental data suggest that the enriched PE programmes demanded a substantial reduction in the time allocated for academic tuition. Since the children achieved at least equally despite the reduced teaching time, the evidence seems strong that the efficiency of learning was enhanced. [ 3 ] Despite the variety of programme durations and locations, a common and valuable by-product was a significant increase in various measures of physical fitness (PF).

Cross-sectional studies

Cross-sectional studies commonly have difficulty in controlling for potential biases, particularly socio-economic status (SES). SES remains the strongest predictor of academic achievement [ 16 ] and is also one of the strongest predictors of PA participation in children (e.g. in Canada [ 17 ]; Italy [ 18 ] and Estonia [ 19 ]). Cross-sectional studies generally indicate a positive association with academic achievement. Some of these studies did control for confounders such as SES, and still most of them found a positive association between physical activity and academic achievement (Table 2 ).

Positive results on GPA

Nelson and Gordon-Larsen [ 20 ] analyzed results from the US National Longitudinal Study of Adolescent Health; they observed that adolescents who were active in school were more likely to have high grades. Even after adjustment for demographics and SES, the risk ratio of higher grades was 1.20 for mathematics and 1.21 for English among adolescents who were active at school. Within middle to upper middle SES categories, a cross-sectional study of suburban high school seniors (52 girls and 37 boys) found that the more active group had higher GPA. [ 21 ]

4,690 Hong Kong children from primary 5 to secondary 7 (i.e. grades 5 to 12) completed a pre-validated questionnaire relating their sports and exercise participation to perceived academic performance. [ 22 ] Low correlations were seen for the whole sample (r = 0.10, P < 0.01; r = 0.17, P < 0.01 for females; r = 0.06, NS for males). GPA was not a significant correlated with PA participation when all school bands were confounded; however, the high band showed a positive link between GPA and PA participation, whereas students in the low band showed a negative relationship between PA participation and GPA. [ 23 ] These reports suggest that the relationship between PA and academic performance is influenced by the type of students and/or the school that they attend. Deliberate stratification of students by learning ability is by no means universal, but we cannot exclude the possibility that spontaneous, unplanned banding may also influence the strength of observed relationships.

Dwyer et al. [ 24 ] made a cross-sectional survey of 9000 Australian schoolchildren between the ages of 7 and 15 years (500 in each age/sex stratum drawn from 109 schools, i.e. 10 girls and 10 boys per school). Depending on the group, a linear regression analysis with good control of confounding variables demonstrated a significant association between academic achievement and PA (a combination of lunchtime PA and minutes of PA the preceding week). In all subjects aged 9–12 years, school performance was positively associated with ratings of PA during the preceding week. In girls 10–15 years old and boys 8–15 years old, academic achievement was also positively associated with the estimates of lunchtime PA. The correlation coefficients between PA and academic achievement, although low (r = 0.08 to 0.19) were statistically significant, suggesting that PA was contributing to academic achievement in both boys and girls. Data from the Youth Risk Behavior Survey likewise showed that a perception of little or no involvement in PA was associated with a perception of low academic performance. [ 25 ] Another cross-sectional study from England also controlled for SES; this again reported a positive association between school sports participation and academic achievement. [ 26 ]

Researchers from Iceland designed a study included other health behaviours. [ 27 ] They found small but significantly positive univariate associations of PA with self-reported school performance (r = -0.11 with absenteeism and r = 0.09 with grades). When confounders were considered, these associations were further weakened, but nevertheless remained statistically significant predictors if selected health behaviours and psychological variables were included in the prediction model. [ 27 ]

Negative or null outcomes on GPA

In 6,923 grade 6 New Brunswick children (age 11 years), PA showed a weak inverse association with academic achievement, but a positive association with self-esteem. [ 28 ] A study on 232 English boys and girls (13–16 years old) found no relationship between self-reported PA and GPA. Moreover, in children aged 13, 14, or 16 years, the durartion of PA was negatively correlated with marks for English (r = -0.29 to -0.30). [ 29 ] To our knowledge, these are the only 2 studies to observe negative associations between PA (but not PE) and academic achievement.

A survey of 117 Australian primary schools found no deterioration of literacy and numeracy results in primary school grades 3, 5 and 7 when more time was allocated to PE. [ 30 ] SES was the strongest predictor of both literacy and numeracy scores. A recent analysis of Hong Kong pre-adolescent boys reported that a high level of PA at school was associated with high self-esteem, but not with academic achievement. [ 31 ]

Even studies that failed to find a positive relationship between PA/PE and GPA have generally found no decrease in academic achievement as a consequence of increased participation in PA (Table 2 ). Clearly, the absence of an elevation in GPA should not be interpreted as a negative outcome. This is well illustrated by a survey conducted in Virginia's primary schools. [ 32 ] A reduction in the time allocated for PE (or the arts) did not improve performance in other subjects like mathematics or reading. Moreover, increasing the time allocated to PE (or the arts) at the expense of other academic subjects was not detrimental to test scores in these subjects. [ 32 ] Taken together, these observations suggest that if academic achievements are maintained while spending less time on a specific discipline, the intervention has increased academic efficacy.

Effects of PA on elements considered to favour academic performance

Many factors like classroom behaviour, self-esteem, self-image, school satisfaction and school connectedness have been postulated as determinants of academic achievement.

Classroom behaviour

Self-identification as a school athlete vs. a «jock» is associated with a lower rate of reported misconduct at school [ 33 ], with the exception of binge drinking. [ 34 ] In the American linguistic context, the word "jock" refers to an individual whose life is oriented toward sport; it is not necessarily a pejorative term. However, it should not be confused with the focused and planned life of a typical athlete.

In the Trois-Rivières study, competencies linked to behaviour were similar overall in the experimental vs. the control group. [ 35 ] A German cross-sectional study (CHILT) compared 12 intervention schools (n = 668) vs. 5 control schools (n = 218), finding that PF was associated with concentration in 6–7 years old children. [ 36 ]

Evans et al. [ 37 ] reported a lower rate of inappropriate talking among emotionally, or behaviourally-disturbed children who were participating in a jogging and football exercise programme. Furthermore, a meta-analysis on the effect of exercise prior to classes led to the conclusion that most exercise interventions significantly reduced disruptive behaviours in disturbed students. [ 38 ] These effects could reflect in part better teacher attitudes towards these children, as seen in the Trois-Rivières [ 3 ] and the Australian [ 1 ] quasi-experimental studies.

Other psychosocial effects

Better self-esteem or self-image [ 20 , 39 ] and body image [ 40 ] are commonly associated with high levels of PA. Many studies have also linked school sport or PA programmes with other psychosocial outcomes, such as school satisfaction and school connectedness, regardless of ethnic group [ 41 ]. Both school connectedness and school satisfaction are factors preventing drop-out from school. [ 42 ]

A recent analysis of data from the National Longitudinal Study of Adolescent Health [ 20 ] found evidence of a positive association between PA and components of mental health, including self-esteem, emotional well-being, spirituality, and future expectations. When participation in PA/sports also included parental involvement, the behavioural risk profile became even more positive.

A cross-sectional questionnaire study of 245 Finnish adolescents [ 43 ] observed no association between PA level and school satisfaction and the trend to a weak correlation between PA level and problems at school was not statistically significant. However, PA was correlated with global school satisfaction (r = -0.21 for boys) and absence of a depressive mood state (-0.20 and -0.26 for girls and boys, respectively).

What are the acute effects of PA on cognitive function?

Many authors have documented the acute effects of PA on cognitive function. Three recent reviews and/or meta-analyses examined these studies. [ 44 – 46 ] In a meta-analysis of 44 studies, Sibley and Etnier [ 45 ] concluded that PA was positively associated with better cognitive functioning in children. Some groups, particularly middle school students (grades 6–8, aged 11–13 years) and younger, seemed to benefit more from PA. Sibley and Etnier [ 45 ] noted that unpublished studies had a higher effect size than published reports, suggesting that no bias had occurred from a failure to publish non-significant results.

Brisswalter et al. [ 44 ] reviewed published studies into the effects of exercise on various tasks. They concluded that the optimal intensity for decisional tasks covered a wide range (~40–80% VO 2 max). An exercise duration of more than 20 minutes was most efficient in increasing the performance of perceptual and decisional tasks. [ 44 , 46 ] Tomporowki [ 47 ] suggested an upper limit of 60 minutes might arise from the adverse effects of dehydration on cognitive functions.

The literature generally suggests a positive effect of acute physical exercise on cognition. Other activities, like involvement in music also have the potential to increase reading skills, although in this case there is no positive influence on PF. [ 48 ]

Relationship of PF with academic achievement

What is the effect of a high level of PF on academic performance? Is good cognitive functioning associated with above average PF? If so, is this a consequence of PF per se, or of better overall physical health? When analyzed globally, the literature does not indicate any clear linkage between PF and either academic achievement or intellectual performance. As early as 1969, Railo found no relationship between PF and either of these outcomes. [ 49 ] More recently, Etnier et al. [ 50 ] concluded from a meta-regression analysis that the empirical literature did not support a link between cardiovascular PF and academic achievement. However, this meta-analysis revealed a weakness in the literature: there was little data on the relationship between PF and academic achievement in school-aged children. Indeed, only 1 of the 37 studies identified included this age group.

When the definition of PF includes aspects other than cardiovascular fitness, there seems evidence of positive correlations between various measures of psychomotor performance, cognitive abilities and academic achievement. [ 51 , 52 ] Psychomotor performance shares many common neurological mechanisms with cognitive functions.

A 2001 cross-sectional study on California children disclosed a positive relationship between reading and mathematics results (as measured by Stanford Achievement Test-9) and results on a field test of physical fitness (the Fitnessgram). Despite a huge sample of students from grades 5, 7 and 9 (n = 954,000), potential selection biases were not considered, making it difficult to conclude that PA was linked to increased academic performance. [ 53 ] When found, any effects of PF were small. Another weak association between PF and academic achievement was observed in South Korean children (grades 5, 8, and 11); in this study, the association was much smaller than that between academic achievement and regular meal eating. [ 54 ] Dwyer et al. [ 24 ] measured muscle fitness in 9,000 Australian students. They found significant but weak associations, ranging from r = -0.10 to -0.19 for running distances of 50 m and 1.6 km, and from r = 0.10 to 0.22 for sit-ups and standing long jump, respectively.

School sports and academic achievement

The connection between school sports and intellectual achievement has been a long-standing issue since Davis and Cooper [ 55 ] first reported a positive association between school sports participation and academic achievement. It remains the subject of recent investigations. The competitive dimension of most sports introduces particular problems, even in the school context, as the educational dimension tends to be relegated to a secondary level. The literature comprises mainly cross-sectional data and the results are more equivocal than for PA; unfortunately, most of the earlier studies did not control for biases common to athletic and academic achievements. [ 56 , 57 ]

Data from the longitudinal Maryland Adolescent Development in Context Study included 67% African-Americans and 33% European-Americans; it found that participation in extracurricular PA was a significant predictor of better academic results and of higher academic expectations. [ 58 ] Furthermore, sports participation by 8th grade African-American males resulted in aspirations to continue their studies toward college, with less likelihood of acting inappropriately in school. [ 59 ] In their female counterparts, sports participation also resulted in higher aspirations and in a reduction of absenteeism.

Cooper et al. [ 60 ] found that even after eliminating confounding factors, extracurricular activities, including sports and PA were predictors of better academic achievement in 2,200 American high school students. Their conclusion is in line with the point that Marsh made in 1992, that such activities may have an effect on academic achievement by increasing motivation and investment in school. [ 61 ] Another study of 11,957 American adolescents found that even after standardization for SES, sports participation with parental presence was associated with an increased probability of good grades in English and mathematics, the Adjusted Relative Risk being 1.23 for both subjects. [ 20 ] Dexter [ 62 ] examined the relationship between sports knowledge, sport performance and academic ability, the last being measured by scores on the British General Certificate of Secondary Education (GCSE). They observed a small but significant positive correlation between sports performance and GCSE score for both mathematics and English.

Melnick et al. [ 63 ] detected no relationship between academic achievement and sports participation in 3,686 African-American and Hispanic students from the "High-school and Beyond Study". However, sports participation was associated with a lower drop-out rate. Therefore, they suggested that if sports participation contributes to academic achievement, it may do so indirectly, by encouraging retention in school. Fisher et al. [ 64 ] also observed no association between sports involvement and self-reported grades in an ethnic mix of 838 grade 9 to 12 students (predominantly 63% African-American and 27% Hispanic).

Harvard students involved in varsity teams had a slightly lower GPA than their peers, but reported a higher degree of satisfaction with their university experience. [ 65 ] This also seemed the case in other institutions examined by Light. Athletes have more friends and a stronger sense of belonging to their institution. They are, according to Light, "the happiest on campus". Generally, this same trend is seen among high-school athletes. Students engaged in extracurricular PAs do not achive different academic scores than their peers, but they feel a greater engagement with their institution. [ 66 , 67 ] This may reflect in part the greater attention directed towards these specific students. Indeed, participants in extracurricular activities (including sports) have more interactions with significant adults than non-participants. [ 66 ]

Sport is a very complex phenomenon. There are many cultures within school sports, and any effect on academic achievement is influenced by gender, race, type of sport, type and level of athletic involvement. White and McTeer [ 68 ] suggested that the status of a given sport may influence its effect on academic achievement. Their results showed that high-status sports had a positive influence on English grades but they saw no evidenceof an effect of such sports on mathematics grades. They suggested that academic performance was more likely to be affected by cultural factors in subjective subjects like English than in mathematics. Any influence of school sports participation may also differ between girls and boys [ 33 ], and between various ethnic and cultural groups. [ 69 ]

In conclusion, the available literature suggests that sport is more likely to benefit academic achievement if offered in school rather than in other sport contexts, given the proximity of educational resources and environment. This may be particularly important for team sports, which often seem associated with risky behaviours, particularly binge drinking of alcohol. [ 70 ] When sports-involved students identify themselves as athletes rather than «jocks», such risky behaviours seem less prevalent. [ 67 ] Greater academic coaching of school athletes could be a factor favouring their academic achievement. [ 67 ] School sports should be monitored closely, with the intent of avoiding a drift away from educational objectives. It appears that satisfaction with sports vs. satisfaction with school work is predicted by a differing psychological domain (perceived ability vs. task orientation). [ 71 ] It may be helpful to create an environment where both types of endeavour find common ground, i.e. school may be the best setting in which sports can be directed towards task orientation and skills acquisition, without decreasing the pleasure and satisfaction of being good at sports and PA. As noted in various long-term follow-ups, elite and varsity level athletes later tend to experience greater educational and labour market success than non athletes. [ 34 , 67 , 72 , 73 ] Current evidence suggests that this effect may be mediated by racial group. [ 74 ]

Populations with special educational needs

Academic integration of children with various behavioural and developmental problems is a growing trend in industrialized countries. The question arises in terms of their academic achievement. Reviews of exercise programmes for children with learning disabilities [ 75 , 76 ] have suggested that in order to increase the likelihood of positive outcomes, such programmes should have a low student-instructor ratio. Benefits (with the exception of increased PF) may reflect increased attention toward the participants.

In hyperactive impulsive children, PA is associated with global satisfaction in boys and an absence of depressive emotions in both sexes. [ 77 ] An outdoor education programme also decreased behavioural problems in children with attention deficit hyperactivity disorder. [ 78 ]

In children with reading disabilities, a school-based programme of balance and coordination training, throwing, catching, and stretching produced significant improvements in both reading and semantics. [ 79 ] Positive changes were maintained for at least 18 months following the programme, reducing the likelihood of a Hawthorne effect. [ 80 ]

Four pupils with emotional and behavioural disorders were directly studied before and after a 10-week PE intervention. Back in class, there was an increase (13.8%, or a little more than 23 minutes) in the amount of time spent focused on the tasks they were supposed to be performing. [ 81 ] A 10-week PA intervention in children with learning disabilities improved classroom behaviour and the perception of academic competence was increased. [ 76 ] However, a similar outcome was seen in the control group, indicating that there had been no specific effect from the programme.

The effects of school PA upon children with learning problems thus remains an open field for research.

Is the potential beneficial effect of PE, school PA and sport supported by fundamental research?

The positive association observed between PA and intellectual performance among children in quasi-experimental studies should be supported by mechanistic, experimental evidence. No one can deny the important role of neurosciences in the comprehension of academic achievement. [ 82 ] Most research on the relationships between PA and cognition has centered on the hippocampus, a brain region that mediates memory and learning in mammals, and on changes in the cerebral circulation. The hippocampus has an important role in the consolidation of memory. One major mechanism essential to its functions is long-term potentiation, or LTP. LTP leads to an enhancement of nervous influx following a first series of stimuli.

Exercise and learning mechanisms

Hippocampal LTP is the most credible physiological explanation for learning and memory in mammals, including humans. [ 83 ] LTP leads to an increase of synaptic efficacy following an increase of synaptic traffic. [ 83 ] It was shown recently that PA favours hippocampal LTP. [ 84 ] Chronic exercise favourably influences the hippocampus through 3 mechanisms:

1) Heightened neurogenesis, i.e. an increased formation of new neurons after chronic PA, as demonstrated in the adult mouse [ 85 , 86 ],

2) Augmented LTP itself, i.e. enhanced neuronal transmission in the hippocampus. Different methods employed to measure cognitive functions, and scores on these tasks are well correlated with a better performing hippocampus [ 87 ]. Radial maze learning, i.e. an hippocampal spatial learning, is increased in both male and female rats exercised by voluntary running. The performance of this task does not seem to be influenced by changes in fitness of the animal, as is the case for the Morris water maze. However, if the water maze is used, it remains possible to control for an animal's level of fitness. Other studies using the Morris water maze have also reported improved performance. [ 85 , 88 ] Exercise has no effect on glutamate receptors in the hippocampus in aged rats [ 89 ], reinforcing the view that post-receptor mechanisms are responsible for stronger LTP in active animals. However, this point remains to be confirmed in the hippocampus of younger animals,

3) Chronic exercise creates a favourable environment for LTP by increasing the hippocampal concentrations of neuroprotective factors like brain-derived neurotrophic factor (BDNF) [ 90 ] and of other growth factors such as insulin-like growth factor (IGF-1), nerve growth factor, and fibroblast growth factor 2 (FGF-2).

The brain concentration of some antioxidants is also increased in trained animals, thus protecting hippocampal cells from oxidative damage. [ 91 ] Radak et al. [ 92 ] studied the acute effects of exercise (2 hours). Oxidative damage to macromolecules was reduced through an increase of glutathion synthetase activity and a reduction in the deleterious, inactivity-related efflux of glutamate (the neurotransmitter of learning in the hippocampus). Acute exercise also normalized certain memory functions, particularly orientation time to novelty and passive avoidance reactions.

To our knowledge, these mechanisms of enhanced learning and memory have never been explored in animals at a developmental stage corresponding to school-age children. We hypothesize that, given the higher brain plasticity of childhood, the changes seen in older brains may have an even greater magnitude in the developing brain. The data suggest that the brain structures involved in learning and memory, although more complex, function much like skeletal muscle. To enhance function (i.e. increase memory and learning), periods of stimulation must be followed by a recovery period when supercompensation can take place, and the new proteins associated with learning and memory consolidation can be synthesized.

Discussion and Conclusion

Available data suggest that school PA (PE instruction, free time PA or school sport) could become a consistent component of PA to meet current guidelines for children and adolescents without impairing academic achievement, even if curricular time for so-called academic subjects is curtailed. In his classical work "The Adolescent Society," James S. Coleman advanced the concept of a zero-sum model. [ 93 ] This hypothesized that if time was taken from academic programmes to allow other pursuits, academic achievement would suffer. This concept may be applicable if time is spent in paid employment while attending school [ 94 ], but it does not seem to apply to extracurricular activities like sports or curricular PE. [ 95 ] In contrast, such activities are likely to increase attachment to school and self-esteem which are indirect but important factors in academic achievement.

Parents concerned about decreases in study and homework time may be better advised to question the time their children spend on TV and computer games rather than the time that they devote to PE, PA or sports in school. Indeed, the more children watch TV, the greater the decline in their academic results. [ 96 ] At least one Canadian study found that the time devoted to PA was positively associated with the time that school-aged children spent in reading. [ 97 ] Parents interested in the health and academic success of their offspring should focus on the increased prevalence of various metabolic pathologies in which sedentary behaviour plays a key etiologic role, for example, obesity and type 2 diabetes, both of which are beginning at an ever younger age. [ 98 ] Such pathologies have the potential to affect school performance adversely, although this is an area where more research is needed. [ 99 ] In one recent article, obese 3 rd grade girls (8 years old) did not have poorer academic results after control for SES, but relative to normal weight girls they exhibited more displaced behaviours like arguing and fighting, as well as more depressive symptoms like loneliness and sadness [ 100 ].

Engagement in PE instruction would probably be increased if grades were allocated for performance in PE, particularly in high school. The engagement of girls, particularly, decreases when PE is not considered incalculating their GPA. [ 101 , 102 ] However, between grade 8 and 12, the school drop-out rate for adolescents of both sexes is reduced by sport participation [ 103 ]

Another problem that remains to be resolved, despite a call for action from the Surgeon General in 1996, is the heterogeneity in provision of PE [ 104 ], extracurricular sports and other school PA programmes [ 105 ], schools with a low SES being particularly disadvantaged. School sport would appeal to more students if emphasis was placed on its educational potential rather than its competitive side. Potential drifting of objectives should be monitored to avoid a «subversion» of the educational mission and ensure a maximisation of positive effects such as academic achievement and long term adherence to physical activity. The current emphasis on a limited range of team sports should be modified to provide opportunities for students who are interested in and have the skills relevant to other sport ventures, thus attracting a wider range of students.

Many questions remain to be clarified on the relationship between academic performance, PE, school PA and sports. However, to paraphrase Eccles et al. [ 67 ], "We now know enough about the kinds of programs likely to have positive effects on children and adolescents' development." The literature strongly suggests that the academic achievement, physical fitness and health of our children will not be improved by limiting the time allocated to PE instruction, school PA and sports programmes.

Dwyer T, Blizzard L, Dean K: Physical activity and performance in children. Nutr Rev. 1996, 54: S27-S35.

CAS   Google Scholar  

Kirkendall DR: Effect of physical activity on intellectual development and academic performance. Academy Papers. Edited by: Stull GA. 1986, Champaign, IL: Human Kinetics, 49-63.

Google Scholar  

Shephard RJ: Curricular physical activity and academic performance. Pediatr Exerc Sci. 1997, 9: 113-126.

Taras H: Physical activity and student performance at school. J Sch Health. 2005, 75: 214-218. 10.1111/j.1746-1561.2005.00026.x.

Kramer AF, Erickson KI, Colcombe SJ: Exercise, cognition, and the aging brain. J Appl Physiol. 2006, 101: 1237-1242. 10.1152/japplphysiol.00500.2006.

Rovio S, Kareholt I, Helkala EL, Viitanen M, Winblad B, Tuomilehto J, Soininen H, Nissinen A, Kivipelto M: Leisure-time physical activity at midlife and the risk of dementia and Alzheimer's disease. Lancet Neurol. 2005, 4: 705-711. 10.1016/S1474-4422(05)70198-8.

Fourestier M: Les expériences scolaires de Vanves. Int Rev Educ. 1962, 8: 81-85. 10.1007/BF01422493.

Shephard RJ, Volle M, Lavallée H, LaBarre R, Jéquier JC, Rajic M: Required physical activity and academic grades: a controlled longitudinal study. Children and Sport. Edited by: Ilmarinen J, Valimaki I. 1984, Berlin: Springer Verlag, 58-63.

Sallis J, McKenzie T, Kolody B, Lewis M, Marshall S, Rosengard P: Effects of health-related physical education on academic achievement: Project SPARK. Res Quart Exerc Sport. 1999, 70 (2): 127-134.

Sallis JF, McKenzie TL, Alcaraz JE, Kolody B, Faucette N, Hovell M: The effects of a 2-year physical education program (SPARK) on physical activity and fitness in elementary school students. Am J Publ Health. 1997, 87 (8): 1328-1334.

Dwyer T, Coonan WE, Leitch DR, Hetzel BS, Baghurst RA: An investigation of the effects of daily physical activity on the health of primary school students. Int J Epidemiol. 1983, 12: 308-313. 10.1093/ije/12.3.308.

Maynard EJ, Coonan WE, Worsely A, Dwyer T, Baghurst PA: The development of the lifestyle education program in Australia. Cardiovascular Risk Factors in Children. Edited by: Berenson GS. 1987, Amsterdam: Elsevier, 123-142.

Ahamed Y, Macdonald H, Reed K, Naylor PJ, Liu-Ambrose T, McKay H: School-based physical activity does not compromise children's academic performance. Med Sci Sports Exerc. 2007, 39: 371-376. 10.1249/01.mss.0000241654.45500.8e.

Coe DP, Pivarnik JM, Womack CJ, Reeves MJ, Malina RM: Effect of physical education and activity levels on academic achievement in children. Med Sci Sports Exerc. 2006, 38: 1515-1519. 10.1249/01.mss.0000227537.13175.1b.

Raviv S, Reches I, Hecht O: Effects of activities in the motor-cognitive-learning center on academic achievements, psychomotor and emotional development of children (aged 5–7). J Phys Educ Sport Sci (Israel). 1994, 2: 50-84.

Willms JD: Ten hypotheses about socioeconomic gradients and community differences in children's developmental outcomes. Human Resources Development Canada, Ottawa. 2003, [ http://www.dsp-psd.communication.gc.ca/Collection/RH63-1-560-01-03E.pdf ]

Mo F, Turner M, Krewski D, Mo FD: Physical inactivity and socioeconomic status in Canadian adolescents. Int J Adolesc Mental Health. 2005, 17 (1): 49-56.

La Torre G, Masala D, de Vito E, Langiano E, Capelli G, Ricciardi W: Physical Activity and Socio-economic Status collaborative group. Extra-curricular physical activity and socioeconomic status in Italian adolescents. BMC Public Health. 2006, 6: 22-10.1186/1471-2458-6-22.

Raudsepp L: The relationship between socio-economic status, parental support and adolescent physical activity. Acta Paediatr. 2006, 95: 93-98. 10.1080/08035250500323772.

Nelson MC, Gordon-Larsen P: Physical activity and sedentary behavior patterns are associated with selected adolescent health risk behaviors. Pediatrics. 2006, 117: 1281-1290. 10.1542/peds.2005-1692.

Field T, Diego M, Sanders CE: Exercise is positively related to adolescents' relationships and academics. Adolescence. 2001, 36: 105-110.

Lindner KJ: Sport participation and perceived academic performance of school children and youth. Pediatr Exerc Sci. 1999, 11: 129-143.

Lindner KJ: The physical activity participation-academic performance relationship revisited: perceived and actual performance and the effect of banding (academic tracking). Pediatr Exerc Sci. 2002, 14: 155-169.

Dwyer T, Sallis JF, Blizzard L, Lazarus R, Dean K: Relation of academic performance to physical activity and fitness in children. Pediatr Exerc Sci. 2001, 13: 225-238.

Pate RR, Heath GW, Dowda M, Trost SG: Associations between physical activity and other health behaviors in a representative sample of US adolescents. Am J Publ Health. 1996, 86 (11): 1577-1581.

Williams A: Physical activity patterns among adolescents – some curriculum implications. Physical Educ Rev. 1988, 11: 28-39.

Sigfúsdóttir ID, Kristjánsson AL, Allegrante JP: Health behaviour and academic achievement in Icelandic school children. Health Educ Res. 2007, 22: 70-80. 10.1093/her/cyl044.

Tremblay MS, Inman JW, Willms JD: The relationship between physical activity, self-esteem, and academic achievement in 12-year-old Children. Pediatr Exerc Sci. 2000, 12: 312-324.

Daley AJ, Ryan J: Academic performance and participation in physical activity by secondary school adolescents. Percept Mot Skills. 2000, 91: 531-534. 10.2466/PMS.91.6.531-534.

Dollman J, Boshoff K, Dodd G: The relationship between curriculum time for physical education and literacy and numeracy standards in South Australian primary schools. Eur Physical Educ Rev. 2006, 12: 151-163. 10.1177/1356336X06065171.

Yu CCW, Chan S, Cheng F, Sung RYT, Hau K-T: Are physical activity and academic performance compatible? Academic achievement conduct, physical activity and self-esteem of Hong Kong Chinese primary school children. Educational Stud. 2006, 32: 331-341. 10.1080/03055690600850016.

Wilkins JLM, Graham G, Parker S, Westfall S, Fraser RG, Tembo M: Time in the arts and physical education and school achievement. J Curricul Stud. 2003, 35: 721-734. 10.1080/0022027032000035113.

Miller KE, Melnick MJ, Barnes GM, Farrell MP, Sabo D: Untangling the links among athletic involvement, gender, race, and adolescent academic outcomes. Sociol Sport J. 2005, 22: 178-193.

Carlson D, Scott L, Planty M, Thompson J: What Is the Status of High School Athletes 8 Years After Their Senior Year?. 2005, National Center of Education Statistics, U.S. Department of Education, Institute of Education Sciences NCES, 303.

Shephard RJ: Long-term studies of physical activity in children-the Trois-Rivières experience. Children and exercise XI. Edited by: Binkhorst RA, Kemper HCG, Saris WHM. 1985, Champaign, IL: Human Kinetics, 252-259.

Graf C, Koch B, Klippel S, Büttner S, Coburger S, Christ H, Lehmacher W, Bjarnason-Wehrens B, Platen P, Hollamnn W, Predel H-G, Dordel S: Zusammenhänge zwischen köperliche Aktivität und Konzentration in Kindesalter- Eingangsergebnisse des CHILTS-Projecktes [Correlation between physical activities and concentration in children- results of the CHILT project.]. Deutsche Zeitschrift für Sportmedizin. 2003, 54: 242-246.

Evans WH, Evans SS, Schmid RE, Penneypacker HS: The effects of exercise on selected classroom behaviors of behaviorally disordered adolescents. Behav Disorders. 1985, 11: 42-50.

Allison DB, Faith MS, Franklin RD: Antecedent exercise in the treatment of disruptive behavior: A meta-analytic review. Clin Psychol: Sci Pract. 1985, 2: 279-303.

Kirkcaldy BD, Shephard RJ, Siefen RG: The relationship between physical activity and self-image and problem behaviour among adolescents. Soc Psychiatry Psychiatr Epidemiol. 2002, 37: 544-550. 10.1007/s00127-002-0554-7.

Hausenblas HA, Symons Downs D: Comparison of body image between athletes and nonathletes: A meta-analytic review. J Appl Sport Psychol. 2001, 13: 323-339. 10.1080/104132001753144437.

Brown R, Evans WP: Extracurricular activity and ethnicity: creating greater school connection among diverse student populations. Urban Educ. 2002, 37: 41-58. 10.1177/0042085902371004.

Libbey HP: Measuring student relationships to school: attachment, bonding, connectedness, and engagement. J School Health. 2004, 74: 274-283.

Katja R, Paivi AK, Marja-Terttu T, Pekka L: Relationships among adolescent subjective well-being, health behavior, and school satisfaction. J School Health. 2002, 72 (6): 243-249.

Brisswalter J, Collardeau M, Rene A: Effects of acute physical exercise characteristics on cognitive performance. Sports Med. 2002, 32: 555-566. 10.2165/00007256-200232090-00002.

Sibley BA, Etnier J: The relationship between physical activity and cognition in children: a meta-analysis. Pediatr Exerc Sci. 2003, 15: 243-256.

Tomporowski PD: Cognitive and behavioral responses to acute exercise in youths: a review. Pediatr Exercise Sci. 2003, 15: 348-359.

Tomporowski P: Effects of acute bouts of exercise on cognition. Acta Psychol. 2003, 112 (3): 297-332. 10.1016/S0001-6918(02)00134-8.

Register D, Darrow AA, Standley J, Swedberg O: The use of music to enhance reading skills of second grade students and students with reading disabilities. J Music Ther. 2007, 44: 23-37.

Railo W: Physical fitness and intellectual achievement. Scand J Educat Res. 1969, 13: 103-120. 10.1080/0031383690130105.

Etnier JL, Nowell PM, Landers DM, Sibley BA: A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Res Rev. 2006, 52: 119-130. 10.1016/j.brainresrev.2006.01.002.

Goldstein DJ, Britt TW: Visual-motor coordination and intelligence as predictors of reading, mathematics, and written language ability. Percept Mot Skills. 1994, 78 (3Pt1): 819-823.

Planinsec J, Pisot R: Motor coordination and intelligence level in adolescents. Adolescence. 2006, 41: 667-676.

Grissom JB: Physical fitness and academic achievement. California Department of Education. Journal of Exercise Physiologyonline. 2005, 8: [ http://asep.org/journals ]

Kim H-YP, Frongillo EA, Han S-S, Oh S-Y, Kim W-K, Jang Y-A, Won H-S, Lee H-S, Kim S-H: Academic performance of Korean children is associated with dietary behaviours and physical status. Asia Pacific J Clin Nutr. 2003, 12 (2): 186-192.

Davis EC, Cooper JA: Athletic ability and scholarship: A resume of studies comparing scholarship abilities of athletes and non-athletes. Res Quart. 1934, 5: 69-78.

Smart KB: Sporting and intellectual success among English secondary school children. Int Rev Sports Sociol. 1967, 2: 47-54. 10.1177/101269026700200104.

McIntosh PC: Mental ability and success in school sport. Res Physical Educ. 1966, 1: 20-27.

Fredricks JA, Eccles JS: Is extracurricular participation associated with beneficial outcomes? Concurrent and longitudinal relations. Developmental Psychol. 2006, 42 (4): 698-713. 10.1037/0012-1649.42.4.698.

Hawkins R, Mulkey LM: Athletic investment and academic resilience in a national sample of African American females and males in the Middle Grades. Educ Urban Society. 2005, 38: 62-88. 10.1177/0013124505280025.

Cooper H, Valentine JC, Nye B, Lindsay JJ: Relationships between five afterschool activities and academic achievement. J Educat Psychol. 1999, 91: 369-378. 10.1037/0022-0663.91.2.369.

Marsh HW: The effects of participation in sport during the last two years of high school. Sociol Sport J. 1993, 10: 18-43.

Dexter T: Relationship between sport knowledge, sport performance and academic ability: empirical evidence from GCSE Physical Education. J Sports Sci. 1999, 17: 283-295. 10.1080/026404199366000.

Melnick MJ, Sabo DF, Vanfossen B: Educational effects of interscholastic athletic participation on African-American and Hispanic youth. Adolescence. 1992, 27: 295-308.

Fisher M, Juszczak L, Friedman SB: Sports participation in an urban high school: academic and psychologic correlates. J Adolesc Health. 1996, 18: 329-334. 10.1016/1054-139X(95)00067-3.

Light RJ: Making the Most of College. 2001, Cambridge, MA: Harvard University Press

Eccles JS, Barber , Barber BL: Student council, volunteering, basketball, or marching band. J Adolescent Res. 1999, 14: 10-43. 10.1177/0743558499141003.

Eccles JS, Barber BL, Stone M, Hunt J: Extracurricular activities and adolescent development. J Social Issues. 2003, 59: 865-889. 10.1046/j.0022-4537.2003.00095.x.

White PG, McTeer WG: Sport as a component of cultural capital: Survey findings on the impact of participation in different sports on educational attainment in Ontario high schools. Phys Educ Rev. 1990, 13: 66-71.

Spreitzer E: Does participation in interscholastic athletics affect adult development?. Youth and Society. 1994, 25: 368-388. 10.1177/0044118X94025003004.

Schurr T, Brookover W: Athletes, academic self-concept and achievement. Med Sci Sports. 1970, 2: 96.

Duda JL, Nicholls JG: Dimensions of achievement motivation in schoolwork and sport. J Educ Psychol. 1992, 84: 290-299. 10.1037/0022-0663.84.3.290.

Marsh HW, Kleitman S: School athletic participation: Mostly gain with little pain. J Sport Exerc Psychol. 2003, 25: 205-228.

Troutman KP, Dufur MJ: From high school jocks to college grads. Youth & Society. 2007, 38: 443-462. 10.1177/0044118X06290651.

Feldman AF, Matjasko JL: The role of school-based extracurricular activities in adolescent development: A comprehensive review and future directions. Rev Educ Res. 2005, 75: 159-210. 10.3102/00346543075002159.

Bluechardt MH, Wiener J, Shephard RJ: Exercise programmes in the treatment of children with learning disabilities. Sports Med. 1995, 19: 55-72. 10.2165/00007256-199519010-00005.

Bluechardt MH, Shephard RJ: Using an extracurricular physical activity program to enhance social skills. J Learn Disabil. 1995, 28 (3): 160-169.

Klein SA, Deffenbacher JL: Relaxation and exercise for hyperactive impulsive children. Percept Mot Skills. 1977, 45 (3Pt2): 1159-1162.

Kuo FE, Taylor AF: A potential natural treatment for attention-deficit/hyperactivity disorder: evidence from a national study. Am J Public Health. 2004, 94: 1580-1586.

Reynolds D, Nicolson RI, Hambly H: Evaluation of an exercise-based treatment for children with reading difficulties. Dyslexia. 2003, 9: 48-71. 10.1002/dys.235.

Reynolds D, Nicolson RI: Follow-up of an exercise-based treatment for children with reading difficulties. Dyslexia. 2007, 13: 78-96. 10.1002/dys.331.

Medcalf R, Marshall J, Rhoden C: Exploring the relationship between physical education and enhancing behaviour in pupils with emotional behavioural difficulties. Support for Learning. 2006, 21: 169-174. 10.1111/j.1467-9604.2006.00427.x.

Ansari D, Coch D: Bridges over troubled waters: education and cognitive neuroscience. Trend Cogn Sci. 2006, 10 (4): 146-151. 10.1016/j.tics.2006.02.007. Epub 2006 Mar 10.

Cooke SF, Bliss TV: Plasticity in the human central nervous system. Brain. 2006, 129: 1659-1673. 10.1093/brain/awl082.

Kempermann G, van Praag H, Gage FH: Activity-dependent regulation of neuronal plasticity and self repair. Progr Brain Res. 2000, 127: 35-48.

van Praag H, Kempermann G, Gage FH: Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999, 2: 203-205. 10.1038/6300.

van Praag H, Gage FH: Genetics of childhood disorders: XXXVI. Stem cell research, part 1: New neurons in the adult brain. J Am Acad Child Adolesc Psychiatry. 2002, 41: 354-356. 10.1097/00004583-200203000-00016.

Anderson BJ, Rapp DN, Baek DH, McCloskey DP, Coburn-Litvak PS, Robinson JK: Exercise influences spatial learning in the radial arm maze. Physiol Behav. 2000, 70: 425-429. 10.1016/S0031-9384(00)00282-1.

Fordyce DE, Wehner JM: Physical activity enhances spatial learning performance with an associated alteration in hippocampal protein kinase C activity in C57BL/6 and DBA/2 mice. Brain Res. 1993, 619: 111-119. 10.1016/0006-8993(93)91602-O.

Dubé M-C, Massicotte G, Trudeau F: Time course of brain glutamate receptors binding following exercise in rats. Can J Applied Physiol. 1997, 22: 14P-(abstract)

Cotman CW, Berchtold NC: Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 2002, 25: 295-301. 10.1016/S0166-2236(02)02143-4.

Somani. SM, Ravi R, Rybak LP: Effect of exercise training on antioxidant system in brain regions of rat. Pharmacol Biochem Behav. 1995, 50: 635-639. 10.1016/0091-3057(94)00357-2.

Radak Z, Sasvari M, Nyakas C, Kaneko T, Tahara S, Ohno H, Goto S: Single bout of exercise eliminates the immobilization-induced oxidative stress in rat brain. Neurochem Int. 2001, 39: 33-38. 10.1016/S0197-0186(01)00003-1.

Coleman JS: The Adolescent Society: The Social Life of the Teenager and its Impact on Education. 1961, New York, NY: Free Press

Marsh HW, Kleitman S: Consequences of employment during high school: character building, subversion of academic goals, or a threshold?. Am Educat Res J. 2003, 42: 331-369. 10.3102/00028312042002331.

Marsh HW: Extracurricular activities: A beneficial extension of the traditional curriculum or a subversion of academic goals. J Educat Psychol. 1992, 84: 553-562. 10.1037/0022-0663.84.4.553.

Sharif I, Sargant JD: Association between television, movie, and video game exposure and school performance. Pediatrics. 2006, 118: 1061-1070. 10.1542/peds.2005-2854.

Feldman DE, Barnett T, Shrier I, Rossignol M, Abenhaim L: Is physical activity differentially associated with different types of sedentary pursuits?. Arch Pediatr Adolesc Med. 2003, 157: 797-802. 10.1001/archpedi.157.8.797.

Datar A, Sturm R: Childhood overweight and elementary school outcomes. Int J Obes. 2006, 30: 1449-1460. 10.1038/sj.ijo.0803311.

Taras H, Potts-Datema W: Obesity and student performance at school. J Sch Health. 2005, 75: 291-295. 10.1111/j.1746-1561.2005.00040.x.

Judge S, Jahns L: Association of overweight with academic performance and social and behavioral problems: an update from the early childhood longitudinal study. J Sch Health. 2007, 77: 672-678.

Anderssen N: Perception of physical education classes among young adolescents: do physical education classes provide equal opportunities to all students?. Health Educ Res. 1993, 8: 167-179. 10.1093/her/8.2.167.

Van Wersch A, Trew K, Turner I: Post-primary school pupil's interest in physical education: age and gender differences. Br J Educ Psychol. 1992, 62 (Pt 1): 56-72.

Yin Z, Moore JB: Re-examining the role of interscholastic sport participation in education. Psychol Rep. 2004, 94 (3 Pt 2): 1447-1454. 10.2466/PR0.94.3.1447-1454.

Marshall J, Hardman K: The state and status of physical education in schools in international context. Eur Phys Educ Rev. 2000, 6: 203-229. 10.1177/1356336X000063001.

Cohen DA, Taylor SL, Zonta M, Vestal KD, Schuster MA: Availability of high school extracurricular sports programs and high-risk behaviors. J School Health. 2007, 77: 80-86. 10.1111/j.1746-1561.2007.00171.x.

Download references

Acknowledgements

F. Trudeau is holder of a joint initiative grant from Social Science and Humanity Research Council/Sport Canada. R. J. Shephard is collaborator on the same grant.

Author information

Authors and affiliations.

Department of Physical Activity Sciences, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada

François Trudeau

Faculty of Physical and Health Education, and Dept. of Public Health Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada

Roy J Shephard

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to François Trudeau .

Additional information

Competing interests.

The author(s) declare that they have no competing interests.

Authors' contributions

Both authors have been involved in the writing of this manuscript and have read and approved the final text.

François Trudeau and Roy J Shephard contributed equally to this work.

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.

Authors’ original file for figure 1

Rights and permissions.

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article.

Trudeau, F., Shephard, R.J. Physical education, school physical activity, school sports and academic performance. Int J Behav Nutr Phys Act 5 , 10 (2008). https://doi.org/10.1186/1479-5868-5-10

Download citation

Received : 04 September 2007

Accepted : 25 February 2008

Published : 25 February 2008

DOI : https://doi.org/10.1186/1479-5868-5-10

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Physical Activity
  • Academic Achievement
  • Academic Performance
  • Physical Education
  • Grade Point Average

International Journal of Behavioral Nutrition and Physical Activity

ISSN: 1479-5868

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

physical education school physical activity school sports and academic performance

National Academies Press: OpenBook

Educating the Student Body: Taking Physical Activity and Physical Education to School (2013)

Chapter: 4 physical activity, fitness, and physical education: effects on academic performance.

Physical Activity, Fitness, and Physical Education: Effects on Academic Performance

Key Messages

•  Evidence suggests that increasing physical activity and physical fitness may improve academic performance and that time in the school day dedicated to recess, physical education class, and physical activity in the classroom may also facilitate academic performance.

•  Available evidence suggests that mathematics and reading are the academic topics that are most influenced by physical activity. These topics depend on efficient and effective executive function, which has been linked to physical activity and physical fitness.

•  Executive function and brain health underlie academic performance. Basic cognitive functions related to attention and memory facilitate learning, and these functions are enhanced by physical activity and higher aerobic fitness.

•  Single sessions of and long-term participation in physical activity improve cognitive performance and brain health. Children who participate in vigorous- or moderate-intensity physical activity benefit the most.

•  Given the importance of time on task to learning, students should be provided with frequent physical activity breaks that are developmentally appropriate.

•  Although presently understudied, physically active lessons offered in the classroom may increase time on task and attention to task in the classroom setting.

A lthough academic performance stems from a complex interaction between intellect and contextual variables, health is a vital moderating factor in a child’s ability to learn. The idea that healthy children learn better is empirically supported and well accepted (Basch, 2010), and multiple studies have confirmed that health benefits are associated with physical activity, including cardiovascular and muscular fitness, bone health, psychosocial outcomes, and cognitive and brain health (Strong et al., 2005; see Chapter 3 ). The relationship of physical activity and physical fitness to cognitive and brain health and to academic performance is the subject of this chapter.

Given that the brain is responsible for both mental processes and physical actions of the human body, brain health is important across the life span. In adults, brain health, representing absence of disease and optimal structure and function, is measured in terms of quality of life and effective functioning in activities of daily living. In children, brain health can be measured in terms of successful development of attention, on-task behavior, memory, and academic performance in an educational setting. This chapter reviews the findings of recent research regarding the contribution of engagement in physical activity and the attainment of a health-enhancing level of physical fitness to cognitive and brain health in children. Correlational research examining the relationship among academic performance, physical fitness, and physical activity also is described. Because research in older adults has served as a model for understanding the effects of physical activity and fitness on the developing brain during childhood, the adult research is briefly discussed. The short- and long-term cognitive benefits of both a single session of and regular participation in physical activity are summarized.

Before outlining the health benefits of physical activity and fitness, it is important to note that many factors influence academic performance. Among these are socioeconomic status (Sirin, 2005), parental involvement

(Fan and Chen, 2001), and a host of other demographic factors. A valuable predictor of student academic performance is a parent having clear expectations for the child’s academic success. Attendance is another factor confirmed as having a significant impact on academic performance (Stanca, 2006; Baxter et al., 2011). Because children must be present to learn the desired content, attendance should be measured in considering factors related to academic performance.

PHYSICAL FITNESS AND PHYSICAL ACTIVITY: RELATION TO ACADEMIC PERFORMANCE

State-mandated academic achievement testing has had the unintended consequence of reducing opportunities for children to be physically active during the school day and beyond. In addition to a general shifting of time in school away from physical education to allow for more time on academic subjects, some children are withheld from physical education classes or recess to participate in remedial or enriched learning experiences designed to increase academic performance (Pellegrini and Bohn, 2005; see Chapter 5 ). Yet little evidence supports the notion that more time allocated to subject matter will translate into better test scores. Indeed, 11 of 14 correlational studies of physical activity during the school day demonstrate a positive relationship to academic performance (Rasberry et al., 2011). Overall, a rapidly growing body of work suggests that time spent engaged in physical activity is related not only to a healthier body but also to a healthier mind (Hillman et al., 2008).

Children respond faster and with greater accuracy to a variety of cognitive tasks after participating in a session of physical activity (Tomporowski, 2003; Budde et al., 2008; Hillman et al., 2009; Pesce et al., 2009; Ellemberg and St-Louis-Deschênes, 2010). A single bout of moderate-intensity physical activity has been found to increase neural and behavioral concomitants associated with the allocation of attention to a specific cognitive task (Hillman et al., 2009; Pontifex et al., 2012). And when children who participated in 30 minutes of aerobic physical activity were compared with children who watched television for the same amount of time, the former children cognitively outperformed the latter (Ellemberg and St-Louis-Desêhenes, 2010). Visual task switching data among 69 overweight and inactive children did not show differences between cognitive performance after treadmill walking and sitting (Tomporowski et al., 2008b).

When physical activity is used as a break from academic learning time, postengagement effects include better attention (Grieco et al., 2009; Bartholomew and Jowers, 2011), increased on-task behaviors (Mahar et al., 2006), and improved academic performance (Donnelly and Lambourne, 2011). Comparisons between 1st-grade students housed in a classroom

with stand-sit desks where the child could stand at his/her discretion and in classrooms containing traditional furniture showed that the former children were highly likely to stand, thus expending significantly more energy than those who were seated (Benden et al., 2011). More important, teachers can offer physical activity breaks as part of a supplemental curriculum or simply as a way to reset student attention during a lesson (Kibbe et al., 2011; see Chapter 6 ) and when provided with minimal training can efficaciously produce vigorous or moderate energy expenditure in students (Stewart et al., 2004). Further, after-school physical activity programs have demonstrated the ability to improve cardiovascular endurance, and this increase in aerobic fitness has been shown to mediate improvements in academic performance (Fredericks et al., 2006), as well as the allocation of neural resources underlying performance on a working memory task (Kamijo et al., 2011).

Over the past three decades, several reviews and meta-analyses have described the relationship among physical fitness, physical activity, and cognition (broadly defined as all mental processes). The majority of these reviews have focused on the relationship between academic performance and physical fitness—a physiological trait commonly defined in terms of cardiorespiratory capacity (e.g., maximal oxygen consumption; see Chapter 3 ). More recently, reviews have attempted to describe the effects of an acute or single bout of physical activity, as a behavior, on academic performance. These reviews have focused on brain health in older adults (Colcombe and Kramer, 2003), as well as the effects of acute physical activity on cognition in adults (Tomporowski, 2003). Some have considered age as part of the analysis (Etnier et al., 1997, 2006). Reviews focusing on research conducted in children (Sibley and Etnier, 2003) have examined the relationship among physical activity, participation in sports, and academic performance (Trudeau and Shephard, 2008, 2010; Singh et al., 2012); physical activity and mental and cognitive health (Biddle and Asare, 2011); and physical activity, nutrition, and academic performance (Burkhalter and Hillman, 2011). The findings of most of these reviews align with the conclusions presented in a meta-analytic review conducted by Fedewa and Ahn (2011). The studies reviewed by Fedewa and Ahn include experimental/quasi-experimental as well as cross-sectional and correlational designs, with the experimental designs yielding the highest effect sizes. The strongest relationships were found between aerobic fitness and achievement in mathematics, followed by IQ and reading performance. The range of cognitive performance measures, participant characteristics, and types of research design all mediated the relationship among physical activity, fitness, and academic performance. With regard to physical activity interventions, which were carried out both within and beyond the school day, those involving small groups of peers (around 10 youth of a similar age) were associated with the greatest gains in academic performance.

The number of peer-reviewed publications on this topic is growing exponentially. Further evidence of the growth of this line of inquiry is its increased global presence. Positive relationships among physical activity, physical fitness, and academic performance have been found among students from the Netherlands (Singh et al., 2012) and Taiwan (Chih and Chen, 2011). Broadly speaking, however, many of these studies show small to moderate effects and suffer from poor research designs (Biddle and Asare, 2011; Singh et al., 2012).

Basch (2010) conducted a comprehensive review of how children’s health and health disparities influence academic performance and learning. The author’s report draws on empirical evidence suggesting that education reform will be ineffective unless children’s health is made a priority. Basch concludes that schools may be the only place where health inequities can be addressed and that, if children’s basic health needs are not met, they will struggle to learn regardless of the effectiveness of the instructional materials used. More recently, Efrat (2011) conducted a review of physical activity, fitness, and academic performance to examine the achievement gap. He discovered that only seven studies had included socioeconomic status as a variable, despite its known relationship to education (Sirin, 2005).

Physical Fitness as a Learning Outcome of Physical Education and Its Relation to Academic Performance

Achieving and maintaining a healthy level of aerobic fitness, as defined using criterion-referenced standards from the National Health and Nutrition Examination Survey (NHANES; Welk et al., 2011), is a desired learning outcome of physical education programming. Regular participation in physical activity also is a national learning standard for physical education, a standard intended to facilitate the establishment of habitual and meaningful engagement in physical activity (NASPE, 2004). Yet although physical fitness and participation in physical activity are established as learning outcomes in all 50 states, there is little evidence to suggest that children actually achieve and maintain these standards (see Chapter 2 ).

Statewide and national datasets containing data on youth physical fitness and academic performance have increased access to student-level data on this subject (Grissom, 2005; Cottrell et al., 2007; Carlson et al., 2008; Chomitz et al., 2008; Wittberg et al., 2010; Van Dusen et al., 2011). Early research in South Australia focused on quantifying the benefits of physical activity and physical education during the school day; the benefits noted included increased physical fitness, decreased body fat, and reduced risk for cardiovascular disease (Dwyer et al., 1979, 1983). Even today, Dwyer and colleagues are among the few scholars who regularly include in their research measures of physical activity intensity in the school environment,

which is believed to be a key reason why they are able to report differentiated effects of different intensities. A longitudinal study in Trois-Rivières, Québec, Canada, tracked how the academic performance of children from grades 1 through 6 was related to student health, motor skills, and time spent in physical education. The researchers concluded that additional time dedicated to physical education did not inhibit academic performance (Shephard et al., 1984; Shephard, 1986; Trudeau and Shephard, 2008).

Longitudinal follow-up investigating the long-term benefits of enhanced physical education experiences is encouraging but largely inconclusive. In a study examining the effects of daily physical education during elementary school on physical activity during adulthood, 720 men and women completed the Québec Health Survey (Trudeau et al., 1999). Findings suggest that physical education was associated with physical activity in later life for females but not males (Trudeau et al., 1999); most of the associations were significant but weak (Trudeau et al., 2004). Adult body mass index (BMI) at age 34 was related to childhood BMI at ages 10-12 in females but not males (Trudeau et al., 2001). Longitudinal studies such as those conducted in Sweden and Finland also suggest that physical education experiences may be related to adult engagement in physical activity (Glenmark, 1994; Telama et al., 1997). From an academic performance perspective, longitudinal data on men who enlisted for military service imply that cardiovascular fitness at age 18 predicted cognitive performance in later life (Aberg et al., 2009), thereby supporting the idea of offering physical education and physical activity opportunities well into emerging adulthood through secondary and postsecondary education.

Castelli and colleagues (2007) investigated younger children (in 3rd and 5th grades) and the differential contributions of the various subcomponents of the Fitnessgram ® . Specifically, they examined the individual contributions of aerobic capacity, muscle strength, muscle flexibility, and body composition to performance in mathematics and reading on the Illinois Standardized Achievement Test among a sample of 259 children. Their findings corroborate those of the California Department of Education (Grissom, 2005), indicating a general relationship between fitness and achievement test performance. When the individual components of the Fitnessgram were decomposed, the researchers determined that only aerobic capacity was related to test performance. Muscle strength and flexibility showed no relationship, while an inverse association of BMI with test performance was observed, such that higher BMI was associated with lower test performance. Although Baxter and colleagues (2011) confirmed the importance of attending school in relation to academic performance through the use of 4th-grade student recall, correlations with BMI were not significant.

State-mandated implementation of the coordinated school health model requires all schools in Texas to conduct annual fitness testing

using the Fitnessgram among students in grades 3-12. In a special issue of Research Quarterly for Exercise and Sport (2010), multiple articles describe the current state of physical fitness among children in Texas; confirm the associations among school performance levels, academic achievement, and physical fitness (Welk et al., 2010; Zhu et al., 2010); and demonstrate the ability of qualified physical education teachers to administer physical fitness tests (Zhu et al., 2010). Also using data from Texas schools, Van Dusen and colleagues (2011) found that cardiovascular fitness had the strongest association with academic performance, particularly in mathematics over reading. Unlike previous research, which demonstrated a steady decline in fitness by developmental stage (Duncan et al., 2007), this study found that cardiovascular fitness did decrease but not significantly (Van Dusen et al., 2011). Aerobic fitness, then, may be important to academic performance, as there may be a dose-response relationship (Van Dusen et al., 2011).

Using a large sample of students in grades 4-8, Chomitz and colleagues (2008) found that the likelihood of passing both mathematics and English achievement tests increased with the number of fitness tests passed during physical education class, and the odds of passing the mathematics achievement tests were inversely related to higher body weight. Similar to the findings of Castelli and colleagues (2007), socioeconomic status and demographic factors explained little of the relationship between aerobic fitness and academic performance; however, socioeconomic status may be an explanatory variable for students of low fitness (London and Castrechini, 2011).

In sum, numerous cross-sectional and correlational studies demonstrate small-to-moderate positive or null associations between physical fitness (Grissom, 2005; Cottrell et al., 2007; Edwards et al., 2009; Eveland-Sayers et al., 2009; Cooper et al., 2010; Welk et al., 2010; Wittberg et al., 2010; Zhu et al., 2010; Van Dusen et al., 2011), particularly aerobic fitness, and academic performance (Castelli et al, 2007; Chomitz et al., 2008; Roberts et al., 2010; Welk et al., 2010; Chih and Chen, 2011; London and Castrechini, 2011; Van Dusen et al., 2011). Moreover, the findings may support a dose-response association, suggesting that the more components of physical fitness (e.g., cardiovascular endurance, strength, muscle endurance) considered acceptable for the specific age and gender that are present, the greater the likelihood of successful academic performance. From a public health and policy standpoint, the conclusions these findings support are limited by few causal inferences, a lack of data confirmation, and inadequate reliability because the data were often collected by nonresearchers or through self-report methods. It may also be noted that this research includes no known longitudinal studies and few randomized controlled trials (examples are included later in this chapter in the discussion of the developing brain).

Physical Activity, Physical Education, and Academic Performance

In contrast with the correlational data presented above for physical fitness, more information is needed on the direct effects of participation in physical activity programming and physical education classes on academic performance.

In a meta-analysis, Sibley and Etnier (2003) found a positive relationship between physical activity and cognition in school-age youth (aged 4-18), suggesting that physical activity, as well as physical fitness, may be related to cognitive outcomes during development. Participation in physical activity was related to cognitive performance in eight measurement categories (perceptual skills, IQ, achievement, verbal tests, mathematics tests, memory, developmental level/academic readiness, and “other”), with results indicating a beneficial relationship of physical activity to all cognitive outcomes except memory (Sibley and Etnier, 2003). Since that meta-analysis, however, several papers have reported robust relationships between aerobic fitness and different aspects of memory in children (e.g., Chaddock et al., 2010a, 2011; Kamijo et al., 2011; Monti et al., 2012). Regardless, the comprehensive review of Sibley and Etnier (2003) was important because it helped bring attention to an emerging literature suggesting that physical activity may benefit cognitive development even as it also demonstrated the need for further study to better understand the multifaceted relationship between physical activity and cognitive and brain health.

The regular engagement in physical activity achieved during physical education programming can also be related to academic performance, especially when the class is taught by a physical education teacher. The Sports, Play, and Active Recreation for Kids (SPARK) study examined the effects of a 2-year health-related physical education program on academic performance in children (Sallis et al., 1999). In an experimental design, seven elementary schools were randomly assigned to one of three conditions: (1) a specialist condition in which certified physical education teachers delivered the SPARK curriculum, (2) a trained-teacher condition in which classroom teachers implemented the curriculum, and (3) a control condition in which classroom teachers implemented the local physical education curriculum. No significant differences by condition were found for mathematics testing; however, reading scores were significantly higher in the specialist condition relative to the control condition (Sallis et al., 1999), while language scores were significantly lower in the specialist condition than in the other two conditions. The authors conclude that spending time in physical education with a specialist did not have a negative effect on academic performance. Shortcomings of this research include the amount of data loss from pre- to posttest, the use of results of 2nd-grade testing that exceeded the national

average in performance as baseline data, and the use of norm-referenced rather than criterion-based testing.

In seminal research conducted by Gabbard and Barton (1979), six different conditions of physical activity (no activity; 20, 30, 40, and 50 minutes; and posttest no activity) were completed by 106 2nd graders during physical education. Each physical activity session was followed by 5 minutes of rest and the completion of 36 math problems. The authors found a potential threshold effect whereby only the 50-minute condition improved mathematical performance, with no differences by gender.

A longitudinal study of the kindergarten class of 1998-1999, using data from the Early Childhood Longitudinal Study, investigated the association between enrollment in physical education and academic achievement (Carlson et al., 2008). Higher amounts of physical education were correlated with better academic performance in mathematics among females, but this finding did not hold true for males.

Ahamed and colleagues (2007) found in a cluster randomized trial that, after 16 months of a classroom-based physical activity intervention, there was no significant difference between the treatment and control groups in performance on the standardized Cognitive Abilities Test, Third Edition (CAT-3). Others have found, however, that coordinative exercise (Budde et al., 2008) or bouts of vigorous physical activity during free time (Coe et al., 2006) contribute to higher levels of academic performance. Specifically, Coe and colleagues examined the association of enrollment in physical education and self-reported vigorous- or moderate-intensity physical activity outside school with performance in core academic courses and on the Terra Nova Standardized Achievement Test among more than 200 6th-grade students. Their findings indicate that academic performance was unaffected by enrollment in physical education classes, which were found to average only 19 minutes of vigorous- or moderate-intensity physical activity. When time spent engaged in vigorous- or moderate-intensity physical activity outside of school was considered, however, a significant positive relation to academic performance emerged, with more time engaged in vigorous- or moderate-intensity physical activity being related to better grades but not test scores (Coe et al., 2006).

Studies of participation in sports and academic achievement have found positive associations (Mechanic and Hansell, 1987; Dexter, 1999; Crosnoe, 2002; Eitle and Eitle, 2002; Stephens and Schaben, 2002; Eitle, 2005; Miller et al., 2005; Fox et al., 2010; Ruiz et al., 2010); higher grade point averages (GPAs) in season than out of season (Silliker and Quirk, 1997); a negative association between cheerleading and science performance (Hanson and Kraus, 1998); and weak and negative associations between the amount of time spent participating in sports and performance in English-language class among 13-, 14-, and 16-year-old students (Daley and Ryan, 2000).

Other studies, however, have found no association between participation in sports and academic performance (Fisher et al., 1996). The findings of these studies need to be interpreted with caution as many of their designs failed to account for the level of participation by individuals in the sport (e.g., amount of playing time, type and intensity of physical activity engagement by sport). Further, it is unclear whether policies required students to have higher GPAs to be eligible for participation. Offering sports opportunities is well justified regardless of the cognitive benefits, however, given that adolescents may be less likely to engage in risky behaviors when involved in sports or other extracurricular activities (Page et al., 1998; Elder et al., 2000; Taliaferro et al., 2010), that participation in sports increases physical fitness, and that affiliation with sports enhances school connectedness.

Although a consensus on the relationship of physical activity to academic achievement has not been reached, the vast majority of available evidence suggests the relationship is either positive or neutral. The meta-analytic review by Fedewa and Ahn (2011) suggests that interventions entailing aerobic physical activity have the greatest impact on academic performance; however, all types of physical activity, except those involving flexibility alone, contribute to enhanced academic performance, as do interventions that use small groups (about 10 students) rather than individuals or large groups. Regardless of the strength of the findings, the literature indicates that time spent engaged in physical activity is beneficial to children because it has not been found to detract from academic performance, and in fact can improve overall health and function (Sallis et al., 1999; Hillman et al., 2008; Tomporowski et al., 2008a; Trudeau and Shephard, 2008; Rasberry et al., 2011).

Single Bouts of Physical Activity

Beyond formal physical education, evidence suggests that multi-component approaches are a viable means of providing physical activity opportunities for children across the school curriculum (see also Chapter 6 ). Although health-related fitness lessons taught by certified physical education teachers result in greater student fitness gains relative to such lessons taught by other teachers (Sallis et al., 1999), non-physical education teachers are capable of providing opportunities to be physically active within the classroom (Kibbe et al., 2011). Single sessions or bouts of physical activity have independent merit, offering immediate benefits that can enhance the learning experience. Studies have found that single bouts of physical activity result in improved attention (Hillman et al., 2003, 2009; Pontifex et al., 2012), better working memory (Pontifex et al., 2009), and increased academic learning time and reduced off-task behaviors (Mahar et al., 2006; Bartholomew and Jowers, 2011). Yet single bouts

of physical activity have differential effects, as very vigorous exercise has been associated with cognitive fatigue and even cognitive decline in adults (Tomporowski, 2003). As seen in Figure 4-1 , high levels of effort, arousal, or activation can influence perception, decision making, response preparation, and actual response. For discussion of the underlying constructs and differential effects of single bouts of physical activity on cognitive performance, see Tomporowski (2003).

For children, classrooms are busy places where they must distinguish relevant information from distractions that emerge from many different sources occurring simultaneously. A student must listen to the teacher, adhere to classroom procedures, focus on a specific task, hold and retain information, and make connections between novel information and previous experiences. Hillman and colleagues (2009) demonstrated that a single bout of moderate-intensity walking (60 percent of maximum heart rate) resulted in significant improvements in performance on a task requiring attentional inhibition (e.g., the ability to focus on a single task). These findings were accompanied by changes in neuroelectric measures underlying the allocation of attention (see Figure 4-2 ) and significant improvements on the reading subtest of the Wide Range Achievement Test. No such effects were observed following a similar duration of quiet rest. These findings were later replicated and extended to demonstrate benefits for both mathematics and reading performance in healthy children and those diagnosed with attention deficit hyperactivity disorder (Pontifex et al., 2013). Further replications of these findings demonstrated that a single bout of moderate-intensity exercise using a treadmill improved performance on a task of attention and inhibition, but similar benefits were not derived from moderate-intensity

image

FIGURE 4-1 Information processing: Diagram of a simplified version of Sanders’s (1983) cognitive-energetic model of human information processing (adapted from Jones and Hardy, 1989). SOURCE: Tomporowski, 2003. Reprinted with permission.

image

FIGURE 4-2 Effects of a single session of exercise in preadolescent children. SOURCE: Hillman et al., 2009. Reprinted with permission.

exercise that involved exergaming (O’Leary et al., 2011). It was also found that such benefits were derived following cessation of, but not during, the bout of exercise (Drollette et al., 2012). The applications of such empirical findings within the school setting remain unclear.

A randomized controlled trial entitled Physical Activity Across the Curriculum (PAAC) used cluster randomization among 24 schools to examine the effects of physically active classroom lessons on BMI and academic achievement (Donnelly et al., 2009). The academically oriented physical activities were intended to be of vigorous or moderate intensity (3-6 metabolic equivalents [METs]) and to last approximately 10 minutes and were specifically designed to supplement content in mathematics, language arts, geography, history, spelling, science, and health. The study followed 665 boys and 677 girls for 3 years as they rose from 2nd or 3rd to 4th or 5th grades. Changes in academic achievement, fitness, and blood screening were considered secondary outcomes. During a 3-year period, students who engaged in physically active lessons, on average, improved their academic achievement by 6 percent, while the control groups exhibited a 1 percent decrease. In students who experienced at least 75 minutes of PAAC lessons per week, BMI remained stable (see Figure 4-3 ).

It is important to note that cognitive tasks completed before, during, and after physical activity show varying effects, but the effects were always positive compared with sedentary behavior. In a study carried out by Drollette and colleagues (2012), 36 preadolescent children completed

image

FIGURE 4-3 Change in academic scores from baseline after physically active classroom lessons in elementary schools in northeast Kansas (2003-2006). NOTE: All differences between the Physical Activity Across the Curriculum (PAAC) group ( N = 117) and control group ( N = 86) were significant ( p <.01). SOURCE: Donnelly et al., 2009. Reprinted with permission.

two cognitive tasks—a flanker task to assess attention and inhibition and a spatial nback task to assess working memory—before, during, and after seated rest and treadmill walking conditions. The children sat or walked on different days for an average of 19 minutes. The results suggest that the physical activity enhanced cognitive performance for the attention task but not for the task requiring working memory. Accordingly, although more research is needed, the authors suggest that the acute effects of exercise may be selective to certain cognitive processes (i.e., attentional inhibition) while unrelated to others (e.g., working memory). Indeed, data collected using a task-switching paradigm (i.e., a task designed to assess multitasking and requiring the scheduling of attention to multiple aspects of the environment) among 69 overweight and inactive children did not show differences in cognitive performance following acute bouts of treadmill walking or sitting (Tomporowski et al., 2008b). Thus, findings to date indicate a robust relationship of acute exercise to transient improvements in attention but appear inconsistent for other aspects of cognition.

Academic Learning Time and On- and Off-Task Behaviors

Excessive time on task, inattention to task, off-task behavior, and delinquency are important considerations in the learning environment

given the importance of academic learning time to academic performance. These behaviors are observable and of concern to teachers as they detract from the learning environment. Systematic observation by trained observers may yield important insight regarding the effects of short physical activity breaks on these behaviors. Indeed, systematic observations of student behavior have been used as an alternative means of measuring academic performance (Mahar et al., 2006; Grieco et al., 2009).

After the development of classroom-based physical activities, called Energizers, teachers were trained in how to implement such activities in their lessons at least twice per week (Mahar et al., 2006). Measurements of baseline physical activity and on-task behaviors were collected in two 3rd-grade and two 4th-grade classes, using pedometers and direct observation. The intervention included 243 students, while 108 served as controls by not engaging in the activities. A subgroup of 62 3rd and 4th graders was observed for on-task behavior in the classroom following the physical activity. Children who participated in Energizers took more steps during the school day than those who did not; they also increased their on-task behaviors by more than 20 percent over baseline measures.

A systematic review of a similar in-class, academically oriented, physical activity plan—Take 10!—was conducted to identify the effects of its implementation after it had been in use for 10 years (Kibbe et al., 2011). The findings suggest that children who experienced Take 10! in the classroom engaged in moderate to vigorous physical activity (6.16 to 6.42 METs) and had lower BMIs than those who did not. Further, children in the Take 10! classrooms had better fluid intelligence (Reed et al., 2010) and higher academic achievement scores (Donnelly et al., 2009).

Some have expressed concern that introducing physical activity into the classroom setting may be distracting to students. Yet in one study it was sedentary students who demonstrated a decrease in time on task, while active students returned to the same level of on-task behavior after an active learning task (Grieco et al., 2009). Among the 97 3rd-grade students in this study, a small but nonsignificant increase in on-task behaviors was seen immediately following these active lessons. Additionally, these improvements were not mediated by BMI.

In sum, although presently understudied, physically active lessons may increase time on task and attention to task in the classroom setting. Given the complexity of the typical classroom, the strategy of including content-specific lessons that incorporate physical activity may be justified.

It is recommended that every child have 20 minutes of recess each day and that this time be outdoors whenever possible, in a safe activity (NASPE,

2006). Consistent engagement in recess can help students refine social skills, learn social mediation skills surrounding fair play, obtain additional minutes of vigorous- or moderate-intensity physical activity that contribute toward the recommend 60 minutes or more per day, and have an opportunity to express their imagination through free play (Pellegrini and Bohn, 2005; see also Chapter 6 ). When children participate in recess before lunch, additional benefits accrue, such as less food waste, increased incidence of appropriate behavior in the cafeteria during lunch, and greater student readiness to learn upon returning to the classroom after lunch (Getlinger et al., 1996; Wechsler et al., 2001).

To examine the effects of engagement in physical activity during recess on classroom behavior, Barros and colleagues (2009) examined data from the Early Childhood Longitudinal Study on 10,000 8- to 9-year-old children. Teachers provided the number of minutes of recess as well as a ranking of classroom behavior (ranging from “misbehaves frequently” to “behaves exceptionally well”). Results indicate that children who had at least 15 minutes of recess were more likely to exhibit appropriate behavior in the classroom (Barros et al., 2009). In another study, 43 4th-grade students were randomly assigned to 1 or no days of recess to examine the effects on classroom behavior (Jarrett et al., 1998). The researchers concluded that on-task behavior was better among the children who had recess. A moderate effect size (= 0.51) was observed. In a series of studies examining kindergartners’ attention to task following a 20-minute recess, increased time on task was observed during learning centers and story reading (Pellegrini et al., 1995). Despite these positive findings centered on improved attention, it is important to note that few of these studies actually measured the intensity of the physical activity during recess.

From a slightly different perspective, survey data from 547 Virginia elementary school principals suggest that time dedicated to student participation in physical education, art, and music did not negatively influence academic performance (Wilkins et al., 2003). Thus, the strategy of reducing time spent in physical education to increase academic performance may not have the desired effect. The evidence on in-school physical activity supports the provision of physical activity breaks during the school day as a way to increase fluid intelligence, time on task, and attention. However, it remains unclear what portion of these effects can be attributed to a break from academic time and what portion is a direct result of the specific demands/characteristics of the physical activity.

THE DEVELOPING bRAIN, PHYSICAL ACTIVITY, AND BRAIN HEALTH

The study of brain health has grown beyond simply measuring behavioral outcomes such as task performance and reaction time (e.g., cognitive

processing speed). New technology has emerged that has allowed scientists to understand the impact of lifestyle factors on the brain from the body systems level down to the molecular level. A greater understanding of the cognitive components that subserve academic performance and may be amenable to intervention has thereby been gained. Research conducted in both laboratory and field settings has helped define this line of inquiry and identify some preliminary underlying mechanisms.

The Evidence Base on the Relationship of Physical Activity to Brain Health and Cognition in Older Adults

Despite the current focus on the relationship of physical activity to cognitive development, the evidence base is larger on the association of physical activity with brain health and cognition during aging. Much can be learned about how physical activity affects childhood cognition and scholastic achievement through this work. Despite earlier investigations into the relationship of physical activity to cognitive aging (see Etnier et al., 1997, for a review), the field was shaped by the findings of Kramer and colleagues (1999), who examined the effects of aerobic fitness training on older adults using a randomized controlled design. Specifically, 124 older adults aged 60 and 75 were randomly assigned to a 6-month intervention of either walking (i.e., aerobic training) or flexibility (i.e., nonaerobic) training. The walking group but not the flexibility group showed improved cognitive performance, measured as a shorter response time to the presented stimulus. Results from a series of tasks that tapped different aspects of cognitive control indicated that engagement in physical activity is a beneficial means of combating cognitive aging (Kramer et al., 1999).

Cognitive control, or executive control, is involved in the selection, scheduling, and coordination of computational processes underlying perception, memory, and goal-directed action. These processes allow for the optimization of behavioral interactions within the environment through flexible modulation of the ability to control attention (MacDonald et al., 2000; Botvinick et al., 2001). Core cognitive processes that make up cognitive control or executive control include inhibition, working memory, and cognitive flexibility (Diamond, 2006), processes mediated by networks that involve the prefrontal cortex. Inhibition (or inhibitory control) refers to the ability to override a strong internal or external pull so as to act appropriately within the demands imposed by the environment (Davidson et al., 2006). For example, one exerts inhibitory control when one stops speaking when the teacher begins lecturing. Working memory refers to the ability to represent information mentally, manipulate stored information, and act on the information (Davidson et al., 2006). In solving a difficult mathematical problem, for example, one must often remember the remainder. Finally,

cognitive flexibility refers to the ability to switch perspectives, focus attention, and adapt behavior quickly and flexibly for the purposes of goal-directed action (Blair et al., 2005; Davidson et al., 2006; Diamond, 2006). For example, one must shift attention from the teacher who is teaching a lesson to one’s notes to write down information for later study.

Based on their earlier findings on changes in cognitive control induced by aerobic training, Colcombe and Kramer (2003) conducted a meta-analysis to examine the relationship between aerobic training and cognition in older adults aged 55-80 using data from 18 randomized controlled exercise interventions. Their findings suggest that aerobic training is associated with general cognitive benefits that are selectively and disproportionately greater for tasks or task components requiring greater amounts of cognitive control. A second and more recent meta-analysis (Smith et al., 2010) corroborates the findings of Colcombe and Kramer, indicating that aerobic exercise is related to attention, processing speed, memory, and cognitive control; however, it should be noted that smaller effect sizes were observed, likely a result of the studies included in the respective meta-analyses. In older adults, then, aerobic training selectively improves cognition.

Hillman and colleagues (2006) examined the relationship between physical activity and inhibition (one aspect of cognitive control) using a computer-based stimulus-response protocol in 241 individuals aged 15-71. Their results indicate that greater amounts of physical activity are related to decreased response speed across task conditions requiring variable amounts of inhibition, suggesting a generalized relationship between physical activity and response speed. In addition, the authors found physical activity to be related to better accuracy across conditions in older adults, while no such relationship was observed for younger adults. Of interest, this relationship was disproportionately larger for the condition requiring greater amounts of inhibition in the older adults, suggesting that physical activity has both a general and selective association with task performance (Hillman et al., 2006).

With advances in neuroimaging techniques, understanding of the effects of physical activity and aerobic fitness on brain structure and function has advanced rapidly over the past decade. In particular, a series of studies (Colcombe et al., 2003, 2004, 2006; Kramer and Erickson, 2007; Hillman et al., 2008) of older individuals has been conducted to elucidate the relation of aerobic fitness to the brain and cognition. Normal aging results in the loss of brain tissue (Colcombe et al., 2003), with markedly larger loss evidenced in the frontal, temporal, and parietal regions (Raz, 2000). Thus cognitive functions subserved by these brain regions (such as those involved in cognitive control and aspects of memory) are expected to decay more dramatically than other aspects of cognition.

Colcombe and colleagues (2003) investigated the relationship of aerobic fitness to gray and white matter tissue loss using magnetic resonance

imaging (MRI) in 55 healthy older adults aged 55-79. They observed robust age-related decreases in tissue density in the frontal, temporal, and parietal regions using voxel-based morphometry, a technique used to assess brain volume. Reductions in the amount of tissue loss in these regions were observed as a function of fitness. Given that the brain structures most affected by aging also demonstrated the greatest fitness-related sparing, these initial findings provide a biological basis for fitness-related benefits to brain health during aging.

In a second study, Colcombe and colleagues (2006) examined the effects of aerobic fitness training on brain structure using a randomized controlled design with 59 sedentary healthy adults aged 60-79. The treatment group received a 6-month aerobic exercise (i.e., walking) intervention, while the control group received a stretching and toning intervention that did not include aerobic exercise. Results indicated that gray and white matter brain volume increased for those who received the aerobic fitness training intervention. No such results were observed for those assigned to the stretching and toning group. Specifically, those assigned to the aerobic training intervention demonstrated increased gray matter in the frontal lobes, including the dorsal anterior cingulate cortex, the supplementary motor area, the middle frontal gyrus, the dorsolateral region of the right inferior frontal gyrus, and the left superior temporal lobe. White matter volume changes also were evidenced following the aerobic fitness intervention, with increases in white matter tracts being observed within the anterior third of the corpus callosum. These brain regions are important for cognition, as they have been implicated in the cognitive control of attention and memory processes. These findings suggest that aerobic training not only spares age-related loss of brain structures but also may in fact enhance the structural health of specific brain regions.

In addition to the structural changes noted above, research has investigated the relationship between aerobic fitness and changes in brain function. That is, aerobic fitness training has also been observed to induce changes in patterns of functional activation. Functional MRI (fMRI) measures, which make it possible to image activity in the brain while an individual is performing a cognitive task, have revealed that aerobic training induces changes in patterns of functional activation. This approach involves inferring changes in neuronal activity from alteration in blood flow or metabolic activity in the brain. In a seminal paper, Colcombe and colleagues (2004) examined the relationship of aerobic fitness to brain function and cognition across two studies with older adults. In the first study, 41 older adult participants (mean age ~66) were divided into higher- and lower-fit groups based on their performance on a maximal exercise test. In the second study, 29 participants (aged 58-77) were recruited and randomly assigned to either a fitness training (i.e., walking) or control (i.e., stretching and toning)

intervention. In both studies, participants were given a task requiring variable amounts of attention and inhibition. Results indicated that fitness (study 1) and fitness training (study 2) were related to greater activation in the middle frontal gyrus and superior parietal cortex; these regions of the brain are involved in attentional control and inhibitory functioning, processes entailed in the regulation of attention and action. These changes in neural activation were related to significant improvements in performance on the cognitive control task of attention and inhibition.

Taken together, the findings across studies suggest that an increase in aerobic fitness, derived from physical activity, is related to improvements in the integrity of brain structure and function and may underlie improvements in cognition across tasks requiring cognitive control. Although developmental differences exist, the general paradigm of this research can be applied to early stages of the life span, and some early attempts to do so have been made, as described below. Given the focus of this chapter on childhood cognition, it should be noted that this section has provided only a brief and arguably narrow look at the research on physical activity and cognitive aging. Considerable work has detailed the relationship of physical activity to other aspects of adult cognition using behavioral and neuroimaging tools (e.g., Boecker, 2011). The interested reader is referred to a number of review papers and meta-analyses describing the relationship of physical activity to various aspects of cognitive and brain health (Etnier et al., 1997; Colcombe and Kramer, 2003; Tomporowski, 2003; Thomas et al., 2012).

Child Development, Brain Structure, and Function

Certain aspects of development have been linked with experience, indicating an intricate interplay between genetic programming and environmental influences. Gray matter, and the organization of synaptic connections in particular, appears to be at least partially dependent on experience (NRC/IOM, 2000; Taylor, 2006), with the brain exhibiting a remarkable ability to reorganize itself in response to input from sensory systems, other cortical systems, or insult (Huttenlocher and Dabholkar, 1997). During typical development, experience shapes the pruning process through the strengthening of neural networks that support relevant thoughts and actions and the elimination of unnecessary or redundant connections. Accordingly, the brain responds to experience in an adaptive or “plastic” manner, resulting in the efficient and effective adoption of thoughts, skills, and actions relevant to one’s interactions within one’s environmental surroundings. Examples of neural plasticity in response to unique environmental interaction have been demonstrated in human neuroimaging studies of participation in music (Elbert et al., 1995; Chan et al., 1998; Münte et al., 2001) and sports (Hatfield and Hillman, 2001; Aglioti et al., 2008), thus supporting

the educational practice of providing music education and opportunities for physical activity to children.

Effects of Regular Engagement in Physical Activity and Physical Fitness on Brain Structure

Recent advances in neuroimaging techniques have rapidly advanced understanding of the role physical activity and aerobic fitness may have in brain structure. In children a growing body of correlational research suggests differential brain structure related to aerobic fitness. Chaddock and colleagues (2010a,b) showed a relationship among aerobic fitness, brain volume, and aspects of cognition and memory. Specifically, Chaddock and colleagues (2010a) assigned 9- to 10-year-old preadolescent children to lower- and higher-fitness groups as a function of their scores on a maximal oxygen uptake (VO 2 max) test, which is considered the gold-standard measure of aerobic fitness. They observed larger bilateral hippocampal volume in higher-fit children using MRI, as well as better performance on a task of relational memory. It is important to note that relational memory has been shown to be mediated by the hippocampus (Cohen and Eichenbaum, 1993; Cohen et al., 1999). Further, no differences emerged for a task condition requiring item memory, which is supported by structures outside the hippocampus, suggesting selectivity among the aspects of memory that benefit from higher amounts of fitness. Lastly, hippocampal volume was positively related to performance on the relational memory task but not the item memory task, and bilateral hippocampal volume was observed to mediate the relationship between fitness and relational memory (Chaddock et al., 2010a). Such findings are consistent with behavioral measures of relational memory in children (Chaddock et al., 2011) and neuroimaging findings in older adults (Erickson et al., 2009, 2011) and support the robust nonhuman animal literature demonstrating the effects of exercise on cell proliferation (Van Praag et al., 1999) and survival (Neeper et al., 1995) in the hippocampus.

In a second investigation (Chaddock et al., 2010b), higher- and lower-fit children (aged 9-10) underwent an MRI to determine whether structural differences might be found that relate to performance on a cognitive control task that taps attention and inhibition. The authors observed differential findings in the basal ganglia, a subcortical structure involved in the interplay of cognition and willed action. Specifically, higher-fit children exhibited greater volume in the dorsal striatum (i.e., caudate nucleus, putamen, globus pallidus) relative to lower-fit children, while no differences were observed in the ventral striatum. Such findings are not surprising given the role of the dorsal striatum in cognitive control and response resolution (Casey et al., 2008; Aron et al., 2009), as well as the growing body

of research in children and adults indicating that higher levels of fitness are associated with better control of attention, memory, and cognition (Colcombe and Kramer, 2003; Hillman et al., 2008; Chang and Etnier, 2009). Chaddock and colleagues (2010b) further observed that higher-fit children exhibited increased inhibitory control and response resolution and that higher basal ganglia volume was related to better task performance. These findings indicate that the dorsal striatum is involved in these aspects of higher-order cognition and that fitness may influence cognitive control during preadolescent development. It should be noted that both studies described above were correlational in nature, leaving open the possibility that other factors related to fitness and/or the maturation of subcortical structures may account for the observed group differences.

Effects of Regular Engagement in Physical Activity and Physical Fitness on Brain Function

Other research has attempted to characterize fitness-related differences in brain function using fMRI and event-related brain potentials (ERPs), which are neuroelectric indices of functional brain activation in the electro-encephalographic time series. To date, few randomized controlled interventions have been conducted. Notably, Davis and colleagues (2011) conducted one such intervention lasting approximately 14 weeks that randomized 20 sedentary overweight preadolescent children into an after-school physical activity intervention or a nonactivity control group. The fMRI data collected during an antisaccade task, which requires inhibitory control, indicated increased bilateral activation of the prefrontal cortex and decreased bilateral activation of the posterior parietal cortex following the physical activity intervention relative to the control group. Such findings illustrate some of the neural substrates influenced by participation in physical activity. Two additional correlational studies (Voss et al., 2011; Chaddock et al., 2012) compared higher- and lower-fit preadolescent children and found differential brain activation and superior task performance as a function of fitness. That is, Chaddock and colleagues (2012) observed increased activation in prefrontal and parietal brain regions during early task blocks and decreased activation during later task blocks in higher-fit relative to lower-fit children. Given that higher-fit children outperformed lower-fit children on the aspects of the task requiring the greatest amount of cognitive control, the authors reason that the higher-fit children were more capable of adapting neural activity to meet the demands imposed by tasks that tapped higher-order cognitive processes such as inhibition and goal maintenance. Voss and colleagues (2011) used a similar task to vary cognitive control requirements and found that higher-fit children outperformed their lower-fit counterparts and that such differences became more pronounced dur-

ing task conditions requiring the upregulation of control. Further, several differences emerged across various brain regions that together make up the network associated with cognitive control. Collectively, these differences suggest that higher-fit children are more efficient in the allocation of resources in support of cognitive control operations.

Other imaging research has examined the neuroelectric system (i.e., ERPs) to investigate which cognitive processes occurring between stimulus engagement and response execution are influenced by fitness. Several studies (Hillman et al., 2005, 2009; Pontifex et al., 2011) have examined the P3 component of the stimulus-locked ERP and demonstrated that higher-fit children have larger-amplitude and shorter-latency ERPs relative to their lower-fit peers. Classical theory suggests that P3 relates to neuronal activity associated with revision of the mental representation of the previous event within the stimulus environment (Donchin, 1981). P3 amplitude reflects the allocation of attentional resources when working memory is updated (Donchin and Coles, 1988) such that P3 is sensitive to the amount of attentional resources allocated to a stimulus (Polich, 1997; Polich and Heine, 2007). P3 latency generally is considered to represent stimulus evaluation and classification speed (Kutas et al., 1977; Duncan-Johnson, 1981) and thus may be considered a measure of stimulus detection and evaluation time (Magliero et al., 1984; Ila and Polich, 1999). Therefore the above findings suggest that higher-fit children allocate greater attentional resources and have faster cognitive processing speed relative to lower-fit children (Hillman et al., 2005, 2009), with additional research suggesting that higher-fit children also exhibit greater flexibility in the allocation of attentional resources, as indexed by greater modulation of P3 amplitude across tasks that vary in the amount of cognitive control required (Pontifex et al., 2011). Given that higher-fit children also demonstrate better performance on cognitive control tasks, the P3 component appears to reflect the effectiveness of a subset of cognitive systems that support willed action (Hillman et al., 2009; Pontifex et al., 2011).

Two ERP studies (Hillman et al., 2009; Pontifex et al., 2011) have focused on aspects of cognition involved in action monitoring. That is, the error-related negativity (ERN) component was investigated in higher- and lower-fit children to determine whether differences in evaluation and regulation of cognitive control operations were influenced by fitness level. The ERN component is observed in response-locked ERP averages. It is often elicited by errors of commission during task performance and is believed to represent either the detection of errors during task performance (Gehring et al., 1993; Holroyd and Coles, 2002) or more generally the detection of response conflict (Botvinick et al., 2001; Yeung et al., 2004), which may be engendered by errors in response production. Several studies have reported that higher-fit children exhibit smaller ERN amplitude during rapid-

response tasks (i.e., instructions emphasizing speed of responding; Hillman et al., 2009) and more flexibility in the allocation of these resources during tasks entailing variable cognitive control demands, as evidenced by changes in ERN amplitude for higher-fit children and no modulation of ERN in lower-fit children (Pontifex et al., 2011). Collectively, this pattern of results suggests that children with lower levels of fitness allocate fewer attentional resources during stimulus engagement (P3 amplitude) and exhibit slower cognitive processing speed (P3 latency) but increased activation of neural resources involved in the monitoring of their actions (ERN amplitude). Alternatively, higher-fit children allocate greater resources to environmental stimuli and demonstrate less reliance on action monitoring (increasing resource allocation only to meet the demands of the task). Under more demanding task conditions, the strategy of lower-fit children appears to fail since they perform more poorly under conditions requiring the upregulation of cognitive control.

Finally, only one randomized controlled trial published to date has used ERPs to assess neurocognitive function in children. Kamijo and colleagues (2011) studied performance on a working memory task before and after a 9-month physical activity intervention compared with a wait-list control group. They observed better performance following the physical activity intervention during task conditions that required the upregulation of working memory relative to the task condition requiring lesser amounts of working memory. Further, increased activation of the contingent negative variation (CNV), an ERP component reflecting cognitive and motor preparation, was observed at posttest over frontal scalp sites in the physical activity intervention group. No differences in performance or brain activation were noted for the wait-list control group. These findings suggest an increase in cognitive preparation processes in support of a more effective working memory network resulting from prolonged participation in physical activity. For children in a school setting, regular participation in physical activity as part of an after-school program is particularly beneficial for tasks that require the use of working memory.

Adiposity and Risk for Metabolic Syndrome as It Relates to Cognitive Health

A related and emerging literature that has recently been popularized investigates the relationship of adiposity to cognitive and brain health and academic performance. Several reports (Datar et al., 2004; Datar and Sturm, 2006; Judge and Jahns, 2007; Gable et al., 2012) on this relationship are based on large-scale datasets derived from the Early Child Longitudinal Study. Further, nonhuman animal research has been used to elucidate the relationships between health indices and cognitive and brain health (see

Figure 4-4 for an overview of these relationships). Collectively, these studies observed poorer future academic performance among children who entered school overweight or moved from a healthy weight to overweight during the course of development. Corroborating evidence for a negative relationship between adiposity and academic performance may be found in smaller but more tightly controlled studies. As noted above, Castelli and colleagues (2007) observed poorer performance on the mathematics and reading portions of the Illinois Standardized Achievement Test in 3rd- and 5th-grade students as a function of higher BMI, and Donnelly and colleagues (2009) used a cluster randomized trial to demonstrate that physical activity in the classroom decreased BMI and improved academic achievement among pre-adolescent children.

Recently published reports describe the relationship between adiposity and cognitive and brain health to advance understanding of the basic cognitive processes and neural substrates that may underlie the adiposity-achievement relationship. Bolstered by findings in adult populations (e.g., Debette et al., 2010; Raji et al., 2010; Carnell et al., 2011), researchers have begun to publish data on preadolescent populations indicating differences

image

FIGURE 4-4 Relationships between health indices and cognitive and brain health. NOTE: AD = Alzheimer’s disease; PD = Parkinson’s disease. SOURCE: Cotman et al., 2007. Reprinted with permission.

in brain function and cognitive performance related to adiposity (however, see Gunstad et al., 2008, for an instance in which adiposity was unrelated to cognitive outcomes). Specifically, Kamijo and colleagues (2012a) examined the relationship of weight status to cognitive control and academic achievement in 126 children aged 7-9. The children completed a battery of cognitive control tasks, and their body composition was assessed using dual X-ray absorptiometry (DXA). The authors found that higher BMI and greater amounts of fat mass (particularly in the midsection) were related to poorer performance on cognitive control tasks involving inhibition, as well as lower academic achievement. In follow-up studies, Kamijo and colleagues (2012b) investigated whether neural markers of the relationship between adiposity and cognition may be found through examination of ERP data. These studies compared healthy-weight and obese children and found a differential distribution of the P3 potential (i.e., less frontally distributed) and larger N2 amplitude, as well as smaller ERN magnitude, in obese children during task conditions that required greater amounts of inhibitory control (Kamijo et al., 2012c). Taken together, the above results suggest that obesity is associated with less effective neural processes during stimulus capture and response execution. As a result, obese children perform tasks more slowly (Kamijo et al., 2012a) and are less accurate (Kamijo et al., 2012b,c) in response to tasks requiring variable amounts of cognitive control. Although these data are correlational, they provide a basis for further study using other neuroimaging tools (e.g., MRI, fMRI), as well as a rationale for the design and implementation of randomized controlled studies that would allow for causal interpretation of the relationship of adiposity to cognitive and brain health. The next decade should provide a great deal of information on this relationship.

LIMITATIONS

Despite the promising findings described in this chapter, it should be noted that the study of the relationship of childhood physical activity, aerobic fitness, and adiposity to cognitive and brain health and academic performance is in its early stages. Accordingly, most studies have used designs that afford correlation rather than causation. To date, in fact, only two randomized controlled trials (Davis et al., 2011; Kamijo et al., 2011) on this relationship have been published. However, several others are currently ongoing, and it was necessary to provide evidence through correlational studies before investing the effort, time, and funding required for more demanding causal studies. Given that the evidence base in this area has grown exponentially in the past 10 years through correlational studies and that causal evidence has accumulated through adult and nonhuman animal

studies, the next step will be to increase the amount of causal evidence available on school-age children.

Accomplishing this will require further consideration of demographic factors that may moderate the physical activity–cognition relationship. For instance, socioeconomic status has a unique relationship with physical activity (Estabrooks et al., 2003) and cognitive control (Mezzacappa, 2004). Although many studies have attempted to control for socioeconomic status (see Hillman et al., 2009; Kamijo et al., 2011, 2012a,b,c; Pontifex et al., 2011), further inquiry into its relationship with physical activity, adiposity, and cognition is warranted to determine whether it may serve as a potential mediator or moderator for the observed relationships. A second demographic factor that warrants further consideration is gender. Most authors have failed to describe gender differences when reporting on the physical activity–cognition literature. However, studies of adiposity and cognition have suggested that such a relationship may exist (see Datar and Sturm, 2006). Additionally, further consideration of age is warranted. Most studies have examined a relatively narrow age range, consisting of a few years. Such an approach often is necessary because of maturation and the need to develop comprehensive assessment tools that suit the various stages of development. However, this approach has yielded little understanding of how the physical activity–cognition relationship may change throughout the course of maturation.

Finally, although a number of studies have described the relationship of physical activity, fitness, and adiposity to standardized measures of academic performance, few attempts have been made to observe the relationship within the context of the educational environment. Standardized tests, although necessary to gauge knowledge, may not be the most sensitive measures for (the process of) learning. Future research will need to do a better job of translating promising laboratory findings to the real world to determine the value of this relationship in ecologically valid settings.

From an authentic and practical to a mechanistic perspective, physically active and aerobically fit children consistently outperform their inactive and unfit peers academically on both a short- and a long-term basis. Time spent engaged in physical activity is related not only to a healthier body but also to enriched cognitive development and lifelong brain health. Collectively, the findings across the body of literature in this area suggest that increases in aerobic fitness, derived from physical activity, are related to improvements in the integrity of brain structure and function that underlie academic performance. The strongest relationships have been found between aerobic fitness and performance in mathematics, reading, and English. For children

in a school setting, regular participation in physical activity is particularly beneficial with respect to tasks that require working memory and problem solving. These findings are corroborated by the results of both authentic correlational studies and experimental randomized controlled trials. Overall, the benefits of additional time dedicated to physical education and other physical activity opportunities before, during, and after school outweigh the benefits of exclusive utilization of school time for academic learning, as physical activity opportunities offered across the curriculum do not inhibit academic performance.

Both habitual and single bouts of physical activity contribute to enhanced academic performance. Findings indicate a robust relationship of acute exercise to increased attention, with evidence emerging for a relationship between participation in physical activity and disciplinary behaviors, time on task, and academic performance. Specifically, higher-fit children allocate greater resources to a given task and demonstrate less reliance on environmental cues or teacher prompting.

Åberg, M. A., N. L. Pedersen, K. Torén, M. Svartengren, B. Bäckstrand, T. Johnsson, C. M. Cooper-Kuhn, N. D. Åberg, M. Nilsson, and H. G. Kuhn. 2009. Cardiovascular fitness is associated with cognition in young adulthood. Proceedings of the National Academy of Sciences of the United States of America 106(49):20906-20911.

Aglioti, S. M., P. Cesari, M. Romani, and C. Urgesi. 2008. Action anticipation and motor resonance in elite basketball players. Nature Neuroscience 11(9):1109-1116.

Ahamed, Y., H. Macdonald, K. Reed, P. J. Naylor, T. Liu-Ambrose, and H. McKay. 2007. School-based physical activity does not compromise children’s academic performance. Medicine and Science in Sports and Exercise 39(2):371-376.

Aron, A., R. Poldrack, and S. Wise. 2009. Cognition: Basal ganglia role. Encyclopedia of Neuroscience 2:1069-1077.

Barros, R. M., E. J. Silver, and R. E. K. Stein. 2009. School recess and group classroom behavior. Pediatrics 123(2):431-436.

Bartholomew, J. B., and E. M. Jowers. 2011. Physically active academic lessons in elementary children. Preventive Medicine 52(Suppl 1):S51-S54.

Basch, C. 2010. Healthier children are better learners: A missing link in school reforms to close the achievement gap . http://www.equitycampaign.org/i/a/document/12557_EquityMattersVol6_Web03082010.pdf (accessed October 11, 2011).

Baxter, S. D., J.A. Royer, J. W. Hardin, C. H. Guinn, and C. M. Devlin. 2011. The relationship of school absenteeism with body mass index, academic achievement, and socioeconomic status among fourth grade children. Journal of School Health 81(7):417-423.

Benden, M. E., J. J. Blake, M. L. Wendel, and J. C. Huber, Jr. 2011. The impact of stand-biased desks in classrooms on calorie expenditure in children. American Journal of Public Health 101(8):1433-1436.

Biddle, S. J., and M. Asare. 2011. Physical activity and mental health in children and adolescents: A review of reviews. British Journal of Sports Medicine 45(11):886-895.

Blair, C., P. D. Zelazo, and M. T. Greenberg. 2005. The measurement of executive function in early childhood. Developmental Neuropsychology 28(2):561-571.

Boecker, H. 2011. On the emerging role of neuroimaging in determining functional and structural brain integrity induced by physical exercise: Impact for predictive, preventive, and personalized medicine. EPMA Journal 2(3):277-285.

Botvinick, M. M., T. S. Braver, D. M. Barch, C. S. Carter, and J. D. Cohen. 2001. Conflict monitoring and cognitive control. Psychological Review 108(3):624.

Budde, H., C. Voelcker-Rehage, S. Pietrabyk-Kendziorra, P. Ribeiro, and G. Tidow. 2008. Acute coordinative exercise improves attentional performance in adolescents. Neuroscience Letters 441(2):219-223.

Burkhalter, T. M., and C. H. Hillman. 2011. A narrative review of physical activity, nutrition, and obesity to cognition and scholastic performance across the human lifespan. Advances in Nutrition 2(2):201S-206S.

Carlson, S. A., J. E. Fulton, S. M. Lee, L. M. Maynard, D. R. Brown, H. W. Kohl III, and W. H. Dietz. 2008. Physical education and academic achievement in elementary school: Data from the Early Childhood Longitudinal Study. American Journal of Public Health 98(4):721-727.

Carnell, S., C. Gibson, L. Benson, C. Ochner, and A. Geliebter. 2011. Neuroimaging and obesity: Current knowledge and future directions. Obesity Reviews 13(1):43-56.

Casey, B., R. M. Jones, and T. A. Hare. 2008. The adolescent brain. Annals of the New York Academy of Sciences 1124(1):111-126.

Castelli, D. M., C. H. Hillman, S. M. Buck, and H. E. Erwin. 2007. Physical fitness and academic achievement in third- and fifth-grade students. Journal of Sport and Exercise Psychology 29(2):239-252.

Chaddock, L., K. I. Erickson, R. S. Prakash, J. S. Kim, M. W. Voss, M. VanPatter, M. B. Pontifex, L. B. Raine, A. Konkel, and C. H. Hillman. 2010a. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Research 1358:172-183.

Chaddock, L., K. I. Erickson, R. S. Prakash, M. VanPatter, M. W. Voss, M. B. Pontifex, L. B. Raine, C. H. Hillman, and A. F. Kramer. 2010b. Basal ganglia volume is associated with aerobic fitness in preadolescent children. Developmental Neuroscience 32(3):249-256.

Chaddock, L., C. H. Hillman, S. M. Buck, and N. J. Cohen. 2011. Aerobic fitness and executive control of relational memory in preadolescent children. Medicine and Science in Sports and Exercise 43(2):344.

Chaddock, L., K. I. Erickson, R. S. Prakash, M. W. Voss, M. VanPatter, M. B. Pontifex, C. H. Hillman, and A. F. Kramer. 2012. A functional MRI investigation of the association between childhood aerobic fitness and neurocognitive control. Biological Psychology 89(1):260-268.

Chan, A. S., Y. C. Ho, and M. C. Cheung. 1998. Music training improves verbal memory. Nature 396(6707):128.

Chang, Y.-K., and J. L. Etnier. 2009. Effects of an acute bout of localized resistance exercise on cognitive performance in middle-aged adults: A randomized controlled trial study. Psychology of Sport and Exercise 10(1):19-24.

Chih, C. H., and J.-F. Chen. 2011. The relationship between physical education performance, fitness tests, and academic achievement in elementary school. International Journal of Sport and Society 2(1):65-73.

Chomitz, V. R., M. M. Slining, R. J. McGowan, S. E. Mitchell, G. F. Dawson, and K. A. Hacker. 2008. Is there a relationship between physical fitness and academic achievement? Positive results from public school children in the northeastern United States. Journal of School Health 79(1):30-37.

Coe, D. P., J. M. Pivarnik, C. J. Womack, M. J. Reeves, and R. M. Malina. 2006. Effect of physical education and activity levels on academic achievement in children. Medicine and Science in Sports and Exercise 38(8):1515-1519.

Cohen, N. J., and H. Eichenbaum. 1993. Memory, amnesia, and the hippocampal system . Cambridge, MA: MIT Press.

Cohen, N. J., J. Ryan, C. Hunt, L. Romine, T. Wszalek, and C. Nash. 1999. Hippocampal system and declarative (relational) memory: Summarizing the data from functional neuroimaging studies. Hippocampus 9(1):83-98.

Colcombe, S. J., and A. F. Kramer. 2003. Fitness effects on the cognitive function of older adults a meta-analytic study. Psychological Science 14(2):125-130.

Colcombe, S. J., K. I. Erickson, N. Raz, A. G. Webb, N. J. Cohen, E. McAuley, and A. F. Kramer. 2003. Aerobic fitness reduces brain tissue loss in aging humans. Journals of Gerontology Series A: Biological Sciences and Medical Sciences 58(2):M176-M180.

Colcombe, S. J., A. F. Kramer, K. I. Erickson, P. Scalf, E. McAuley, N. J. Cohen, A. Webb, G. J. Jerome, D. X. Marquez, and S. Elavsky. 2004. Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences of the United States of America 101(9):3316-3321.

Colcombe, S. J., K. I. Erickson, P. E. Scalf, J. S. Kim, R. Prakash, E. McAuley, S. Elavsky, D. X. Marquez, L. Hu, and A. F. Kramer. 2006. Aerobic exercise training increases brain volume in aging humans. Journals of Gerontology Series A: Biological Sciences and Medical Sciences 61(11):1166-1170.

Cooper, K., D. Everett, J. Kloster, M. D. Meredith, M. Rathbone, K. Read. 2010. Preface: Texas statewide assessment of youth fitness. Research Quarterly for Exercise and Sport 81(3):ii.

Cotman, C. W., N. C. Berchtold, and L.-A. Christie. 2007. Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences 30(9):464-472.

Cottrell, L. A., K. Northrup, and R. Wittberg. 2007. The extended relationship between child cardiovascular risks and academic performance measures. Obesity (Silver Spring) 15(12):3170-3177.

Crosnoe, R. 2002. Academic and health-related trajectories in high school: The intersection of gender and athletics. Journal of Health and Social Behavior 43:317-335.

Daley, A. J., and J. Ryan. 2000. Academic performance and participation in physical activity by secondary school adolescents. Perceptual and Motor Skills 91(2):531-534.

Datar, A., and R. Sturm. 2004. Physical education in elementary school and body mass index: Evidence from the Early Childhood Longitudinal Study. Journal Information 94(9):1501-1509.

Datar, A., and R. Sturm. 2006. Childhood overweight and elementary school outcomes. International Journal of Obesity 30(9):1449-1460.

Datar, A., R. Sturm, and J. L. Magnabosco. 2004. Childhood overweight and academic performance: National study of kindergartners and first-graders. Obesity Research 12(1):58-68.

Davidson, M. C., D. Amso, L. C. Anderson, and A. Diamond. 2006. Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia 44(11):2037.

Davis, C. L., P. D. Tomporowski, J. E. McDowell, B. P. Austin, P. H. Miller, N. E. Yanasak, J. D. Allison, and J. A. Naglieri. 2011. Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychology 30(1):91-98.

Dawson, P., and R. Guare. 2004. Executive skills in children and adolescents: A practical guide to assessment and intervention . New York: Guilford Press. Pp. 2-8.

Debette, S., A. Beiser, U. Hoffmann, C. DeCarli, C. J. O’Donnell, J. M. Massaro, R. Au, J. J. Himali, P. A. Wolf, C. S. Fox, and S. Seshadri. 2010. Visceral fat is associated with lower brain volume in healthy middle-aged adults. Annals of Neurology 68:136-144.

Dexter, T. T. (1999). Relationships between sport knowledge, sport performance and academic ability: Empirical evidence from GCSE physical education. Journal of Sports Sciences 17(4):283-295.

Diamond, A. 2006. The early development of executive functions. In Lifespan cognition: Mechanisms of change , edited by E. Bialystok and F. I. M. Craik. New York: Oxford University Press. Pp. 70-95.

Donchin, E. 1981. Surprise! … surprise? Psychophysiology 18(5):493-513.

Donchin, E., and M. G. H. Coles. 1988. Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences 11(03):357-374.

Donnelly, J. E., and K. Lambourne. 2011. Classroom-based physical activity, cognition, and academic achievement. Preventive Medicine 52(Suppl 1):S36-S42.

Donnelly, J. E., J. L. Greene, C. A. Gibson, B. K. Smith, R. A. Washburn, D. K. Sullivan, K. DuBose, M. S. Mayo, K. H. Schmelzle, and J. J. Ryan. 2009. Physical Activity Across the Curriculum (PAAC): A randomized controlled trial to promote physical activity and diminish overweight and obesity in elementary school children. Preventive Medicine 49(4):336-341.

Drollette, E. S., T. Shishido, M. B. Pontifex, and C. H. Hillman. 2012. Maintenance of cognitive control during and after walking in preadolescent children. Medicine and Science in Sports and Exercise 44(10):2017-2024.

Duncan, S. C., T. E. Duncan, L. A. Strycker, and N. R. Chaumeton. 2007. A cohort-sequential latent growth model of physical activity from ages 12 to 17 years. Annals of Behavioral Medicine 33(1):80-89.

Duncan-Johnson, C. C. 1981. P3 latency: A new metric of information processing. Psychophysiology 18:207-215.

Dwyer, T., W. Coonan, A. Worsley, and D. Leitch. 1979. An assessment of the effects of two physical activity programmes on coronary heart disease risk factors in primary school children. Community Health Studies 3(3):196-202.

Dwyer, T., W. E. Coonan, D. R. Leitch, B. S. Hetzel, and R. Baghurst. 1983. An investigation of the effects of daily physical activity on the health of primary school students in south Australia. International Journal of Epidemiology 12(3):308-313.

Edwards, J. U., L. Mauch, and M. R. Winkleman. 2011. Relationship of nutrition and physical activity behaviors and fitness measures to academic performance for sixth graders in a Midwest city school district. Journal of School Health 81:65-73.

Efrat, M. 2011. The relationship between low-income and minority children’s physical activity and academic-related outcomes: A review of the literature. Health Education and Behavior 38(5):441-451.

Eitle, T. M. 2005. Do gender and race matter? Explaining the relationship between sports participation and achievement. Sociological Spectrum 25(2):177-195.

Eitle, T. M., and D. J. Eitle. 2002. Race, cultural capital, and the educational effects of participation in sports. Sociology of Education 123-146.

Elbert, T., C. Pantev, C. Wienbruch, B. Rockstroh, and E. Taub. 1995. Increased cortical representation of the fingers of the left hand in string players. Science 270(5234):305-307.

Elder, C., D. Leaver-Dunn, M. Q. Wang, S. Nagy, and L. Green. 2000. Organized group activity as a protective factor against adolescent substance use. American Journal of Health Behavior 24(2):108-113.

Ellemberg, D., and M. St-Louis-Deschênes. 2010. The effect of acute physical exercise on cognitive function during development. Psychology of Sport and Exercise 11(2):122-126.

Erickson, K. I., R. S. Prakash, M. W. Voss, L. Chaddock, L. Hu, K. S. Morris, S. M. White, T. R. Wójcicki, E. McAuley, and A. F. Kramer. 2009. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19(10):1030-1039.

Erickson, K. I., M. W. Voss, R. S. Prakash, C. Basak, A. Szabo, L. Chaddock, J. S. Kim, S. Heo, H. Alves, and S. M. White. 2011. Exercise training increases size of hippo-campus and improves memory. Proceedings of the National Academy of Sciences of the United States of America 108(7):3017-3022.

Ericsson, K. A., and N. Charness. 1994. Expert performance: Its structure and acquisition. American Psychologist 49(8):725.

Estabrooks, P. A, R. E. Lee, and N. C. Gyurcsik. 2003. Resources for physical activity participation: Does availability and accessibility differ by neighborhood socioeconomic status? Annals of Behavioral Medicine 25(2):100-104.

Etnier, J. L., W. Salazar, D. M. Landers, S. J. Petruzzello, M. Han, and P. Nowell. 1997. The influence of physical fitness and exercise upon cognitive functioning: A meta-analysis. Journal of Sport and Exercise Psychology 19(3):249-277.

Etnier, J. L., P. M. Nowell, D. M. Landers, and B. A. Sibley. 2006. A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Research Reviews 52(1):119-130.

Eveland-Sayers, B. M., R. S. Farley, D. K. Fuller, D. W. Morgan, and J. L. Caputo. 2009. Physical fitness and academic achievement in elementary school children. Journal of Physical Activity and Health 6(1):99.

Fan, X., and Chen, M. (2001). Parental involvement and students’ academic achievement: A meta-analysis. Educational Psychology Review 13(1):1-22.

Fedewa, A. L., and S. Ahn. 2011. The effects of physical activity and physical fitness on children’s achievement and cognitive outcomes: A meta-analysis. Research Quarterly for Exercise and Sport 82(3):521-535.

Fisher, M., L. Juszczak, and S. B. Friedman. 1996. Sports participation in an urban high school: Academic and psychologic correlates. Journal of Adolescent Health 18(5):329-334.

Fox, C. K., D. Barr-Anderson, D. Neumark-Sztainer, and M. Wall. 2010. Physical activity and sports team participation: Associations with academic outcomes in middle school and high school students. Journal of School Health 80(1):31-37.

Fredericks, C. R., S. J. Kokot, and S. Krog. 2006. Using a developmental movement programme to enhance academic skills in grade 1 learners. South African Journal for Research in Sport, Physical Education and Recreation 28(1):29-42.

Gabbard, C., and J. Barton. 1979. Effects of physical activity on mathematical computation among young children. Journal of Psychology 103:287-288.

Gable, S., J. L. Krull, and Y. Chang. 2012. Boys’ and girls’ weight status and math performance from kindergarten entry through fifth grade: A mediated analysis. Child Development 83(5):1822-1839.

Gehring, W. J., B. Goss, M. G. Coles, D. E. Meyer, and E. Donchin. 1993. A neural system for error detection and compensation. Psychological Science 4(6):385-390.

Getlinger, M. J., V. Laughlin, E. Bell, C. Akre, and B. H. Arjmandi. 1996. Food waste is reduced when elementary-school children have recess before lunch. Journal of the American Dietetic Association 96(9):906.

Glenmark, B. 1994. Skeletal muscle fiber types, physical performance, physical activity and attitude to physical activity in women and men: A follow-up from age 16-27. Acta Physiologica Scandinavica Supplementum 623:1-47.

Grieco, L. A., E. M. Jowers, and J. B. Bartholomew. 2009. Physically active academic lessons and time on task: The moderating effect of body mass index. Medicine and Science in Sports and Exercise 41(10):1921-1926.

Grissom, J. B. 2005. Physical fitness and academic achievement. Journal of Exercise Physiology Online 8(1):11-25.

Gunstad, J., M. B. Spitznagel, R. H. Paul, R. A. Cohen, M. Kohn, F. S. Luyster, R. Clark, L. M. Williams, and E. Gordon. 2008. Body mass index and neuropsychological function in healthy children and adolescents. Appetite 5(2):246-51.

Hanson, S. L., and R. S. Kraus. 1998. Women, sports, and science: Do female athletes have an advantage? Sociology of Education 71:93-110.

Hatfield, B. D., and C. H. Hillman. 2001. The psychophysiology of sport: A mechanistic understanding of the psychology of superior performance. In The handbook of research on sport psychology (2nd ed.), edited by R. N. Singer, H. A. Hausenblas, and C. Janelle. New York: John Wiley. Pp. 362-386.

Hillman, C. H., E. M. Snook, and G. J. Jerome. 2003. Acute cardiovascular exercise and executive control function. International Journal of Psychophysiology 48(3):307-314.

Hillman, C. H., D. M. Castelli, and S. M. Buck. 2005. Aerobic fitness and neurocognitive function in healthy preadolescent children. Medicine and Science in Sports and Exercise 37(11):1967.

Hillman, C. H., R. W. Motl, M. B. Pontifex, D. Posthuma, J. H. Stubbe, D. I. Boomsma, and E. J. C. De Geus. 2006. Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health Psychology 25(6):678.

Hillman, C. H., K. I. Erickson, and A. F. Kramer. 2008. Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience 9(1):58-65.

Hillman, C. H., M. B. Pontifex, L. B. Raine, D. M. Castelli, E. E. Hall, and A. F. Kramer. 2009. The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience 159(3):1044.

Holroyd, C. B., and M. G. Coles. 2002. The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review 109(4):679.

Huttenlocher, P. R., and A. S. Dabholkar. 1997. Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology 387(2):167-178.

Ila, A. B., and J. Polich. 1999. P300 and response time from a manual Stroop task. Clinical Neurophysiology 110(2):367-373.

Jarrett, O. S., D. M. Maxwell, C. Dickerson, P. Hoge, G. Davies, and A. Yetley. 1998. Impact of recess on classroom behavior: Group effects and individual differences. Journal of Educational Research 92(2):121-126.

Jones, J. G., and L. Hardy. 1989. Stress and cognitive functioning in sport. Journal of Sports Sciences 7(1):41-63.

Judge, S., and L. Jahns. 2007. Association of overweight with academic performance and social and behavioral problems: An update from the Early Childhood Longitudinal Study. Journal of School Health 77:672-678.

Kamijo, K., M. B. Pontifex, K. C. O’Leary, M. R. Scudder, C. T. Wu, D. M. Castelli, and C. H. Hillman. 2011. The effects of an afterschool physical activity program on working memory in preadolescent children. Developmental Science 14(5):1046-1058.

Kamijo, K., N. A. Khan, M. B. Pontifex, M. R. Scudder, E. S. Drollette, L. B. Raine, E. M. Evans, D. M. Castelli, and C. H. Hillman. 2012a. The relation of adiposity to cognitive control and scholastic achievement in preadolescent children. Obesity 20(12):2406-2411.

Kamijo, K., M. B. Pontifex, N. A. Khan, L. B. Raine, M. R. Scudder, E. S. Drollette, E. M. Evans, D. M. Castelli, and C. H. Hillman. 2012b. The association of childhood obesity to neuroelectric indices of inhibition. Psychophysiology 49(10):1361-1371.

Kamijo, K., M. B. Pontifex, N. A. Khan, L. B. Raine, M. R. Scudder, E. S. Drollette, E. M. Evans, D. M. Castelli, and C. H. Hillman. 2012c. The negative association of childhood obesity to the cognitive control of action monitoring. Cerebral Cortex . Epub ahead of print, November 11. cercor.oxfordjournals.org/content/early/2012/11/09/cercor.bhs349.long (accessed October 4, 2013).

Kibbe, D. L., J. Hackett, M. Hurley, A. McFarland, K. G. Schubert, A. Schultz, and S. Harris. 2011. Ten years of TAKE 10! ® : Integrating physical activity with academic concepts in elementary school classrooms. Preventive Medicine 52(Suppl):S43-S50.

Kramer, A. F., and K. I. Erickson. 2007. Capitalizing on cortical plasticity: Influence of physical activity on cognition and brain function. Trends in Cognitive Sciences 11(8):342-348.

Kramer, A. F., S. Hahn, N. J. Cohen, M. T. Banich, E. McAuley, C. R. Harrison, J. Chason, E. Vakil, L. Bardell, and R. A. Boileau. 1999. Ageing, fitness and neurocognitive function. Nature 400(6743):418-419.

Kutas, M., G. McCarthy, and E. Donchin. 1977. Augmenting mental chronometry: The P300 as a measure of stimulus evaluation time. Science 197(4305):792-795.

London, R. A., and S. Castrechini. 2011. A longitudinal examination of the link between youth physical fitness and academic achievement. Journal of School Health 81(7):400-408.

MacDonald, A. W., J. D. Cohen, V. A. Stenger, and C. S. Carter. 2000. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288(5472):1835-1838.

Magliero, A., T. R. Bashore, M. G. Coles, and E. Donchin. 1984. On the dependence of P300 latency on stimulus evaluation processes. Psychophysiology 21(2):171-186.

Mahar, M. T., S. K. Murphy, D. A. Rowe, J. Golden, A. T. Shields, and T. D. Raedeke. 2006. Effects of a classroom-based program on physical activity and on-task behavior. Medicine and Science in Sports and Exercise 38(12):2086.

Mechanic, D., and S. Hansell. 1987. Adolescent competence, psychological well-being, and self-assessed physical health. Journal of Health and Social Behavior 28(4):364-374.

Mezzacappa, E. 2004. Alerting, orienting, and executive attention: Developmental properties and sociodemographic correlates in an epidemiological sample of young, urban children. Child Development 75(5):1373-1386.

Miller, K. E., M. J. Melnick, G. M. Barnes, M. P. Farrell, and D. Sabo. 2005. Untangling the links among the athletic involvement, gender, race, and adolescent academic outcomes. Sociology of Sport 22(2):178-193.

Monti, J. M., C. H. Hillman, and N. J. Cohen. 2012. Aerobic fitness enhances relational memory in preadolescent children: The FITKids randomized control trial. Hippocampus 22(9):1876-1882.

Münte, T. F., C. Kohlmetz, W. Nager, and E. Altenmüller. 2001. Superior auditory spatial tuning in conductors. Nature 409(6820):580.

NASPE (National Association for Sport and Physical Education). 2004. Moving into the future: National Physical Education Content Standards (2nd ed.). Reston, VA: NASPE.

NASPE. 2006. Recess for elementary school students . http://www.aahperd.org/naspe/standards/upload/recess-for-elementary-school-students-2006.pdf (accessed December 1, 2012).

Neeper, S. A., F. Gomez-Pinilla, J. Choi, and C. Cotman. 1995. Exercise and brain neuro-trophins. Nature 373(6510):109.

NRC (National Research Council)/IOM (Institute of Medicine). 2000. From neurons to neighborhoods: The science of early childhood development . Washington, DC: National Academy Press.

O’Leary, K. C., M. B. Pontifex, M. R. Scudder, M. L. Brown, and C. H. Hillman. 2011. The effects of single bouts of aerobic exercise, exergaming, and videogame play on cognitive control. Clinical Neurophysiology 122(8):1518-1525.

Page, R. M., J. Hammermeister, A. Scanlan, and L. Gilbert. 1998. Is school sports participation a protective factor against adolescent health risk behaviors? Journal of Health Education 29(3):186-192.

Pellegrini, A. D., and C. M. Bohn. 2005. The role of recess in children’s cognitive performance and school adjustment. Educational Researcher 34(1):13-19.

Pellegrini, A. D., P. D. Huberty, and I. Jones. 1995. The effects of recess timing on children’s playground and classroom behaviors. American Educational Research Journal 32(4):845-864.

Pesce, C., C. Crova, L. Cereatti, R. Casella, and M. Bellucci. 2009. Physical activity and mental performance in preadolescents: Effects of acute exercise on free-recall memory. Mental Health and Physical Activity 2(1):16-22.

Polich, J. 1997. EEG and ERP assessment of normal aging. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section 104(3):244-256.

Polich, J., and M. R. Heine. 2007. P300 topography and modality effects from a single-stimulus paradigm. Psychophysiology 33(6):747-752.

Pontifex, M. B., L. B. Raine, C. R. Johnson, L. Chaddock, M. W. Voss, N. J. Cohen, A. F. Kramer, and C. H. Hillman. 2011. Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children. Journal of Cognitive Neuroscience 23(6):1332-1345.

Pontifex, M. B., M. R. Scudder, E. S. Drollette, and C. H. Hillman. 2012. Fit and vigilant: The relationship between sedentary behavior and failures in sustained attention during preadolescence. Neuropsychology 26(4):407-413.

Pontifex, M. B., B. J. Saliba, L. B. Raine, D. L. Picchietti, and C. H. Hillman. 2013. Exercise improves behavioral, neurophysiologic, and scholastic performance in children with ADHD. Journal of Pediatrics 162:543-551.

Raji, C. A., A. J. Ho, N. N. Parikshak, J. T. Becker, O. L. Lopez, L. H. Kuller, X. Hua, A. D. Leow, A. W. Toga, and P. M. Thompson. 2010. Brain structure and obesity. Human Brain Mapping 31(3):353-364.

Rasberry, C. N., S. M. Lee, L. Robin, B. A. Laris, L. A. Russell, K. K. Coyle, and A. J. Nihiser. 2011. The association between school-based physical activity, including physical education, and academic performance: A systematic review of the literature. Preventive Medicine 52(Suppl 1):S10-S20.

Raz, N. 2000. Aging of the brain and its impact on cognitive performance: Integration of structural and functional findings. In The handbook of aging and cognition . Vol. 2, edited by F. M. Craik and T. A. Salthouse. Mahweh, NJ: Lawrence Erlbaum Associates. Pp. 1-90.

Reed, J. A., G. Einstein, E. Hahn, S. P. Hooker, V. P. Gross, and J. Kravitz. 2010. Examining the impact of integrating physical activity on fluid intelligence and academic performance in an elementary school setting: A preliminary investigation. Journal of Physical Activity and Health 7(3):343-351.

Ruiz, J. R., F. B. Ortega, R. Castillo, M. Martin-Matillas, L. Kwak, G. Vicente-Rodriguez, J. Noriega, P. Tercedor, M. Sjostrom, and L. A. Moreno. 2010. Journal of Pediatrics 157(6):917-922.

Sallis, J. F., T. L. McKenzie, B. Kolody, M. Lewis, S. Marshall, and P. Rosengard. 1999. Effects of health-related physical education on academic achievement: Project SPARK. Research Quarterly for Exercise and Sport 70(2):127-134.

Sanders, A. 1983. Towards a model of stress and human performance. Acta Psychologica 53(1):61-97.

Shephard, R. J. 1986. Habitual physical activity and academic performance. Nutrition Reviews 54(4):S32-S36.

Shephard, R. J., M. Volle, H. Lavallee, R. LaBarre, J. Jequier, and M. Rajic. 1984. Required physical activity and academic grades: A controlled study. In Children and Sport. Berlin, Germany: Springer-Verlag. Pp. 58-63.

Sibley, B. A., and J. L. Etnier. 2003. The relationship between physical activity and cognition in children: A meta-analysis. Pediatric Exercise Science 15:243-256.

Silliker, S. A., and J. T. Quirk. 1997. The effect of extracurricular activity participation on the academic performance of male and female high school students. School Counselor 44(4):288-293.

Singh, A., L. Uijtdewilligen, J. W. R. Twisk, W. van Mechelen, and M. J. M. Chinapaw. 2012. Physical activity and performance at school: A systematic review of the literature including a methodological quality assessment. Archives of Pediatrics and Adolescent Medicine 166(1):49-55.

Sirin, S. R. 2005. Socioeconomic status and academic achievement: A meta-analytic review of research. Review of Educational Research 75(3):417-453.

Smith, P. J., J. A. Blumenthal, B. M. Hoffman, H. Cooper, T. A. Strauman, K. Welsh-Bohmer, J. N. Browndyke, and A. Sherwood. 2010. Aerobic exercise and neuro-cognitive performance: A meta-analytic review of randomized controlled trials. Psychosomatic Medicine 72(3):239-252.

Stanca, L. 2006. The effects of attendance on academic performance: Panel data evidence for introductory microeconomics. Journal of Economic Education 37(3):251-266.

Stephens, L. J., and L. A. Schaben. 2002. The effect of interscholastic sports participation on academic achievement of middle level school activities. National Association of Secondary School Principals Bulletin 86:34-42.

Stewart, J. A., D. A. Dennison, H. W. Kohl III, and J. A. Doyle. 2004. Exercise level and energy expenditure in the TAKE 10! ® in-class physical activity program. Journal of School Health 74(10):397-400.

Strong, W. B., R. M. Malina, C. J. Blimkie, S. R. Daniels, R. K. Dishman, B. Gutin, A. C. Hergenroeder, A. Must, P. A. Nixon, J. M. Pivarnik, T. Rowland, S. Trost, and F. Trudeau. 2005. Evidence based physical activity for school-age youth. Journal of Pediatrics 146(6):732-737.

Taliaferro, L. A., B. A. Rienzo, and K. A. Donovan. 2010. Relationships between youth sport participation and selected health risk behaviors from 1999 to 2007. Journal of School Health 80(8):399-410.

Taylor, M. J. 2006. Neural bases of cognitive development. In Lifespan cognition: Mechanisms of change , edited by E. Bialystok and F. I. M. Craik. Oxford, UK: Oxford University Press. Pp. 15-26.

Telama, R., X. Yang, L. Laakso, and J. Viikari. 1997. Physical activity in childhood and adolescence as predictor of physical activity in young adulthood. American Journal of Preventive Medicine 13(4):317-323.

Thomas, A. G., A. Dennis, P. A. Bandettini, and H. Johansen-Berg. 2012. The effects of aerobic activity on brain structure. Frontiers in Psychology 3:1-9.

Tomporowski, P. D. 2003. Effects of acute bouts of exercise on cognition. Acta Psychologica 112(3):297-324.

Tomporowski, P. D., C. L. Davis, P. H. Miller, and J. A. Naglieri. 2008a. Exercise and children’s intelligence, cognition, and academic achievement. Educational Psychology Review 20(2):111-131.

Tomporowski, P. D., C. L. Davis, K. Lambourne, M. Gregoskis, J. Tkacz. 2008b. Task switching in overweight children: Effects of acute exercise and age. Journal of Sport and Exercise Psychology 30(5):497-511.

Trudeau, F., and R. J. Shephard. 2008. Physical education, school physical activity, school sports and academic performance. International Journal of Behavioral Nutrition and Physical Activity 5.

Trudeau, F., and R. J. Shephard. 2010. Relationships of physical activity to brain health and the academic performance of school children. American Journal of Lifestyle Medicine 4:138-150.

Trudeau, F., L. Laurencelle, J. Tremblay, M. Rajic, and R. Shephard. 1999. Daily primary school physical education: Effects on physical activity during adult life. Medicine and Science in Sports and Exercise 31(1):111.

Trudeau, F., R. J. Shephard, F. Arsenault, and L. Laurencelle. 2001. Changes in adiposity and body mass index from late childhood to adult life in the Trois-Rivières study. American Journal of Human Biology 13(3):349-355.

Trudeau, F., L. Laurencelle, and R. J. Shephard. 2004. Tracking of physical activity from childhood to adulthood. Medicine and Science in Sports and Exercise 36(11):1937.

Van Dusen, D. P., S. H. Kelder, H. W. Kohl III, N. Ranjit, and C. L. Perry. 2011. Associations of physical fitness and academic performance among schoolchildren. Journal of School Health 81(12):733-740.

Van Praag, H., G. Kempermann, and F. H. Gage. 1999. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience 2(3):266-270.

Voss, M. W., L. Chaddock, J. S. Kim, M. VanPatter, M. B. Pontifex, L. B. Raine, N. J. Cohen, C. H. Hillman, and A. F. Kramer. 2011. Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children. Neuroscience 199:166-176.

Wechsler, H., N. D. Brener, S. Kuester, and C. Miller. 2001. Food service and food and beverage available at school: Results from the School Health Policies and Programs Study. Journal of School Health 71(7):313-324.

Welk, G. J., A. W. Jackson, J. Morrow, R. James, W. H. Haskell, M. D. Meredith, and K. H. Cooper. 2010. The association of health-related fitness with indicators of academic performance in Texas schools. Research Quarterly for Exercise and Sport 81(Suppl 2):16S-23S.

Welk, G. J., S. B. Going, J. R. Morrow, and M. D. Meredith. 2011. Development of new criterion-referenced fitness standards in the Fitnessgram ® program. American Journal of Preventive Medicine 41(2):6.

Wilkins, J., G. Graham, S. Parker, S. Westfall, R. Fraser, and M. Tembo. 2003. Time in the arts and physical education and school achievement. Journal of Curriculum Studies 35(6):721-734.

Wittberg, R., L. A. Cottrell, C. L. Davis, and K. L. Northrup. 2010. Aerobic fitness thresholds associated with fifth grade academic achievement. American Journal of Health Education 41(5):284-291.

Yeung, N., M. M. Botvinick, and J. D. Cohen. 2004. The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review 111(4):931.

Zhu, W., G. J. Welk, M. D. Meredith, and E. A. Boiarskaia. 2010. A survey of physical education programs and policies in Texas schools. Research Quarterly for Exercise and Sport 81(Suppl 2):42S-52S.

Physical inactivity is a key determinant of health across the lifespan. A lack of activity increases the risk of heart disease, colon and breast cancer, diabetes mellitus, hypertension, osteoporosis, anxiety and depression and others diseases. Emerging literature has suggested that in terms of mortality, the global population health burden of physical inactivity approaches that of cigarette smoking. The prevalence and substantial disease risk associated with physical inactivity has been described as a pandemic.

The prevalence, health impact, and evidence of changeability all have resulted in calls for action to increase physical activity across the lifespan. In response to the need to find ways to make physical activity a health priority for youth, the Institute of Medicine's Committee on Physical Activity and Physical Education in the School Environment was formed. Its purpose was to review the current status of physical activity and physical education in the school environment, including before, during, and after school, and examine the influences of physical activity and physical education on the short and long term physical, cognitive and brain, and psychosocial health and development of children and adolescents.

Educating the Student Body makes recommendations about approaches for strengthening and improving programs and policies for physical activity and physical education in the school environment. This report lays out a set of guiding principles to guide its work on these tasks. These included: recognizing the benefits of instilling life-long physical activity habits in children; the value of using systems thinking in improving physical activity and physical education in the school environment; the recognition of current disparities in opportunities and the need to achieve equity in physical activity and physical education; the importance of considering all types of school environments; the need to take into consideration the diversity of students as recommendations are developed.

This report will be of interest to local and national policymakers, school officials, teachers, and the education community, researchers, professional organizations, and parents interested in physical activity, physical education, and health for school-aged children and adolescents.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

China: Fostering Students with All-round Attainments in Moral, Intellectual, Physical and Aesthetic Grounding

  • First Online: 23 August 2023

Cite this chapter

physical education school physical activity school sports and academic performance

  • Huanhuan Xia 19 &
  • You You 20  

Part of the book series: UNIPA Springer Series ((USS))

163 Accesses

The chapter explores China’s experience of fostering twenty-first century skills. Chinese school focuses on the cultivation of “comprehensively developed people,” thus shifting to appreciate individuality in mass education. Its key competency model seeks to enhance students’ sense of social responsibility, innovation, and practical ability. The task of developing key competences is integrated into all school subjects and is further supported in informal education; schools may flexibly adjust their timetable and curricula to better fit this task. Students are assessed not only in their academic outcomes, but also in their moral character, physical and mental health, social practice, etc. The model is based on the quality-oriented education concept (1980-s) and Core Values, which are consistent with the theoretical base of Marxism, and with the policy of the Chinese Communist Party of China. The model also reflects the history and culture of the Chinese nation, integrating their elements into the curriculum in all academic disciplines.

A note from the editors:

This essay about curriculum and education reform in China was prepared by scholars from Capital Normal University and Peking University. It describes the experience of transforming education in a country with centuries-old cultural (and educational) traditions which are very different from the Western model, so influential nowadays for the global development of education.

With the twenty-first century as the boundary point, the curriculum reform in China before this period has emphasized the need for collective demand, the curriculum of subjects, knowledge transmission and selection competition. The subsequent curriculum reform emphasized individual development, experience course, self-investigation and moral, intellectual, and physical health. The new round of curriculum reform based on key competences, which inherits the “all-round education,” highlights the individual characteristics of the new generation, and responds to the internal needs of all-round education in the new era.

The key competences framework in China has three characteristics. Firstly, paying attention to ideological and moral education, for the all-round development of students. Secondly, centering on the main line of students who have all-round attainments in moral, intellectual, physical and aesthetic education, the specific content changes with the development of society. Thirdly, educating students with top priority is given to cultivating their moral integrity and their overall qualities such as social responsibility, innovative spirit, practical ability and so on. The ultimate goal is to turn China into a country rich in human resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Lee JC-K, Yin H-B, Zhang Z-H, Jin Y-L (2011) Teacher empowerment and receptivity in curriculum reform in China. Chinese Educ Soc 44(4):64–81. https://doi.org/10.2753/CED1061-1932440404

Creese B, Gonzalez A, Isaacs T (2016) Comparing international curriculum systems: the international instructional systems study. Curric J 27(1):5–23. https://doi.org/10.1080/09585176.2015.1128346

Article   Google Scholar  

Dello-Iacovo B (2009) Curriculum reform and “quality education” in China: an overview. Int J Educ Dev 29:241–249

Fu G, Clarke A (2019) Teachers’ moral agency under neo-liberal influences: what is education- ally desirable in China’s curriculum reform? Educ Rev 71(1):51–66. https://doi.org/10.1080/00131911.2019.1524205

Yao J-X, Guo Y-Y (2018) Core competences and scientific literacy: the recent reform of the school science curriculum in China. Int J Sci Educ 40(15):1913–1933. https://doi.org/10.1080/09500693.2018.1514544

Wu JT (2012) Governing Suzhi and curriculum reform in rural ethnic China: viewpoints from the Miao and Dong communities in Qiandongnan. Curric Inq 42(5):652–681. https://doi.org/10.1111/j.1467-873X.2012.00611.x

Wang T (2019) Competence for students’ future: curriculum change and policy redesign in China. CNU Rev Educ 2(2):234–245. https://doi.org/10.1177/2096531119850905

Zhao WL (2019) Epistemological flashpoint in China’s classroom reform: (How) can a “confucian do-after-me pedagogy” cultivate critical thinking? J Curric Stud. https://doi.org/10.1080/00220272.2019.1641844

Xin T, Kang CH (2012) Qualitative advances of China’s basic education since reform and open- ing up. Chinese Educ Soc 45(1):42–50. https://doi.org/10.2753/CED1061-1932450105

Jiang Y, Zhang JH, Xin T (2018) Toward education quality improvement in China: A brief overview of the national assessment of education quality. J Educ Behav Stat 44(6):733–751. https://doi.org/10.3102/1076998618809677

Zhan WS, Ning WJ (2004) The moral education curriculum for junior high schools in 21st century China. J Moral Educ 33(4):511–532. https://doi.org/10.1080/0305724042000327993

PRC ministry of education department of development planning (2016) China Statistical Yearbook of Education, vol 11 (中华人民共和国教育部发展规划司. 中国教育统计年鉴 [M]. 北京:中国统计出版社). China Statistics Press, Beijing (in Chinese)

Google Scholar  

Liu X, Hu QF, Liu Y, Fang XY, Chen YH, Mo L, Zhang WX, Zhao GX, Xin T, Lin CD (2016). Empirical investigation on core competencies of student development in China (刘霞,胡清芬,刘艳,方晓义,陈英和,莫雷,张文新,赵国祥,李红,辛涛,林崇德.我国学生发展核心素养的实证 调查 [J]. 中国教育学刊) J Chinese Soc Educ 6:15–22 (in Chinese)

Wu WY, Li J (2016) Teaching training courses in the context of “developing student core competencies” (吴惟粤,李俊.“发展学生核心素养”背景下的教师培训课程 [J]. 课程教学研究). J Curric Instr 08:9–16 (in Chinese)

Jiang Y, Xin T (2016) Promoting deepen curriculum reform through constructing a core competencies based model (姜宇,辛涛.以核心素养模型推进课程全面深化改革 [J]. 中国德育). Moral Educ China 01:26–28 (in Chinese)

Yang JQ (2018) 1978–2018: The contemporary history of curriculum reform in China (杨九诠.1978–2018年:中国课程改革当代史 [J]. 课程.教材.教法). Curric Teach Mater Method 38(10):11–19 (in Chinese)

Yang XD (2017) Competence-based curriculum standard development for basic education (杨向东.基于核心素养的基础教育课程标准研制 [J]. 全球教育展望). Global Educ 46(10):34–48 (in Chinese)

Lin CD (2017) The research of core competencies and values for students in China (林崇德.中国学生核心素养研究 [J]. 心理与行为研究). Stud Psychol Behav 15(02):145–154 (in Chinese)

Xiong Q, Zhu DQ (2019) The domain of knowledge structure: the logic and pattern of integrating key competencies into teaching materials (熊晴,朱德全.知识结构论域:核心素养融入教材的逻辑与样态 [J]. 当代教育科学). Contemp Educ Sci 02:18–22 (in Chinese)

Tian YP, Fan HM (2017) Research on core student development competencies based teacher training courses (田玉萍,范会敏.基于学生核心素养发展的教师培训课程研究 [J]. 赤峰学院学报(自然科学 自然科学版)). J Chifeng Univ (Nat Sci Edn) 33(20):225–227 (in Chinese)

Suo HJ, Zuo FL (2015) Quality education and university education reform (索海军,左丰力.素质教育与大学教育改革 [C]. 北京:高等教育出版社). Higher Education Press, Beijing, pp 83–90 (in Chinese)

Su ZY (2018) Discipline core competencies based history teacher training: implementation and effectiveness of the demonstration project of 2017 national training plan (苏争艳.基于学科核心素养的中学历史教师培训—2017 “国培计划”示范性项目的实行与实效 [J]. 中学历 史教学参考). Teach Ref Middle School History 01:33–35 (in Chinese)

Xin T, Jiang Y, Lin CD, Shi BG, Liu X (2016) On the connotation characteristics, framework and orientation of core competencies in student developmen (辛涛,姜宇,林崇德,师保国,刘霞.论学生发展核心素养的内涵特征及框架定位 [J]. 中国教育学刊). J Chinese Soc Educ 06:3–7+28 (in Chinese)

Xin T, Jiang Y (2015a) Constructing a core socialist values centered system of student core competencies in China (辛涛,姜宇.以社会主义核心价值观为中心构建我国学生核心素养体系 [J]. 人民教). People’s Educ 07:26–30 (in Chinese)

Xin T, Jiang Y (2015b) Constructing student core competencies models: a global view (辛涛,姜宇.全球视域下学生核心素养模型的构建 [J]. 人民教育). People’s Educ 09:54–58 (in Chinese)

Xin T (2016) Academic quality standards: a bridge connecting core competencies, curriculum standards, assessment and evaluation (辛涛.学业质量标准:连接核心素养与课程标准、考试、评价的桥梁 [J]. 人民教育). People’s Educ 19:17–18 (in Chinese)

Xin T (2016) Problems of attention in research of core competencies of student development (辛涛.学生发展核心素养研究应注意几个问题 [J]. 华东师范大学学报(教育科学版)). J East China Normal Univ (Educ Sci) 34(01): 6–7 (in Chinese)

Zhong QQ (2016) Curriculum development based on core competencies: challenges and issues (钟启泉.基于核心素养的课程发展:挑战与课题 [J]. 全球教育展望). Global Educ 45(01):3–25 (in Chinese)

Chen YQ (2019) Enhancing student core competencies of language through questioning (陈友情.以问促思,提升学生语文核心素养 [J]. 小学教学参考). Ref Elem Teach 04:50 (in Chinese)

Huang SL, Zuo H, Mo L, Liu X, Xin T, Lin CD (2016) International comparative analysis on the research of core competencies of student development. J Chinese Soc Educ 06:8–14

Zhao K (2020) Educating for wholeness, but beyond competences: challenges to key-competences-based education in China. ECNU Rev Educ 3(3):470–487

Ministry of Education of the People’s Republic of China (2014) The MOE’s suggestions on deepening curriculum reform thoroughly and realizing the basic task of building moral character and cultivating humanity. (in Chinese). Retrieved November 15, 2016, from http://old.moe.gov.cn/publicfiles/business/htmlfiles/moe/s7054/201404/167226.html

Project Team for Core-Competences (2016) Developing Chinese students’ core-competences. J Chinese Soc Educa (10):1–3 (in Chinese)

Wang YH, Xin T (2017) Key issues on core competencies based curriculum reform[J]. People’s Education Z1:37–40

Download references

Author information

Authors and affiliations.

Capital Normal University, A230 East District 1, Haidian District 100048, Beijing, China

Huanhuan Xia

101–402, Chengzeyuan Peking University, Haidian District, 100080, Beijing, China

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Huanhuan Xia .

Editor information

Editors and affiliations.

Institute of Education, National Research University Higher School of Economics, Moscow, Russia

Maria Dobryakova

Head of the Observatory of Higher Education Innovations, Jacobs University, Bremen, Germany

Isak Froumin

Moscow City University, Moscow, Russia

Kirill Barannikov

University College London, London, UK

Igor Remorenko

University of Helsinki, Helsinki, Finland

Jarkko Hautamäki

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Xia, H., You, Y. (2023). China: Fostering Students with All-round Attainments in Moral, Intellectual, Physical and Aesthetic Grounding. In: Dobryakova, M., Froumin, I., Barannikov, K., Moss, G., Remorenko, I., Hautamäki, J. (eds) Key Competences and New Literacies. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-031-23281-7_5

Download citation

DOI : https://doi.org/10.1007/978-3-031-23281-7_5

Published : 23 August 2023

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-23280-0

Online ISBN : 978-3-031-23281-7

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

IMAGES

  1. How physical activity affects school performance

    physical education school physical activity school sports and academic performance

  2. Physical Education and Physical Activity

    physical education school physical activity school sports and academic performance

  3. Promoting Physical Education & Physical Activity At School

    physical education school physical activity school sports and academic performance

  4. Boosting children's physical activity in school

    physical education school physical activity school sports and academic performance

  5. Physical Education: A Crucial Part of Primary and Secondary School

    physical education school physical activity school sports and academic performance

  6. 5 Ways to Promote Physical Activity Month at Your School

    physical education school physical activity school sports and academic performance

VIDEO

  1. Saturday's PT Class

  2. SCHOOL PHYSICAL ACTIVITY #tranding #viral #youtubeshorts #funny #reels #teacher #school #games

  3. SSCN primary school physical activity Class 1st

  4. Highlighting Skillastics After School Physical Activity Program

  5. if you can do these skills, you can play any sport… ⚽️🎾🏑⛹🏽🥏

  6. 10th day of school, physical activity

COMMENTS

  1. Physical education, school physical activity, school sports and academic performance

    Background: The purpose of this paper is to review relationships of academic performance and some of its determinants to participation in school-based physical activities, including physical education (PE), free school physical activity (PA) and school sports. Methods: Linkages between academic achievement and involvement in PE, school PA and sport programmes have been examined, based on a ...

  2. PDF The Association Between School-Based Physical Activity, Including

    between indicators of physical activity and academic performance were then summarized. Results . Across all 50 studies (reported in 43 articles), there were a total of 251 associations between physical activity and academic performance, representing measures of academic achievement, academic behavior, and . cognitive skills and attitudes.

  3. Physical education, school physical activity, school sports and

    The purpose of this paper is to review relationships between physical education (PE), school physical activity (PA), school sports and academic performance. These relationships have been the subject of extensive discussion between advocates and skeptics of PE, school PA and school sports programmes. Both elements of this discussion (academic ...

  4. PDF The Association between School-based Physical Activity, Including

    for physical education and physical activity during the school day. There is a growing body of research focused on the association between school-based physical activity, including physical education, and academic performance among school-aged youth. To better understand these connections, this review includes

  5. Physical Activity and Academic Performance in School-Age Children: A

    This brief review aims to empirically summarize the expansive and ever-growing literature about the impact of physical activity interventions on cognitive function and academic performance. To better understand these relationships, this overview included research from different physical activity settings, such as school-based physical education, classroom-based physical activity and ...

  6. Physical education, school physical activity, school sports and

    Regular participation in sports or physical activity has also been linked to greater school satisfaction and connectedness,143 with a reduced dropout rate from school.144 However, an increase in self-esteem has not always translated into better academic performance, and better academic performance can itself result in an increase of self-esteem ...

  7. Sport Participation and Academic Performance in Children and ...

    Physical activity and academic performance. There is evidence that physical activity positively influences academic performance in children and adolescents ().A recent systematic review of systematic reviews identified 12 reviews of experimental studies: 6 concluded physical activity had a positive effect on academic performance, and the other 6 reported a mixture of positive and null effects ...

  8. PDF Active Education: Growing Evidence on Physical Activity and Academic

    how physical activity's effects on the brain may create these positive outcomes. 1. Regular participation in physical activity has academic performance benefits. A research project conducted with 24 elementary schools, called Physical Activity Across the Curriculum (PAAC), showed that adding sessions of physical activity to a school ...

  9. Physical Education

    Physical education is the foundation of a Comprehensive School Physical Activity Program. 1, 2 It is an academic subject characterized by a planned, sequential K-12 curriculum (course of study) that is based on the national standards for physical education. 2-4 Physical education provides cognitive content and instruction designed to develop motor skills, knowledge, and behaviors for ...

  10. WHO reviews effect of physical activity on enhancing academic

    Regular physical activity, increasing physical education and active classrooms not only protect schoolchildren's health but also improve their academic achievement. This is the finding of a wide-ranging review on Physical Activity and Academic Achievement carried out by WHO/Europe as part of its drive to ensure that young people get at least 60 minutes of moderate-to-vigorous physical ...

  11. Physical education, school physical activity, school sports and

    The purpose of this paper is to review relationships of academic performance and some of its determinants to participation in school-based physical activities, including physical education (PE), free school physical activity (PA) and school sports. Linkages between academic achievement and involvement in PE, school PA and sport programmes have been examined, based on a systematic review of ...

  12. Physical education, school physical activity, school sports and

    Background: The purpose of this paper is to review relationships of academic performance and some of its determinants to participation in school-based physical activities, including physical education (PE), free school physical activity (PA) and school sports. Methods: Linkages between academic achievement and involvement in PE, school PA and sport programmes have been examined, based on a ...

  13. Physical Activity, Fitness, and Physical Education: Effects on Academic

    Although academic performance stems from a complex interaction between intellect and contextual variables, health is a vital moderating factor in a child's ability to learn.The idea that healthy children learn better is empirically supported and well accepted (Basch, 2010), and multiple studies have confirmed that health benefits are associated with physical activity, including ...

  14. (PDF) Physical Activity, Screen Time, and Sleep Duration of Children

    To achieve physical and mental health and well-being, the World Health Organization (WHO) recommends that persons aged 5 to 18 years have 60 min of moderate/intense PA per day [3].

  15. The importance of biological and social factors for academic performance

    The importance of biological and social factors for academic performance. May 2010. Human Physiology 36 (3):305-311. DOI: 10.1134/S0362119710030084. Authors: N. L. Gorbachevskaya. Moscow State ...

  16. China: Fostering Students with All-round Attainments in Moral

    The task of developing key competences is integrated into all school subjects and is further supported in informal education; schools may flexibly adjust their timetable and curricula to better fit this task. Students are assessed not only in their academic outcomes, but also in their moral character, physical and mental health, social practice ...

  17. Physical education, school physical activity, school sports and

    Abstract. Abstract Background The purpose of this paper is to review relationships of academic performance and some of its determinants to participation in school-based physical activities, including physical education (PE), free school physical activity (PA) and school sports. Methods Linkages between academic achievement and involvement in PE ...

  18. PDF Assessing the Quality and Efficiency of Education in Rural Schools

    objective of secondary vocational education is to provide training to employees and skilled workers. On the other side, higher education consists of three levels: bachelor's and master's programs and the training of highly qualified staff. Rural schools in Russia constitute around sixty-eight percent (68%) of all primary and secondary ...