Enago Academy

Experimental Research Design — 6 mistakes you should never make!

' src=

Since school days’ students perform scientific experiments that provide results that define and prove the laws and theorems in science. These experiments are laid on a strong foundation of experimental research designs.

An experimental research design helps researchers execute their research objectives with more clarity and transparency.

In this article, we will not only discuss the key aspects of experimental research designs but also the issues to avoid and problems to resolve while designing your research study.

Table of Contents

What Is Experimental Research Design?

Experimental research design is a framework of protocols and procedures created to conduct experimental research with a scientific approach using two sets of variables. Herein, the first set of variables acts as a constant, used to measure the differences of the second set. The best example of experimental research methods is quantitative research .

Experimental research helps a researcher gather the necessary data for making better research decisions and determining the facts of a research study.

When Can a Researcher Conduct Experimental Research?

A researcher can conduct experimental research in the following situations —

  • When time is an important factor in establishing a relationship between the cause and effect.
  • When there is an invariable or never-changing behavior between the cause and effect.
  • Finally, when the researcher wishes to understand the importance of the cause and effect.

Importance of Experimental Research Design

To publish significant results, choosing a quality research design forms the foundation to build the research study. Moreover, effective research design helps establish quality decision-making procedures, structures the research to lead to easier data analysis, and addresses the main research question. Therefore, it is essential to cater undivided attention and time to create an experimental research design before beginning the practical experiment.

By creating a research design, a researcher is also giving oneself time to organize the research, set up relevant boundaries for the study, and increase the reliability of the results. Through all these efforts, one could also avoid inconclusive results. If any part of the research design is flawed, it will reflect on the quality of the results derived.

Types of Experimental Research Designs

Based on the methods used to collect data in experimental studies, the experimental research designs are of three primary types:

1. Pre-experimental Research Design

A research study could conduct pre-experimental research design when a group or many groups are under observation after implementing factors of cause and effect of the research. The pre-experimental design will help researchers understand whether further investigation is necessary for the groups under observation.

Pre-experimental research is of three types —

  • One-shot Case Study Research Design
  • One-group Pretest-posttest Research Design
  • Static-group Comparison

2. True Experimental Research Design

A true experimental research design relies on statistical analysis to prove or disprove a researcher’s hypothesis. It is one of the most accurate forms of research because it provides specific scientific evidence. Furthermore, out of all the types of experimental designs, only a true experimental design can establish a cause-effect relationship within a group. However, in a true experiment, a researcher must satisfy these three factors —

  • There is a control group that is not subjected to changes and an experimental group that will experience the changed variables
  • A variable that can be manipulated by the researcher
  • Random distribution of the variables

This type of experimental research is commonly observed in the physical sciences.

3. Quasi-experimental Research Design

The word “Quasi” means similarity. A quasi-experimental design is similar to a true experimental design. However, the difference between the two is the assignment of the control group. In this research design, an independent variable is manipulated, but the participants of a group are not randomly assigned. This type of research design is used in field settings where random assignment is either irrelevant or not required.

The classification of the research subjects, conditions, or groups determines the type of research design to be used.

experimental research design

Advantages of Experimental Research

Experimental research allows you to test your idea in a controlled environment before taking the research to clinical trials. Moreover, it provides the best method to test your theory because of the following advantages:

  • Researchers have firm control over variables to obtain results.
  • The subject does not impact the effectiveness of experimental research. Anyone can implement it for research purposes.
  • The results are specific.
  • Post results analysis, research findings from the same dataset can be repurposed for similar research ideas.
  • Researchers can identify the cause and effect of the hypothesis and further analyze this relationship to determine in-depth ideas.
  • Experimental research makes an ideal starting point. The collected data could be used as a foundation to build new research ideas for further studies.

6 Mistakes to Avoid While Designing Your Research

There is no order to this list, and any one of these issues can seriously compromise the quality of your research. You could refer to the list as a checklist of what to avoid while designing your research.

1. Invalid Theoretical Framework

Usually, researchers miss out on checking if their hypothesis is logical to be tested. If your research design does not have basic assumptions or postulates, then it is fundamentally flawed and you need to rework on your research framework.

2. Inadequate Literature Study

Without a comprehensive research literature review , it is difficult to identify and fill the knowledge and information gaps. Furthermore, you need to clearly state how your research will contribute to the research field, either by adding value to the pertinent literature or challenging previous findings and assumptions.

3. Insufficient or Incorrect Statistical Analysis

Statistical results are one of the most trusted scientific evidence. The ultimate goal of a research experiment is to gain valid and sustainable evidence. Therefore, incorrect statistical analysis could affect the quality of any quantitative research.

4. Undefined Research Problem

This is one of the most basic aspects of research design. The research problem statement must be clear and to do that, you must set the framework for the development of research questions that address the core problems.

5. Research Limitations

Every study has some type of limitations . You should anticipate and incorporate those limitations into your conclusion, as well as the basic research design. Include a statement in your manuscript about any perceived limitations, and how you considered them while designing your experiment and drawing the conclusion.

6. Ethical Implications

The most important yet less talked about topic is the ethical issue. Your research design must include ways to minimize any risk for your participants and also address the research problem or question at hand. If you cannot manage the ethical norms along with your research study, your research objectives and validity could be questioned.

Experimental Research Design Example

In an experimental design, a researcher gathers plant samples and then randomly assigns half the samples to photosynthesize in sunlight and the other half to be kept in a dark box without sunlight, while controlling all the other variables (nutrients, water, soil, etc.)

By comparing their outcomes in biochemical tests, the researcher can confirm that the changes in the plants were due to the sunlight and not the other variables.

Experimental research is often the final form of a study conducted in the research process which is considered to provide conclusive and specific results. But it is not meant for every research. It involves a lot of resources, time, and money and is not easy to conduct, unless a foundation of research is built. Yet it is widely used in research institutes and commercial industries, for its most conclusive results in the scientific approach.

Have you worked on research designs? How was your experience creating an experimental design? What difficulties did you face? Do write to us or comment below and share your insights on experimental research designs!

Frequently Asked Questions

Randomization is important in an experimental research because it ensures unbiased results of the experiment. It also measures the cause-effect relationship on a particular group of interest.

Experimental research design lay the foundation of a research and structures the research to establish quality decision making process.

There are 3 types of experimental research designs. These are pre-experimental research design, true experimental research design, and quasi experimental research design.

The difference between an experimental and a quasi-experimental design are: 1. The assignment of the control group in quasi experimental research is non-random, unlike true experimental design, which is randomly assigned. 2. Experimental research group always has a control group; on the other hand, it may not be always present in quasi experimental research.

Experimental research establishes a cause-effect relationship by testing a theory or hypothesis using experimental groups or control variables. In contrast, descriptive research describes a study or a topic by defining the variables under it and answering the questions related to the same.

' src=

good and valuable

Very very good

Good presentation.

Rate this article Cancel Reply

Your email address will not be published.

research experimental type

Enago Academy's Most Popular Articles

7 Step Guide for Optimizing Impactful Research Process

  • Publishing Research
  • Reporting Research

How to Optimize Your Research Process: A step-by-step guide

For researchers across disciplines, the path to uncovering novel findings and insights is often filled…

Launch of "Sony Women in Technology Award with Nature"

  • Industry News
  • Trending Now

Breaking Barriers: Sony and Nature unveil “Women in Technology Award”

Sony Group Corporation and the prestigious scientific journal Nature have collaborated to launch the inaugural…

Guide to Adhere Good Research Practice (FREE CHECKLIST)

Achieving Research Excellence: Checklist for good research practices

Academia is built on the foundation of trustworthy and high-quality research, supported by the pillars…

ResearchSummary

  • Promoting Research

Plain Language Summary — Communicating your research to bridge the academic-lay gap

Science can be complex, but does that mean it should not be accessible to the…

Journals Combat Image Manipulation with AI

Science under Surveillance: Journals adopt advanced AI to uncover image manipulation

Journals are increasingly turning to cutting-edge AI tools to uncover deceitful images published in manuscripts.…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

Research Recommendations – Guiding policy-makers for evidence-based decision making

research experimental type

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

research experimental type

What should universities' stance be on AI tools in research and academic writing?

  • Experimental Research Designs: Types, Examples & Methods

busayo.longe

Experimental research is the most familiar type of research design for individuals in the physical sciences and a host of other fields. This is mainly because experimental research is a classical scientific experiment, similar to those performed in high school science classes.

Imagine taking 2 samples of the same plant and exposing one of them to sunlight, while the other is kept away from sunlight. Let the plant exposed to sunlight be called sample A, while the latter is called sample B.

If after the duration of the research, we find out that sample A grows and sample B dies, even though they are both regularly wetted and given the same treatment. Therefore, we can conclude that sunlight will aid growth in all similar plants.

What is Experimental Research?

Experimental research is a scientific approach to research, where one or more independent variables are manipulated and applied to one or more dependent variables to measure their effect on the latter. The effect of the independent variables on the dependent variables is usually observed and recorded over some time, to aid researchers in drawing a reasonable conclusion regarding the relationship between these 2 variable types.

The experimental research method is widely used in physical and social sciences, psychology, and education. It is based on the comparison between two or more groups with a straightforward logic, which may, however, be difficult to execute.

Mostly related to a laboratory test procedure, experimental research designs involve collecting quantitative data and performing statistical analysis on them during research. Therefore, making it an example of quantitative research method .

What are The Types of Experimental Research Design?

The types of experimental research design are determined by the way the researcher assigns subjects to different conditions and groups. They are of 3 types, namely; pre-experimental, quasi-experimental, and true experimental research.

Pre-experimental Research Design

In pre-experimental research design, either a group or various dependent groups are observed for the effect of the application of an independent variable which is presumed to cause change. It is the simplest form of experimental research design and is treated with no control group.

Although very practical, experimental research is lacking in several areas of the true-experimental criteria. The pre-experimental research design is further divided into three types

  • One-shot Case Study Research Design

In this type of experimental study, only one dependent group or variable is considered. The study is carried out after some treatment which was presumed to cause change, making it a posttest study.

  • One-group Pretest-posttest Research Design: 

This research design combines both posttest and pretest study by carrying out a test on a single group before the treatment is administered and after the treatment is administered. With the former being administered at the beginning of treatment and later at the end.

  • Static-group Comparison: 

In a static-group comparison study, 2 or more groups are placed under observation, where only one of the groups is subjected to some treatment while the other groups are held static. All the groups are post-tested, and the observed differences between the groups are assumed to be a result of the treatment.

Quasi-experimental Research Design

  The word “quasi” means partial, half, or pseudo. Therefore, the quasi-experimental research bearing a resemblance to the true experimental research, but not the same.  In quasi-experiments, the participants are not randomly assigned, and as such, they are used in settings where randomization is difficult or impossible.

 This is very common in educational research, where administrators are unwilling to allow the random selection of students for experimental samples.

Some examples of quasi-experimental research design include; the time series, no equivalent control group design, and the counterbalanced design.

True Experimental Research Design

The true experimental research design relies on statistical analysis to approve or disprove a hypothesis. It is the most accurate type of experimental design and may be carried out with or without a pretest on at least 2 randomly assigned dependent subjects.

The true experimental research design must contain a control group, a variable that can be manipulated by the researcher, and the distribution must be random. The classification of true experimental design include:

  • The posttest-only Control Group Design: In this design, subjects are randomly selected and assigned to the 2 groups (control and experimental), and only the experimental group is treated. After close observation, both groups are post-tested, and a conclusion is drawn from the difference between these groups.
  • The pretest-posttest Control Group Design: For this control group design, subjects are randomly assigned to the 2 groups, both are presented, but only the experimental group is treated. After close observation, both groups are post-tested to measure the degree of change in each group.
  • Solomon four-group Design: This is the combination of the pretest-only and the pretest-posttest control groups. In this case, the randomly selected subjects are placed into 4 groups.

The first two of these groups are tested using the posttest-only method, while the other two are tested using the pretest-posttest method.

Examples of Experimental Research

Experimental research examples are different, depending on the type of experimental research design that is being considered. The most basic example of experimental research is laboratory experiments, which may differ in nature depending on the subject of research.

Administering Exams After The End of Semester

During the semester, students in a class are lectured on particular courses and an exam is administered at the end of the semester. In this case, the students are the subjects or dependent variables while the lectures are the independent variables treated on the subjects.

Only one group of carefully selected subjects are considered in this research, making it a pre-experimental research design example. We will also notice that tests are only carried out at the end of the semester, and not at the beginning.

Further making it easy for us to conclude that it is a one-shot case study research. 

Employee Skill Evaluation

Before employing a job seeker, organizations conduct tests that are used to screen out less qualified candidates from the pool of qualified applicants. This way, organizations can determine an employee’s skill set at the point of employment.

In the course of employment, organizations also carry out employee training to improve employee productivity and generally grow the organization. Further evaluation is carried out at the end of each training to test the impact of the training on employee skills, and test for improvement.

Here, the subject is the employee, while the treatment is the training conducted. This is a pretest-posttest control group experimental research example.

Evaluation of Teaching Method

Let us consider an academic institution that wants to evaluate the teaching method of 2 teachers to determine which is best. Imagine a case whereby the students assigned to each teacher is carefully selected probably due to personal request by parents or due to stubbornness and smartness.

This is a no equivalent group design example because the samples are not equal. By evaluating the effectiveness of each teacher’s teaching method this way, we may conclude after a post-test has been carried out.

However, this may be influenced by factors like the natural sweetness of a student. For example, a very smart student will grab more easily than his or her peers irrespective of the method of teaching.

What are the Characteristics of Experimental Research?  

Experimental research contains dependent, independent and extraneous variables. The dependent variables are the variables being treated or manipulated and are sometimes called the subject of the research.

The independent variables are the experimental treatment being exerted on the dependent variables. Extraneous variables, on the other hand, are other factors affecting the experiment that may also contribute to the change.

The setting is where the experiment is carried out. Many experiments are carried out in the laboratory, where control can be exerted on the extraneous variables, thereby eliminating them. 

Other experiments are carried out in a less controllable setting. The choice of setting used in research depends on the nature of the experiment being carried out.

  • Multivariable

Experimental research may include multiple independent variables, e.g. time, skills, test scores, etc.

Why Use Experimental Research Design?  

Experimental research design can be majorly used in physical sciences, social sciences, education, and psychology. It is used to make predictions and draw conclusions on a subject matter. 

Some uses of experimental research design are highlighted below.

  • Medicine: Experimental research is used to provide the proper treatment for diseases. In most cases, rather than directly using patients as the research subject, researchers take a sample of the bacteria from the patient’s body and are treated with the developed antibacterial

The changes observed during this period are recorded and evaluated to determine its effectiveness. This process can be carried out using different experimental research methods.

  • Education: Asides from science subjects like Chemistry and Physics which involves teaching students how to perform experimental research, it can also be used in improving the standard of an academic institution. This includes testing students’ knowledge on different topics, coming up with better teaching methods, and the implementation of other programs that will aid student learning.
  • Human Behavior: Social scientists are the ones who mostly use experimental research to test human behaviour. For example, consider 2 people randomly chosen to be the subject of the social interaction research where one person is placed in a room without human interaction for 1 year.

The other person is placed in a room with a few other people, enjoying human interaction. There will be a difference in their behaviour at the end of the experiment.

  • UI/UX: During the product development phase, one of the major aims of the product team is to create a great user experience with the product. Therefore, before launching the final product design, potential are brought in to interact with the product.

For example, when finding it difficult to choose how to position a button or feature on the app interface, a random sample of product testers are allowed to test the 2 samples and how the button positioning influences the user interaction is recorded.

What are the Disadvantages of Experimental Research?  

  • It is highly prone to human error due to its dependency on variable control which may not be properly implemented. These errors could eliminate the validity of the experiment and the research being conducted.
  • Exerting control of extraneous variables may create unrealistic situations. Eliminating real-life variables will result in inaccurate conclusions. This may also result in researchers controlling the variables to suit his or her personal preferences.
  • It is a time-consuming process. So much time is spent on testing dependent variables and waiting for the effect of the manipulation of dependent variables to manifest.
  • It is expensive. 
  • It is very risky and may have ethical complications that cannot be ignored. This is common in medical research, where failed trials may lead to a patient’s death or a deteriorating health condition.
  • Experimental research results are not descriptive.
  • Response bias can also be supplied by the subject of the conversation.
  • Human responses in experimental research can be difficult to measure. 

What are the Data Collection Methods in Experimental Research?  

Data collection methods in experimental research are the different ways in which data can be collected for experimental research. They are used in different cases, depending on the type of research being carried out.

1. Observational Study

This type of study is carried out over a long period. It measures and observes the variables of interest without changing existing conditions.

When researching the effect of social interaction on human behavior, the subjects who are placed in 2 different environments are observed throughout the research. No matter the kind of absurd behavior that is exhibited by the subject during this period, its condition will not be changed.

This may be a very risky thing to do in medical cases because it may lead to death or worse medical conditions.

2. Simulations

This procedure uses mathematical, physical, or computer models to replicate a real-life process or situation. It is frequently used when the actual situation is too expensive, dangerous, or impractical to replicate in real life.

This method is commonly used in engineering and operational research for learning purposes and sometimes as a tool to estimate possible outcomes of real research. Some common situation software are Simulink, MATLAB, and Simul8.

Not all kinds of experimental research can be carried out using simulation as a data collection tool . It is very impractical for a lot of laboratory-based research that involves chemical processes.

A survey is a tool used to gather relevant data about the characteristics of a population and is one of the most common data collection tools. A survey consists of a group of questions prepared by the researcher, to be answered by the research subject.

Surveys can be shared with the respondents both physically and electronically. When collecting data through surveys, the kind of data collected depends on the respondent, and researchers have limited control over it.

Formplus is the best tool for collecting experimental data using survey s. It has relevant features that will aid the data collection process and can also be used in other aspects of experimental research.

Differences between Experimental and Non-Experimental Research 

1. In experimental research, the researcher can control and manipulate the environment of the research, including the predictor variable which can be changed. On the other hand, non-experimental research cannot be controlled or manipulated by the researcher at will.

This is because it takes place in a real-life setting, where extraneous variables cannot be eliminated. Therefore, it is more difficult to conclude non-experimental studies, even though they are much more flexible and allow for a greater range of study fields.

2. The relationship between cause and effect cannot be established in non-experimental research, while it can be established in experimental research. This may be because many extraneous variables also influence the changes in the research subject, making it difficult to point at a particular variable as the cause of a particular change

3. Independent variables are not introduced, withdrawn, or manipulated in non-experimental designs, but the same may not be said about experimental research.

Conclusion  

Experimental research designs are often considered to be the standard in research designs. This is partly due to the common misconception that research is equivalent to scientific experiments—a component of experimental research design.

In this research design, one or more subjects or dependent variables are randomly assigned to different treatments (i.e. independent variables manipulated by the researcher) and the results are observed to conclude. One of the uniqueness of experimental research is in its ability to control the effect of extraneous variables.

Experimental research is suitable for research whose goal is to examine cause-effect relationships, e.g. explanatory research. It can be conducted in the laboratory or field settings, depending on the aim of the research that is being carried out. 

Logo

Connect to Formplus, Get Started Now - It's Free!

  • examples of experimental research
  • experimental research methods
  • types of experimental research
  • busayo.longe

Formplus

You may also like:

Experimental Vs Non-Experimental Research: 15 Key Differences

Differences between experimental and non experimental research on definitions, types, examples, data collection tools, uses, advantages etc.

research experimental type

Response vs Explanatory Variables: Definition & Examples

In this article, we’ll be comparing the two types of variables, what they both mean and see some of their real-life applications in research

Simpson’s Paradox & How to Avoid it in Experimental Research

In this article, we are going to look at Simpson’s Paradox from its historical point and later, we’ll consider its effect in...

What is Experimenter Bias? Definition, Types & Mitigation

In this article, we will look into the concept of experimental bias and how it can be identified in your research

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Experimental Design – Types, Methods, Guide

Experimental Design – Types, Methods, Guide

Table of Contents

Experimental Research Design

Experimental Design

Experimental design is a process of planning and conducting scientific experiments to investigate a hypothesis or research question. It involves carefully designing an experiment that can test the hypothesis, and controlling for other variables that may influence the results.

Experimental design typically includes identifying the variables that will be manipulated or measured, defining the sample or population to be studied, selecting an appropriate method of sampling, choosing a method for data collection and analysis, and determining the appropriate statistical tests to use.

Types of Experimental Design

Here are the different types of experimental design:

Completely Randomized Design

In this design, participants are randomly assigned to one of two or more groups, and each group is exposed to a different treatment or condition.

Randomized Block Design

This design involves dividing participants into blocks based on a specific characteristic, such as age or gender, and then randomly assigning participants within each block to one of two or more treatment groups.

Factorial Design

In a factorial design, participants are randomly assigned to one of several groups, each of which receives a different combination of two or more independent variables.

Repeated Measures Design

In this design, each participant is exposed to all of the different treatments or conditions, either in a random order or in a predetermined order.

Crossover Design

This design involves randomly assigning participants to one of two or more treatment groups, with each group receiving one treatment during the first phase of the study and then switching to a different treatment during the second phase.

Split-plot Design

In this design, the researcher manipulates one or more variables at different levels and uses a randomized block design to control for other variables.

Nested Design

This design involves grouping participants within larger units, such as schools or households, and then randomly assigning these units to different treatment groups.

Laboratory Experiment

Laboratory experiments are conducted under controlled conditions, which allows for greater precision and accuracy. However, because laboratory conditions are not always representative of real-world conditions, the results of these experiments may not be generalizable to the population at large.

Field Experiment

Field experiments are conducted in naturalistic settings and allow for more realistic observations. However, because field experiments are not as controlled as laboratory experiments, they may be subject to more sources of error.

Experimental Design Methods

Experimental design methods refer to the techniques and procedures used to design and conduct experiments in scientific research. Here are some common experimental design methods:

Randomization

This involves randomly assigning participants to different groups or treatments to ensure that any observed differences between groups are due to the treatment and not to other factors.

Control Group

The use of a control group is an important experimental design method that involves having a group of participants that do not receive the treatment or intervention being studied. The control group is used as a baseline to compare the effects of the treatment group.

Blinding involves keeping participants, researchers, or both unaware of which treatment group participants are in, in order to reduce the risk of bias in the results.

Counterbalancing

This involves systematically varying the order in which participants receive treatments or interventions in order to control for order effects.

Replication

Replication involves conducting the same experiment with different samples or under different conditions to increase the reliability and validity of the results.

This experimental design method involves manipulating multiple independent variables simultaneously to investigate their combined effects on the dependent variable.

This involves dividing participants into subgroups or blocks based on specific characteristics, such as age or gender, in order to reduce the risk of confounding variables.

Data Collection Method

Experimental design data collection methods are techniques and procedures used to collect data in experimental research. Here are some common experimental design data collection methods:

Direct Observation

This method involves observing and recording the behavior or phenomenon of interest in real time. It may involve the use of structured or unstructured observation, and may be conducted in a laboratory or naturalistic setting.

Self-report Measures

Self-report measures involve asking participants to report their thoughts, feelings, or behaviors using questionnaires, surveys, or interviews. These measures may be administered in person or online.

Behavioral Measures

Behavioral measures involve measuring participants’ behavior directly, such as through reaction time tasks or performance tests. These measures may be administered using specialized equipment or software.

Physiological Measures

Physiological measures involve measuring participants’ physiological responses, such as heart rate, blood pressure, or brain activity, using specialized equipment. These measures may be invasive or non-invasive, and may be administered in a laboratory or clinical setting.

Archival Data

Archival data involves using existing records or data, such as medical records, administrative records, or historical documents, as a source of information. These data may be collected from public or private sources.

Computerized Measures

Computerized measures involve using software or computer programs to collect data on participants’ behavior or responses. These measures may include reaction time tasks, cognitive tests, or other types of computer-based assessments.

Video Recording

Video recording involves recording participants’ behavior or interactions using cameras or other recording equipment. This method can be used to capture detailed information about participants’ behavior or to analyze social interactions.

Data Analysis Method

Experimental design data analysis methods refer to the statistical techniques and procedures used to analyze data collected in experimental research. Here are some common experimental design data analysis methods:

Descriptive Statistics

Descriptive statistics are used to summarize and describe the data collected in the study. This includes measures such as mean, median, mode, range, and standard deviation.

Inferential Statistics

Inferential statistics are used to make inferences or generalizations about a larger population based on the data collected in the study. This includes hypothesis testing and estimation.

Analysis of Variance (ANOVA)

ANOVA is a statistical technique used to compare means across two or more groups in order to determine whether there are significant differences between the groups. There are several types of ANOVA, including one-way ANOVA, two-way ANOVA, and repeated measures ANOVA.

Regression Analysis

Regression analysis is used to model the relationship between two or more variables in order to determine the strength and direction of the relationship. There are several types of regression analysis, including linear regression, logistic regression, and multiple regression.

Factor Analysis

Factor analysis is used to identify underlying factors or dimensions in a set of variables. This can be used to reduce the complexity of the data and identify patterns in the data.

Structural Equation Modeling (SEM)

SEM is a statistical technique used to model complex relationships between variables. It can be used to test complex theories and models of causality.

Cluster Analysis

Cluster analysis is used to group similar cases or observations together based on similarities or differences in their characteristics.

Time Series Analysis

Time series analysis is used to analyze data collected over time in order to identify trends, patterns, or changes in the data.

Multilevel Modeling

Multilevel modeling is used to analyze data that is nested within multiple levels, such as students nested within schools or employees nested within companies.

Applications of Experimental Design 

Experimental design is a versatile research methodology that can be applied in many fields. Here are some applications of experimental design:

  • Medical Research: Experimental design is commonly used to test new treatments or medications for various medical conditions. This includes clinical trials to evaluate the safety and effectiveness of new drugs or medical devices.
  • Agriculture : Experimental design is used to test new crop varieties, fertilizers, and other agricultural practices. This includes randomized field trials to evaluate the effects of different treatments on crop yield, quality, and pest resistance.
  • Environmental science: Experimental design is used to study the effects of environmental factors, such as pollution or climate change, on ecosystems and wildlife. This includes controlled experiments to study the effects of pollutants on plant growth or animal behavior.
  • Psychology : Experimental design is used to study human behavior and cognitive processes. This includes experiments to test the effects of different interventions, such as therapy or medication, on mental health outcomes.
  • Engineering : Experimental design is used to test new materials, designs, and manufacturing processes in engineering applications. This includes laboratory experiments to test the strength and durability of new materials, or field experiments to test the performance of new technologies.
  • Education : Experimental design is used to evaluate the effectiveness of teaching methods, educational interventions, and programs. This includes randomized controlled trials to compare different teaching methods or evaluate the impact of educational programs on student outcomes.
  • Marketing : Experimental design is used to test the effectiveness of marketing campaigns, pricing strategies, and product designs. This includes experiments to test the impact of different marketing messages or pricing schemes on consumer behavior.

Examples of Experimental Design 

Here are some examples of experimental design in different fields:

  • Example in Medical research : A study that investigates the effectiveness of a new drug treatment for a particular condition. Patients are randomly assigned to either a treatment group or a control group, with the treatment group receiving the new drug and the control group receiving a placebo. The outcomes, such as improvement in symptoms or side effects, are measured and compared between the two groups.
  • Example in Education research: A study that examines the impact of a new teaching method on student learning outcomes. Students are randomly assigned to either a group that receives the new teaching method or a group that receives the traditional teaching method. Student achievement is measured before and after the intervention, and the results are compared between the two groups.
  • Example in Environmental science: A study that tests the effectiveness of a new method for reducing pollution in a river. Two sections of the river are selected, with one section treated with the new method and the other section left untreated. The water quality is measured before and after the intervention, and the results are compared between the two sections.
  • Example in Marketing research: A study that investigates the impact of a new advertising campaign on consumer behavior. Participants are randomly assigned to either a group that is exposed to the new campaign or a group that is not. Their behavior, such as purchasing or product awareness, is measured and compared between the two groups.
  • Example in Social psychology: A study that examines the effect of a new social intervention on reducing prejudice towards a marginalized group. Participants are randomly assigned to either a group that receives the intervention or a control group that does not. Their attitudes and behavior towards the marginalized group are measured before and after the intervention, and the results are compared between the two groups.

When to use Experimental Research Design 

Experimental research design should be used when a researcher wants to establish a cause-and-effect relationship between variables. It is particularly useful when studying the impact of an intervention or treatment on a particular outcome.

Here are some situations where experimental research design may be appropriate:

  • When studying the effects of a new drug or medical treatment: Experimental research design is commonly used in medical research to test the effectiveness and safety of new drugs or medical treatments. By randomly assigning patients to treatment and control groups, researchers can determine whether the treatment is effective in improving health outcomes.
  • When evaluating the effectiveness of an educational intervention: An experimental research design can be used to evaluate the impact of a new teaching method or educational program on student learning outcomes. By randomly assigning students to treatment and control groups, researchers can determine whether the intervention is effective in improving academic performance.
  • When testing the effectiveness of a marketing campaign: An experimental research design can be used to test the effectiveness of different marketing messages or strategies. By randomly assigning participants to treatment and control groups, researchers can determine whether the marketing campaign is effective in changing consumer behavior.
  • When studying the effects of an environmental intervention: Experimental research design can be used to study the impact of environmental interventions, such as pollution reduction programs or conservation efforts. By randomly assigning locations or areas to treatment and control groups, researchers can determine whether the intervention is effective in improving environmental outcomes.
  • When testing the effects of a new technology: An experimental research design can be used to test the effectiveness and safety of new technologies or engineering designs. By randomly assigning participants or locations to treatment and control groups, researchers can determine whether the new technology is effective in achieving its intended purpose.

How to Conduct Experimental Research

Here are the steps to conduct Experimental Research:

  • Identify a Research Question : Start by identifying a research question that you want to answer through the experiment. The question should be clear, specific, and testable.
  • Develop a Hypothesis: Based on your research question, develop a hypothesis that predicts the relationship between the independent and dependent variables. The hypothesis should be clear and testable.
  • Design the Experiment : Determine the type of experimental design you will use, such as a between-subjects design or a within-subjects design. Also, decide on the experimental conditions, such as the number of independent variables, the levels of the independent variable, and the dependent variable to be measured.
  • Select Participants: Select the participants who will take part in the experiment. They should be representative of the population you are interested in studying.
  • Randomly Assign Participants to Groups: If you are using a between-subjects design, randomly assign participants to groups to control for individual differences.
  • Conduct the Experiment : Conduct the experiment by manipulating the independent variable(s) and measuring the dependent variable(s) across the different conditions.
  • Analyze the Data: Analyze the data using appropriate statistical methods to determine if there is a significant effect of the independent variable(s) on the dependent variable(s).
  • Draw Conclusions: Based on the data analysis, draw conclusions about the relationship between the independent and dependent variables. If the results support the hypothesis, then it is accepted. If the results do not support the hypothesis, then it is rejected.
  • Communicate the Results: Finally, communicate the results of the experiment through a research report or presentation. Include the purpose of the study, the methods used, the results obtained, and the conclusions drawn.

Purpose of Experimental Design 

The purpose of experimental design is to control and manipulate one or more independent variables to determine their effect on a dependent variable. Experimental design allows researchers to systematically investigate causal relationships between variables, and to establish cause-and-effect relationships between the independent and dependent variables. Through experimental design, researchers can test hypotheses and make inferences about the population from which the sample was drawn.

Experimental design provides a structured approach to designing and conducting experiments, ensuring that the results are reliable and valid. By carefully controlling for extraneous variables that may affect the outcome of the study, experimental design allows researchers to isolate the effect of the independent variable(s) on the dependent variable(s), and to minimize the influence of other factors that may confound the results.

Experimental design also allows researchers to generalize their findings to the larger population from which the sample was drawn. By randomly selecting participants and using statistical techniques to analyze the data, researchers can make inferences about the larger population with a high degree of confidence.

Overall, the purpose of experimental design is to provide a rigorous, systematic, and scientific method for testing hypotheses and establishing cause-and-effect relationships between variables. Experimental design is a powerful tool for advancing scientific knowledge and informing evidence-based practice in various fields, including psychology, biology, medicine, engineering, and social sciences.

Advantages of Experimental Design 

Experimental design offers several advantages in research. Here are some of the main advantages:

  • Control over extraneous variables: Experimental design allows researchers to control for extraneous variables that may affect the outcome of the study. By manipulating the independent variable and holding all other variables constant, researchers can isolate the effect of the independent variable on the dependent variable.
  • Establishing causality: Experimental design allows researchers to establish causality by manipulating the independent variable and observing its effect on the dependent variable. This allows researchers to determine whether changes in the independent variable cause changes in the dependent variable.
  • Replication : Experimental design allows researchers to replicate their experiments to ensure that the findings are consistent and reliable. Replication is important for establishing the validity and generalizability of the findings.
  • Random assignment: Experimental design often involves randomly assigning participants to conditions. This helps to ensure that individual differences between participants are evenly distributed across conditions, which increases the internal validity of the study.
  • Precision : Experimental design allows researchers to measure variables with precision, which can increase the accuracy and reliability of the data.
  • Generalizability : If the study is well-designed, experimental design can increase the generalizability of the findings. By controlling for extraneous variables and using random assignment, researchers can increase the likelihood that the findings will apply to other populations and contexts.

Limitations of Experimental Design

Experimental design has some limitations that researchers should be aware of. Here are some of the main limitations:

  • Artificiality : Experimental design often involves creating artificial situations that may not reflect real-world situations. This can limit the external validity of the findings, or the extent to which the findings can be generalized to real-world settings.
  • Ethical concerns: Some experimental designs may raise ethical concerns, particularly if they involve manipulating variables that could cause harm to participants or if they involve deception.
  • Participant bias : Participants in experimental studies may modify their behavior in response to the experiment, which can lead to participant bias.
  • Limited generalizability: The conditions of the experiment may not reflect the complexities of real-world situations. As a result, the findings may not be applicable to all populations and contexts.
  • Cost and time : Experimental design can be expensive and time-consuming, particularly if the experiment requires specialized equipment or if the sample size is large.
  • Researcher bias : Researchers may unintentionally bias the results of the experiment if they have expectations or preferences for certain outcomes.
  • Lack of feasibility : Experimental design may not be feasible in some cases, particularly if the research question involves variables that cannot be manipulated or controlled.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Questionnaire

Questionnaire – Definition, Types, and Examples

Case Study Research

Case Study – Methods, Examples and Guide

Observational Research

Observational Research – Methods and Guide

Quantitative Research

Quantitative Research – Methods, Types and...

Qualitative Research Methods

Qualitative Research Methods

Explanatory Research

Explanatory Research – Types, Methods, Guide

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

research experimental type

Home Market Research

Experimental Research: What it is + Types of designs

Experimental Research Design

Any research conducted under scientifically acceptable conditions uses experimental methods. The success of experimental studies hinges on researchers confirming the change of a variable is based solely on the manipulation of the constant variable. The research should establish a notable cause and effect.

What is Experimental Research?

Experimental research is a study conducted with a scientific approach using two sets of variables. The first set acts as a constant, which you use to measure the differences of the second set. Quantitative research methods , for example, are experimental.

If you don’t have enough data to support your decisions, you must first determine the facts. This research gathers the data necessary to help you make better decisions.

You can conduct experimental research in the following situations:

  • Time is a vital factor in establishing a relationship between cause and effect.
  • Invariable behavior between cause and effect.
  • You wish to understand the importance of cause and effect.

Experimental Research Design Types

The classic experimental design definition is: “The methods used to collect data in experimental studies.”

There are three primary types of experimental design:

  • Pre-experimental research design
  • True experimental research design
  • Quasi-experimental research design

The way you classify research subjects based on conditions or groups determines the type of research design  you should use.

0 1. Pre-Experimental Design

A group, or various groups, are kept under observation after implementing cause and effect factors. You’ll conduct this research to understand whether further investigation is necessary for these particular groups.

You can break down pre-experimental research further into three types:

  • One-shot Case Study Research Design
  • One-group Pretest-posttest Research Design
  • Static-group Comparison

0 2. True Experimental Design

It relies on statistical analysis to prove or disprove a hypothesis, making it the most accurate form of research. Of the types of experimental design, only true design can establish a cause-effect relationship within a group. In a true experiment, three factors need to be satisfied:

  • There is a Control Group, which won’t be subject to changes, and an Experimental Group, which will experience the changed variables.
  • A variable that can be manipulated by the researcher
  • Random distribution

This experimental research method commonly occurs in the physical sciences.

0 3. Quasi-Experimental Design

The word “Quasi” indicates similarity. A quasi-experimental design is similar to an experimental one, but it is not the same. The difference between the two is the assignment of a control group. In this research, an independent variable is manipulated, but the participants of a group are not randomly assigned. Quasi-research is used in field settings where random assignment is either irrelevant or not required.

Importance of Experimental Design

Experimental research is a powerful tool for understanding cause-and-effect relationships. It allows us to manipulate variables and observe the effects, which is crucial for understanding how different factors influence the outcome of a study.

But the importance of experimental research goes beyond that. It’s a critical method for many scientific and academic studies. It allows us to test theories, develop new products, and make groundbreaking discoveries.

For example, this research is essential for developing new drugs and medical treatments. Researchers can understand how a new drug works by manipulating dosage and administration variables and identifying potential side effects.

Similarly, experimental research is used in the field of psychology to test theories and understand human behavior. By manipulating variables such as stimuli, researchers can gain insights into how the brain works and identify new treatment options for mental health disorders.

It is also widely used in the field of education. It allows educators to test new teaching methods and identify what works best. By manipulating variables such as class size, teaching style, and curriculum, researchers can understand how students learn and identify new ways to improve educational outcomes.

In addition, experimental research is a powerful tool for businesses and organizations. By manipulating variables such as marketing strategies, product design, and customer service, companies can understand what works best and identify new opportunities for growth.

Advantages of Experimental Research

When talking about this research, we can think of human life. Babies do their own rudimentary experiments (such as putting objects in their mouths) to learn about the world around them, while older children and teens do experiments at school to learn more about science.

Ancient scientists used this research to prove that their hypotheses were correct. For example, Galileo Galilei and Antoine Lavoisier conducted various experiments to discover key concepts in physics and chemistry. The same is true of modern experts, who use this scientific method to see if new drugs are effective, discover treatments for diseases, and create new electronic devices (among others).

It’s vital to test new ideas or theories. Why put time, effort, and funding into something that may not work?

This research allows you to test your idea in a controlled environment before marketing. It also provides the best method to test your theory thanks to the following advantages:

Advantages of experimental research

  • Researchers have a stronger hold over variables to obtain desired results.
  • The subject or industry does not impact the effectiveness of experimental research. Any industry can implement it for research purposes.
  • The results are specific.
  • After analyzing the results, you can apply your findings to similar ideas or situations.
  • You can identify the cause and effect of a hypothesis. Researchers can further analyze this relationship to determine more in-depth ideas.
  • Experimental research makes an ideal starting point. The data you collect is a foundation for building more ideas and conducting more action research .

Whether you want to know how the public will react to a new product or if a certain food increases the chance of disease, experimental research is the best place to start. Begin your research by finding subjects using  QuestionPro Audience  and other tools today.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

customer advocacy software

21 Best Customer Advocacy Software for Customers in 2024

Apr 19, 2024

quantitative data analysis software

10 Quantitative Data Analysis Software for Every Data Scientist

Apr 18, 2024

Enterprise Feedback Management software

11 Best Enterprise Feedback Management Software in 2024

online reputation management software

17 Best Online Reputation Management Software in 2024

Apr 17, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • A Quick Guide to Experimental Design | 5 Steps & Examples

A Quick Guide to Experimental Design | 5 Steps & Examples

Published on 11 April 2022 by Rebecca Bevans . Revised on 5 December 2022.

Experiments are used to study causal relationships . You manipulate one or more independent variables and measure their effect on one or more dependent variables.

Experimental design means creating a set of procedures to systematically test a hypothesis . A good experimental design requires a strong understanding of the system you are studying. 

There are five key steps in designing an experiment:

  • Consider your variables and how they are related
  • Write a specific, testable hypothesis
  • Design experimental treatments to manipulate your independent variable
  • Assign subjects to groups, either between-subjects or within-subjects
  • Plan how you will measure your dependent variable

For valid conclusions, you also need to select a representative sample and control any  extraneous variables that might influence your results. If if random assignment of participants to control and treatment groups is impossible, unethical, or highly difficult, consider an observational study instead.

Table of contents

Step 1: define your variables, step 2: write your hypothesis, step 3: design your experimental treatments, step 4: assign your subjects to treatment groups, step 5: measure your dependent variable, frequently asked questions about experimental design.

You should begin with a specific research question . We will work with two research question examples, one from health sciences and one from ecology:

To translate your research question into an experimental hypothesis, you need to define the main variables and make predictions about how they are related.

Start by simply listing the independent and dependent variables .

Then you need to think about possible extraneous and confounding variables and consider how you might control  them in your experiment.

Finally, you can put these variables together into a diagram. Use arrows to show the possible relationships between variables and include signs to show the expected direction of the relationships.

Diagram of the relationship between variables in a sleep experiment

Here we predict that increasing temperature will increase soil respiration and decrease soil moisture, while decreasing soil moisture will lead to decreased soil respiration.

Prevent plagiarism, run a free check.

Now that you have a strong conceptual understanding of the system you are studying, you should be able to write a specific, testable hypothesis that addresses your research question.

The next steps will describe how to design a controlled experiment . In a controlled experiment, you must be able to:

  • Systematically and precisely manipulate the independent variable(s).
  • Precisely measure the dependent variable(s).
  • Control any potential confounding variables.

If your study system doesn’t match these criteria, there are other types of research you can use to answer your research question.

How you manipulate the independent variable can affect the experiment’s external validity – that is, the extent to which the results can be generalised and applied to the broader world.

First, you may need to decide how widely to vary your independent variable.

  • just slightly above the natural range for your study region.
  • over a wider range of temperatures to mimic future warming.
  • over an extreme range that is beyond any possible natural variation.

Second, you may need to choose how finely to vary your independent variable. Sometimes this choice is made for you by your experimental system, but often you will need to decide, and this will affect how much you can infer from your results.

  • a categorical variable : either as binary (yes/no) or as levels of a factor (no phone use, low phone use, high phone use).
  • a continuous variable (minutes of phone use measured every night).

How you apply your experimental treatments to your test subjects is crucial for obtaining valid and reliable results.

First, you need to consider the study size : how many individuals will be included in the experiment? In general, the more subjects you include, the greater your experiment’s statistical power , which determines how much confidence you can have in your results.

Then you need to randomly assign your subjects to treatment groups . Each group receives a different level of the treatment (e.g. no phone use, low phone use, high phone use).

You should also include a control group , which receives no treatment. The control group tells us what would have happened to your test subjects without any experimental intervention.

When assigning your subjects to groups, there are two main choices you need to make:

  • A completely randomised design vs a randomised block design .
  • A between-subjects design vs a within-subjects design .

Randomisation

An experiment can be completely randomised or randomised within blocks (aka strata):

  • In a completely randomised design , every subject is assigned to a treatment group at random.
  • In a randomised block design (aka stratified random design), subjects are first grouped according to a characteristic they share, and then randomly assigned to treatments within those groups.

Sometimes randomisation isn’t practical or ethical , so researchers create partially-random or even non-random designs. An experimental design where treatments aren’t randomly assigned is called a quasi-experimental design .

Between-subjects vs within-subjects

In a between-subjects design (also known as an independent measures design or classic ANOVA design), individuals receive only one of the possible levels of an experimental treatment.

In medical or social research, you might also use matched pairs within your between-subjects design to make sure that each treatment group contains the same variety of test subjects in the same proportions.

In a within-subjects design (also known as a repeated measures design), every individual receives each of the experimental treatments consecutively, and their responses to each treatment are measured.

Within-subjects or repeated measures can also refer to an experimental design where an effect emerges over time, and individual responses are measured over time in order to measure this effect as it emerges.

Counterbalancing (randomising or reversing the order of treatments among subjects) is often used in within-subjects designs to ensure that the order of treatment application doesn’t influence the results of the experiment.

Finally, you need to decide how you’ll collect data on your dependent variable outcomes. You should aim for reliable and valid measurements that minimise bias or error.

Some variables, like temperature, can be objectively measured with scientific instruments. Others may need to be operationalised to turn them into measurable observations.

  • Ask participants to record what time they go to sleep and get up each day.
  • Ask participants to wear a sleep tracker.

How precisely you measure your dependent variable also affects the kinds of statistical analysis you can use on your data.

Experiments are always context-dependent, and a good experimental design will take into account all of the unique considerations of your study system to produce information that is both valid and relevant to your research question.

Experimental designs are a set of procedures that you plan in order to examine the relationship between variables that interest you.

To design a successful experiment, first identify:

  • A testable hypothesis
  • One or more independent variables that you will manipulate
  • One or more dependent variables that you will measure

When designing the experiment, first decide:

  • How your variable(s) will be manipulated
  • How you will control for any potential confounding or lurking variables
  • How many subjects you will include
  • How you will assign treatments to your subjects

The key difference between observational studies and experiments is that, done correctly, an observational study will never influence the responses or behaviours of participants. Experimental designs will have a treatment condition applied to at least a portion of participants.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word ‘between’ means that you’re comparing different conditions between groups, while the word ‘within’ means you’re comparing different conditions within the same group.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bevans, R. (2022, December 05). A Quick Guide to Experimental Design | 5 Steps & Examples. Scribbr. Retrieved 22 April 2024, from https://www.scribbr.co.uk/research-methods/guide-to-experimental-design/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Experimental design: Guide, steps, examples

Last updated

27 April 2023

Reviewed by

Miroslav Damyanov

Experimental research design is a scientific framework that allows you to manipulate one or more variables while controlling the test environment. 

When testing a theory or new product, it can be helpful to have a certain level of control and manipulate variables to discover different outcomes. You can use these experiments to determine cause and effect or study variable associations. 

This guide explores the types of experimental design, the steps in designing an experiment, and the advantages and limitations of experimental design. 

Make research less tedious

Dovetail streamlines research to help you uncover and share actionable insights

  • What is experimental research design?

You can determine the relationship between each of the variables by: 

Manipulating one or more independent variables (i.e., stimuli or treatments)

Applying the changes to one or more dependent variables (i.e., test groups or outcomes)

With the ability to analyze the relationship between variables and using measurable data, you can increase the accuracy of the result. 

What is a good experimental design?

A good experimental design requires: 

Significant planning to ensure control over the testing environment

Sound experimental treatments

Properly assigning subjects to treatment groups

Without proper planning, unexpected external variables can alter an experiment's outcome. 

To meet your research goals, your experimental design should include these characteristics:

Provide unbiased estimates of inputs and associated uncertainties

Enable the researcher to detect differences caused by independent variables

Include a plan for analysis and reporting of the results

Provide easily interpretable results with specific conclusions

What's the difference between experimental and quasi-experimental design?

The major difference between experimental and quasi-experimental design is the random assignment of subjects to groups. 

A true experiment relies on certain controls. Typically, the researcher designs the treatment and randomly assigns subjects to control and treatment groups. 

However, these conditions are unethical or impossible to achieve in some situations.

When it's unethical or impractical to assign participants randomly, that’s when a quasi-experimental design comes in. 

This design allows researchers to conduct a similar experiment by assigning subjects to groups based on non-random criteria. 

Another type of quasi-experimental design might occur when the researcher doesn't have control over the treatment but studies pre-existing groups after they receive different treatments.

When can a researcher conduct experimental research?

Various settings and professions can use experimental research to gather information and observe behavior in controlled settings. 

Basically, a researcher can conduct experimental research any time they want to test a theory with variable and dependent controls. 

Experimental research is an option when the project includes an independent variable and a desire to understand the relationship between cause and effect. 

  • The importance of experimental research design

Experimental research enables researchers to conduct studies that provide specific, definitive answers to questions and hypotheses. 

Researchers can test Independent variables in controlled settings to:

Test the effectiveness of a new medication

Design better products for consumers

Answer questions about human health and behavior

Developing a quality research plan means a researcher can accurately answer vital research questions with minimal error. As a result, definitive conclusions can influence the future of the independent variable. 

Types of experimental research designs

There are three main types of experimental research design. The research type you use will depend on the criteria of your experiment, your research budget, and environmental limitations. 

Pre-experimental research design

A pre-experimental research study is a basic observational study that monitors independent variables’ effects. 

During research, you observe one or more groups after applying a treatment to test whether the treatment causes any change. 

The three subtypes of pre-experimental research design are:

One-shot case study research design

This research method introduces a single test group to a single stimulus to study the results at the end of the application. 

After researchers presume the stimulus or treatment has caused changes, they gather results to determine how it affects the test subjects. 

One-group pretest-posttest design

This method uses a single test group but includes a pretest study as a benchmark. The researcher applies a test before and after the group’s exposure to a specific stimulus. 

Static group comparison design

This method includes two or more groups, enabling the researcher to use one group as a control. They apply a stimulus to one group and leave the other group static. 

A posttest study compares the results among groups. 

True experimental research design

A true experiment is the most common research method. It involves statistical analysis to prove or disprove a specific hypothesis . 

Under completely experimental conditions, researchers expose participants in two or more randomized groups to different stimuli. 

Random selection removes any potential for bias, providing more reliable results. 

These are the three main sub-groups of true experimental research design:

Posttest-only control group design

This structure requires the researcher to divide participants into two random groups. One group receives no stimuli and acts as a control while the other group experiences stimuli.

Researchers perform a test at the end of the experiment to observe the stimuli exposure results.

Pretest-posttest control group design

This test also requires two groups. It includes a pretest as a benchmark before introducing the stimulus. 

The pretest introduces multiple ways to test subjects. For instance, if the control group also experiences a change, it reveals that taking the test twice changes the results.

Solomon four-group design

This structure divides subjects into two groups, with two as control groups. Researchers assign the first control group a posttest only and the second control group a pretest and a posttest. 

The two variable groups mirror the control groups, but researchers expose them to stimuli. The ability to differentiate between groups in multiple ways provides researchers with more testing approaches for data-based conclusions. 

Quasi-experimental research design

Although closely related to a true experiment, quasi-experimental research design differs in approach and scope. 

Quasi-experimental research design doesn’t have randomly selected participants. Researchers typically divide the groups in this research by pre-existing differences. 

Quasi-experimental research is more common in educational studies, nursing, or other research projects where it's not ethical or practical to use randomized subject groups.

  • 5 steps for designing an experiment

Experimental research requires a clearly defined plan to outline the research parameters and expected goals. 

Here are five key steps in designing a successful experiment:

Step 1: Define variables and their relationship

Your experiment should begin with a question: What are you hoping to learn through your experiment? 

The relationship between variables in your study will determine your answer.

Define the independent variable (the intended stimuli) and the dependent variable (the expected effect of the stimuli). After identifying these groups, consider how you might control them in your experiment. 

Could natural variations affect your research? If so, your experiment should include a pretest and posttest. 

Step 2: Develop a specific, testable hypothesis

With a firm understanding of the system you intend to study, you can write a specific, testable hypothesis. 

What is the expected outcome of your study? 

Develop a prediction about how the independent variable will affect the dependent variable. 

How will the stimuli in your experiment affect your test subjects? 

Your hypothesis should provide a prediction of the answer to your research question . 

Step 3: Design experimental treatments to manipulate your independent variable

Depending on your experiment, your variable may be a fixed stimulus (like a medical treatment) or a variable stimulus (like a period during which an activity occurs). 

Determine which type of stimulus meets your experiment’s needs and how widely or finely to vary your stimuli. 

Step 4: Assign subjects to groups

When you have a clear idea of how to carry out your experiment, you can determine how to assemble test groups for an accurate study. 

When choosing your study groups, consider: 

The size of your experiment

Whether you can select groups randomly

Your target audience for the outcome of the study

You should be able to create groups with an equal number of subjects and include subjects that match your target audience. Remember, you should assign one group as a control and use one or more groups to study the effects of variables. 

Step 5: Plan how to measure your dependent variable

This step determines how you'll collect data to determine the study's outcome. You should seek reliable and valid measurements that minimize research bias or error. 

You can measure some data with scientific tools, while you’ll need to operationalize other forms to turn them into measurable observations.

  • Advantages of experimental research

Experimental research is an integral part of our world. It allows researchers to conduct experiments that answer specific questions. 

While researchers use many methods to conduct different experiments, experimental research offers these distinct benefits:

Researchers can determine cause and effect by manipulating variables.

It gives researchers a high level of control.

Researchers can test multiple variables within a single experiment.

All industries and fields of knowledge can use it. 

Researchers can duplicate results to promote the validity of the study .

Replicating natural settings rapidly means immediate research.

Researchers can combine it with other research methods.

It provides specific conclusions about the validity of a product, theory, or idea.

  • Disadvantages (or limitations) of experimental research

Unfortunately, no research type yields ideal conditions or perfect results. 

While experimental research might be the right choice for some studies, certain conditions could render experiments useless or even dangerous. 

Before conducting experimental research, consider these disadvantages and limitations:

Required professional qualification

Only competent professionals with an academic degree and specific training are qualified to conduct rigorous experimental research. This ensures results are unbiased and valid. 

Limited scope

Experimental research may not capture the complexity of some phenomena, such as social interactions or cultural norms. These are difficult to control in a laboratory setting.

Resource-intensive

Experimental research can be expensive, time-consuming, and require significant resources, such as specialized equipment or trained personnel.

Limited generalizability

The controlled nature means the research findings may not fully apply to real-world situations or people outside the experimental setting.

Practical or ethical concerns

Some experiments may involve manipulating variables that could harm participants or violate ethical guidelines . 

Researchers must ensure their experiments do not cause harm or discomfort to participants. 

Sometimes, recruiting a sample of people to randomly assign may be difficult. 

  • Experimental research design example

Experiments across all industries and research realms provide scientists, developers, and other researchers with definitive answers. These experiments can solve problems, create inventions, and heal illnesses. 

Product design testing is an excellent example of experimental research. 

A company in the product development phase creates multiple prototypes for testing. With a randomized selection, researchers introduce each test group to a different prototype. 

When groups experience different product designs , the company can assess which option most appeals to potential customers. 

Experimental research design provides researchers with a controlled environment to conduct experiments that evaluate cause and effect. 

Using the five steps to develop a research plan ensures you anticipate and eliminate external variables while answering life’s crucial questions.

Get started today

Go from raw data to valuable insights with a flexible research platform

Editor’s picks

Last updated: 21 December 2023

Last updated: 16 December 2023

Last updated: 6 October 2023

Last updated: 5 March 2024

Last updated: 25 November 2023

Last updated: 15 February 2024

Last updated: 11 March 2024

Last updated: 12 December 2023

Last updated: 6 March 2024

Last updated: 10 April 2023

Last updated: 20 December 2023

Latest articles

Related topics.

  • Types of experimental

Log in or sign up

Get started for free

Logo for University of Southern Queensland

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

10 Experimental research

Experimental research—often considered to be the ‘gold standard’ in research designs—is one of the most rigorous of all research designs. In this design, one or more independent variables are manipulated by the researcher (as treatments), subjects are randomly assigned to different treatment levels (random assignment), and the results of the treatments on outcomes (dependent variables) are observed. The unique strength of experimental research is its internal validity (causality) due to its ability to link cause and effect through treatment manipulation, while controlling for the spurious effect of extraneous variable.

Experimental research is best suited for explanatory research—rather than for descriptive or exploratory research—where the goal of the study is to examine cause-effect relationships. It also works well for research that involves a relatively limited and well-defined set of independent variables that can either be manipulated or controlled. Experimental research can be conducted in laboratory or field settings. Laboratory experiments , conducted in laboratory (artificial) settings, tend to be high in internal validity, but this comes at the cost of low external validity (generalisability), because the artificial (laboratory) setting in which the study is conducted may not reflect the real world. Field experiments are conducted in field settings such as in a real organisation, and are high in both internal and external validity. But such experiments are relatively rare, because of the difficulties associated with manipulating treatments and controlling for extraneous effects in a field setting.

Experimental research can be grouped into two broad categories: true experimental designs and quasi-experimental designs. Both designs require treatment manipulation, but while true experiments also require random assignment, quasi-experiments do not. Sometimes, we also refer to non-experimental research, which is not really a research design, but an all-inclusive term that includes all types of research that do not employ treatment manipulation or random assignment, such as survey research, observational research, and correlational studies.

Basic concepts

Treatment and control groups. In experimental research, some subjects are administered one or more experimental stimulus called a treatment (the treatment group ) while other subjects are not given such a stimulus (the control group ). The treatment may be considered successful if subjects in the treatment group rate more favourably on outcome variables than control group subjects. Multiple levels of experimental stimulus may be administered, in which case, there may be more than one treatment group. For example, in order to test the effects of a new drug intended to treat a certain medical condition like dementia, if a sample of dementia patients is randomly divided into three groups, with the first group receiving a high dosage of the drug, the second group receiving a low dosage, and the third group receiving a placebo such as a sugar pill (control group), then the first two groups are experimental groups and the third group is a control group. After administering the drug for a period of time, if the condition of the experimental group subjects improved significantly more than the control group subjects, we can say that the drug is effective. We can also compare the conditions of the high and low dosage experimental groups to determine if the high dose is more effective than the low dose.

Treatment manipulation. Treatments are the unique feature of experimental research that sets this design apart from all other research methods. Treatment manipulation helps control for the ‘cause’ in cause-effect relationships. Naturally, the validity of experimental research depends on how well the treatment was manipulated. Treatment manipulation must be checked using pretests and pilot tests prior to the experimental study. Any measurements conducted before the treatment is administered are called pretest measures , while those conducted after the treatment are posttest measures .

Random selection and assignment. Random selection is the process of randomly drawing a sample from a population or a sampling frame. This approach is typically employed in survey research, and ensures that each unit in the population has a positive chance of being selected into the sample. Random assignment, however, is a process of randomly assigning subjects to experimental or control groups. This is a standard practice in true experimental research to ensure that treatment groups are similar (equivalent) to each other and to the control group prior to treatment administration. Random selection is related to sampling, and is therefore more closely related to the external validity (generalisability) of findings. However, random assignment is related to design, and is therefore most related to internal validity. It is possible to have both random selection and random assignment in well-designed experimental research, but quasi-experimental research involves neither random selection nor random assignment.

Threats to internal validity. Although experimental designs are considered more rigorous than other research methods in terms of the internal validity of their inferences (by virtue of their ability to control causes through treatment manipulation), they are not immune to internal validity threats. Some of these threats to internal validity are described below, within the context of a study of the impact of a special remedial math tutoring program for improving the math abilities of high school students.

History threat is the possibility that the observed effects (dependent variables) are caused by extraneous or historical events rather than by the experimental treatment. For instance, students’ post-remedial math score improvement may have been caused by their preparation for a math exam at their school, rather than the remedial math program.

Maturation threat refers to the possibility that observed effects are caused by natural maturation of subjects (e.g., a general improvement in their intellectual ability to understand complex concepts) rather than the experimental treatment.

Testing threat is a threat in pre-post designs where subjects’ posttest responses are conditioned by their pretest responses. For instance, if students remember their answers from the pretest evaluation, they may tend to repeat them in the posttest exam.

Not conducting a pretest can help avoid this threat.

Instrumentation threat , which also occurs in pre-post designs, refers to the possibility that the difference between pretest and posttest scores is not due to the remedial math program, but due to changes in the administered test, such as the posttest having a higher or lower degree of difficulty than the pretest.

Mortality threat refers to the possibility that subjects may be dropping out of the study at differential rates between the treatment and control groups due to a systematic reason, such that the dropouts were mostly students who scored low on the pretest. If the low-performing students drop out, the results of the posttest will be artificially inflated by the preponderance of high-performing students.

Regression threat —also called a regression to the mean—refers to the statistical tendency of a group’s overall performance to regress toward the mean during a posttest rather than in the anticipated direction. For instance, if subjects scored high on a pretest, they will have a tendency to score lower on the posttest (closer to the mean) because their high scores (away from the mean) during the pretest were possibly a statistical aberration. This problem tends to be more prevalent in non-random samples and when the two measures are imperfectly correlated.

Two-group experimental designs

R

Pretest-posttest control group design . In this design, subjects are randomly assigned to treatment and control groups, subjected to an initial (pretest) measurement of the dependent variables of interest, the treatment group is administered a treatment (representing the independent variable of interest), and the dependent variables measured again (posttest). The notation of this design is shown in Figure 10.1.

Pretest-posttest control group design

Statistical analysis of this design involves a simple analysis of variance (ANOVA) between the treatment and control groups. The pretest-posttest design handles several threats to internal validity, such as maturation, testing, and regression, since these threats can be expected to influence both treatment and control groups in a similar (random) manner. The selection threat is controlled via random assignment. However, additional threats to internal validity may exist. For instance, mortality can be a problem if there are differential dropout rates between the two groups, and the pretest measurement may bias the posttest measurement—especially if the pretest introduces unusual topics or content.

Posttest -only control group design . This design is a simpler version of the pretest-posttest design where pretest measurements are omitted. The design notation is shown in Figure 10.2.

Posttest-only control group design

The treatment effect is measured simply as the difference in the posttest scores between the two groups:

\[E = (O_{1} - O_{2})\,.\]

The appropriate statistical analysis of this design is also a two-group analysis of variance (ANOVA). The simplicity of this design makes it more attractive than the pretest-posttest design in terms of internal validity. This design controls for maturation, testing, regression, selection, and pretest-posttest interaction, though the mortality threat may continue to exist.

C

Because the pretest measure is not a measurement of the dependent variable, but rather a covariate, the treatment effect is measured as the difference in the posttest scores between the treatment and control groups as:

Due to the presence of covariates, the right statistical analysis of this design is a two-group analysis of covariance (ANCOVA). This design has all the advantages of posttest-only design, but with internal validity due to the controlling of covariates. Covariance designs can also be extended to pretest-posttest control group design.

Factorial designs

Two-group designs are inadequate if your research requires manipulation of two or more independent variables (treatments). In such cases, you would need four or higher-group designs. Such designs, quite popular in experimental research, are commonly called factorial designs. Each independent variable in this design is called a factor , and each subdivision of a factor is called a level . Factorial designs enable the researcher to examine not only the individual effect of each treatment on the dependent variables (called main effects), but also their joint effect (called interaction effects).

2 \times 2

In a factorial design, a main effect is said to exist if the dependent variable shows a significant difference between multiple levels of one factor, at all levels of other factors. No change in the dependent variable across factor levels is the null case (baseline), from which main effects are evaluated. In the above example, you may see a main effect of instructional type, instructional time, or both on learning outcomes. An interaction effect exists when the effect of differences in one factor depends upon the level of a second factor. In our example, if the effect of instructional type on learning outcomes is greater for three hours/week of instructional time than for one and a half hours/week, then we can say that there is an interaction effect between instructional type and instructional time on learning outcomes. Note that the presence of interaction effects dominate and make main effects irrelevant, and it is not meaningful to interpret main effects if interaction effects are significant.

Hybrid experimental designs

Hybrid designs are those that are formed by combining features of more established designs. Three such hybrid designs are randomised bocks design, Solomon four-group design, and switched replications design.

Randomised block design. This is a variation of the posttest-only or pretest-posttest control group design where the subject population can be grouped into relatively homogeneous subgroups (called blocks ) within which the experiment is replicated. For instance, if you want to replicate the same posttest-only design among university students and full-time working professionals (two homogeneous blocks), subjects in both blocks are randomly split between the treatment group (receiving the same treatment) and the control group (see Figure 10.5). The purpose of this design is to reduce the ‘noise’ or variance in data that may be attributable to differences between the blocks so that the actual effect of interest can be detected more accurately.

Randomised blocks design

Solomon four-group design . In this design, the sample is divided into two treatment groups and two control groups. One treatment group and one control group receive the pretest, and the other two groups do not. This design represents a combination of posttest-only and pretest-posttest control group design, and is intended to test for the potential biasing effect of pretest measurement on posttest measures that tends to occur in pretest-posttest designs, but not in posttest-only designs. The design notation is shown in Figure 10.6.

Solomon four-group design

Switched replication design . This is a two-group design implemented in two phases with three waves of measurement. The treatment group in the first phase serves as the control group in the second phase, and the control group in the first phase becomes the treatment group in the second phase, as illustrated in Figure 10.7. In other words, the original design is repeated or replicated temporally with treatment/control roles switched between the two groups. By the end of the study, all participants will have received the treatment either during the first or the second phase. This design is most feasible in organisational contexts where organisational programs (e.g., employee training) are implemented in a phased manner or are repeated at regular intervals.

Switched replication design

Quasi-experimental designs

Quasi-experimental designs are almost identical to true experimental designs, but lacking one key ingredient: random assignment. For instance, one entire class section or one organisation is used as the treatment group, while another section of the same class or a different organisation in the same industry is used as the control group. This lack of random assignment potentially results in groups that are non-equivalent, such as one group possessing greater mastery of certain content than the other group, say by virtue of having a better teacher in a previous semester, which introduces the possibility of selection bias . Quasi-experimental designs are therefore inferior to true experimental designs in interval validity due to the presence of a variety of selection related threats such as selection-maturation threat (the treatment and control groups maturing at different rates), selection-history threat (the treatment and control groups being differentially impacted by extraneous or historical events), selection-regression threat (the treatment and control groups regressing toward the mean between pretest and posttest at different rates), selection-instrumentation threat (the treatment and control groups responding differently to the measurement), selection-testing (the treatment and control groups responding differently to the pretest), and selection-mortality (the treatment and control groups demonstrating differential dropout rates). Given these selection threats, it is generally preferable to avoid quasi-experimental designs to the greatest extent possible.

N

In addition, there are quite a few unique non-equivalent designs without corresponding true experimental design cousins. Some of the more useful of these designs are discussed next.

Regression discontinuity (RD) design . This is a non-equivalent pretest-posttest design where subjects are assigned to the treatment or control group based on a cut-off score on a preprogram measure. For instance, patients who are severely ill may be assigned to a treatment group to test the efficacy of a new drug or treatment protocol and those who are mildly ill are assigned to the control group. In another example, students who are lagging behind on standardised test scores may be selected for a remedial curriculum program intended to improve their performance, while those who score high on such tests are not selected from the remedial program.

RD design

Because of the use of a cut-off score, it is possible that the observed results may be a function of the cut-off score rather than the treatment, which introduces a new threat to internal validity. However, using the cut-off score also ensures that limited or costly resources are distributed to people who need them the most, rather than randomly across a population, while simultaneously allowing a quasi-experimental treatment. The control group scores in the RD design do not serve as a benchmark for comparing treatment group scores, given the systematic non-equivalence between the two groups. Rather, if there is no discontinuity between pretest and posttest scores in the control group, but such a discontinuity persists in the treatment group, then this discontinuity is viewed as evidence of the treatment effect.

Proxy pretest design . This design, shown in Figure 10.11, looks very similar to the standard NEGD (pretest-posttest) design, with one critical difference: the pretest score is collected after the treatment is administered. A typical application of this design is when a researcher is brought in to test the efficacy of a program (e.g., an educational program) after the program has already started and pretest data is not available. Under such circumstances, the best option for the researcher is often to use a different prerecorded measure, such as students’ grade point average before the start of the program, as a proxy for pretest data. A variation of the proxy pretest design is to use subjects’ posttest recollection of pretest data, which may be subject to recall bias, but nevertheless may provide a measure of perceived gain or change in the dependent variable.

Proxy pretest design

Separate pretest-posttest samples design . This design is useful if it is not possible to collect pretest and posttest data from the same subjects for some reason. As shown in Figure 10.12, there are four groups in this design, but two groups come from a single non-equivalent group, while the other two groups come from a different non-equivalent group. For instance, say you want to test customer satisfaction with a new online service that is implemented in one city but not in another. In this case, customers in the first city serve as the treatment group and those in the second city constitute the control group. If it is not possible to obtain pretest and posttest measures from the same customers, you can measure customer satisfaction at one point in time, implement the new service program, and measure customer satisfaction (with a different set of customers) after the program is implemented. Customer satisfaction is also measured in the control group at the same times as in the treatment group, but without the new program implementation. The design is not particularly strong, because you cannot examine the changes in any specific customer’s satisfaction score before and after the implementation, but you can only examine average customer satisfaction scores. Despite the lower internal validity, this design may still be a useful way of collecting quasi-experimental data when pretest and posttest data is not available from the same subjects.

Separate pretest-posttest samples design

An interesting variation of the NEDV design is a pattern-matching NEDV design , which employs multiple outcome variables and a theory that explains how much each variable will be affected by the treatment. The researcher can then examine if the theoretical prediction is matched in actual observations. This pattern-matching technique—based on the degree of correspondence between theoretical and observed patterns—is a powerful way of alleviating internal validity concerns in the original NEDV design.

NEDV design

Perils of experimental research

Experimental research is one of the most difficult of research designs, and should not be taken lightly. This type of research is often best with a multitude of methodological problems. First, though experimental research requires theories for framing hypotheses for testing, much of current experimental research is atheoretical. Without theories, the hypotheses being tested tend to be ad hoc, possibly illogical, and meaningless. Second, many of the measurement instruments used in experimental research are not tested for reliability and validity, and are incomparable across studies. Consequently, results generated using such instruments are also incomparable. Third, often experimental research uses inappropriate research designs, such as irrelevant dependent variables, no interaction effects, no experimental controls, and non-equivalent stimulus across treatment groups. Findings from such studies tend to lack internal validity and are highly suspect. Fourth, the treatments (tasks) used in experimental research may be diverse, incomparable, and inconsistent across studies, and sometimes inappropriate for the subject population. For instance, undergraduate student subjects are often asked to pretend that they are marketing managers and asked to perform a complex budget allocation task in which they have no experience or expertise. The use of such inappropriate tasks, introduces new threats to internal validity (i.e., subject’s performance may be an artefact of the content or difficulty of the task setting), generates findings that are non-interpretable and meaningless, and makes integration of findings across studies impossible.

The design of proper experimental treatments is a very important task in experimental design, because the treatment is the raison d’etre of the experimental method, and must never be rushed or neglected. To design an adequate and appropriate task, researchers should use prevalidated tasks if available, conduct treatment manipulation checks to check for the adequacy of such tasks (by debriefing subjects after performing the assigned task), conduct pilot tests (repeatedly, if necessary), and if in doubt, use tasks that are simple and familiar for the respondent sample rather than tasks that are complex or unfamiliar.

In summary, this chapter introduced key concepts in the experimental design research method and introduced a variety of true experimental and quasi-experimental designs. Although these designs vary widely in internal validity, designs with less internal validity should not be overlooked and may sometimes be useful under specific circumstances and empirical contingencies.

Social Science Research: Principles, Methods and Practices (Revised edition) Copyright © 2019 by Anol Bhattacherjee is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Perspect Clin Res
  • v.9(4); Oct-Dec 2018

Study designs: Part 1 – An overview and classification

Priya ranganathan.

Department of Anaesthesiology, Tata Memorial Centre, Mumbai, Maharashtra, India

Rakesh Aggarwal

1 Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

There are several types of research study designs, each with its inherent strengths and flaws. The study design used to answer a particular research question depends on the nature of the question and the availability of resources. In this article, which is the first part of a series on “study designs,” we provide an overview of research study designs and their classification. The subsequent articles will focus on individual designs.

INTRODUCTION

Research study design is a framework, or the set of methods and procedures used to collect and analyze data on variables specified in a particular research problem.

Research study designs are of many types, each with its advantages and limitations. The type of study design used to answer a particular research question is determined by the nature of question, the goal of research, and the availability of resources. Since the design of a study can affect the validity of its results, it is important to understand the different types of study designs and their strengths and limitations.

There are some terms that are used frequently while classifying study designs which are described in the following sections.

A variable represents a measurable attribute that varies across study units, for example, individual participants in a study, or at times even when measured in an individual person over time. Some examples of variables include age, sex, weight, height, health status, alive/dead, diseased/healthy, annual income, smoking yes/no, and treated/untreated.

Exposure (or intervention) and outcome variables

A large proportion of research studies assess the relationship between two variables. Here, the question is whether one variable is associated with or responsible for change in the value of the other variable. Exposure (or intervention) refers to the risk factor whose effect is being studied. It is also referred to as the independent or the predictor variable. The outcome (or predicted or dependent) variable develops as a consequence of the exposure (or intervention). Typically, the term “exposure” is used when the “causative” variable is naturally determined (as in observational studies – examples include age, sex, smoking, and educational status), and the term “intervention” is preferred where the researcher assigns some or all participants to receive a particular treatment for the purpose of the study (experimental studies – e.g., administration of a drug). If a drug had been started in some individuals but not in the others, before the study started, this counts as exposure, and not as intervention – since the drug was not started specifically for the study.

Observational versus interventional (or experimental) studies

Observational studies are those where the researcher is documenting a naturally occurring relationship between the exposure and the outcome that he/she is studying. The researcher does not do any active intervention in any individual, and the exposure has already been decided naturally or by some other factor. For example, looking at the incidence of lung cancer in smokers versus nonsmokers, or comparing the antenatal dietary habits of mothers with normal and low-birth babies. In these studies, the investigator did not play any role in determining the smoking or dietary habit in individuals.

For an exposure to determine the outcome, it must precede the latter. Any variable that occurs simultaneously with or following the outcome cannot be causative, and hence is not considered as an “exposure.”

Observational studies can be either descriptive (nonanalytical) or analytical (inferential) – this is discussed later in this article.

Interventional studies are experiments where the researcher actively performs an intervention in some or all members of a group of participants. This intervention could take many forms – for example, administration of a drug or vaccine, performance of a diagnostic or therapeutic procedure, and introduction of an educational tool. For example, a study could randomly assign persons to receive aspirin or placebo for a specific duration and assess the effect on the risk of developing cerebrovascular events.

Descriptive versus analytical studies

Descriptive (or nonanalytical) studies, as the name suggests, merely try to describe the data on one or more characteristics of a group of individuals. These do not try to answer questions or establish relationships between variables. Examples of descriptive studies include case reports, case series, and cross-sectional surveys (please note that cross-sectional surveys may be analytical studies as well – this will be discussed in the next article in this series). Examples of descriptive studies include a survey of dietary habits among pregnant women or a case series of patients with an unusual reaction to a drug.

Analytical studies attempt to test a hypothesis and establish causal relationships between variables. In these studies, the researcher assesses the effect of an exposure (or intervention) on an outcome. As described earlier, analytical studies can be observational (if the exposure is naturally determined) or interventional (if the researcher actively administers the intervention).

Directionality of study designs

Based on the direction of inquiry, study designs may be classified as forward-direction or backward-direction. In forward-direction studies, the researcher starts with determining the exposure to a risk factor and then assesses whether the outcome occurs at a future time point. This design is known as a cohort study. For example, a researcher can follow a group of smokers and a group of nonsmokers to determine the incidence of lung cancer in each. In backward-direction studies, the researcher begins by determining whether the outcome is present (cases vs. noncases [also called controls]) and then traces the presence of prior exposure to a risk factor. These are known as case–control studies. For example, a researcher identifies a group of normal-weight babies and a group of low-birth weight babies and then asks the mothers about their dietary habits during the index pregnancy.

Prospective versus retrospective study designs

The terms “prospective” and “retrospective” refer to the timing of the research in relation to the development of the outcome. In retrospective studies, the outcome of interest has already occurred (or not occurred – e.g., in controls) in each individual by the time s/he is enrolled, and the data are collected either from records or by asking participants to recall exposures. There is no follow-up of participants. By contrast, in prospective studies, the outcome (and sometimes even the exposure or intervention) has not occurred when the study starts and participants are followed up over a period of time to determine the occurrence of outcomes. Typically, most cohort studies are prospective studies (though there may be retrospective cohorts), whereas case–control studies are retrospective studies. An interventional study has to be, by definition, a prospective study since the investigator determines the exposure for each study participant and then follows them to observe outcomes.

The terms “prospective” versus “retrospective” studies can be confusing. Let us think of an investigator who starts a case–control study. To him/her, the process of enrolling cases and controls over a period of several months appears prospective. Hence, the use of these terms is best avoided. Or, at the very least, one must be clear that the terms relate to work flow for each individual study participant, and not to the study as a whole.

Classification of study designs

Figure 1 depicts a simple classification of research study designs. The Centre for Evidence-based Medicine has put forward a useful three-point algorithm which can help determine the design of a research study from its methods section:[ 1 ]

An external file that holds a picture, illustration, etc.
Object name is PCR-9-184-g001.jpg

Classification of research study designs

  • Does the study describe the characteristics of a sample or does it attempt to analyze (or draw inferences about) the relationship between two variables? – If no, then it is a descriptive study, and if yes, it is an analytical (inferential) study
  • If analytical, did the investigator determine the exposure? – If no, it is an observational study, and if yes, it is an experimental study
  • If observational, when was the outcome determined? – at the start of the study (case–control study), at the end of a period of follow-up (cohort study), or simultaneously (cross sectional).

In the next few pieces in the series, we will discuss various study designs in greater detail.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Experimental Design: Types, Examples & Methods

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Experimental design refers to how participants are allocated to different groups in an experiment. Types of design include repeated measures, independent groups, and matched pairs designs.

Probably the most common way to design an experiment in psychology is to divide the participants into two groups, the experimental group and the control group, and then introduce a change to the experimental group, not the control group.

The researcher must decide how he/she will allocate their sample to the different experimental groups.  For example, if there are 10 participants, will all 10 participants participate in both groups (e.g., repeated measures), or will the participants be split in half and take part in only one group each?

Three types of experimental designs are commonly used:

1. Independent Measures

Independent measures design, also known as between-groups , is an experimental design where different participants are used in each condition of the independent variable.  This means that each condition of the experiment includes a different group of participants.

This should be done by random allocation, ensuring that each participant has an equal chance of being assigned to one group.

Independent measures involve using two separate groups of participants, one in each condition. For example:

Independent Measures Design 2

  • Con : More people are needed than with the repeated measures design (i.e., more time-consuming).
  • Pro : Avoids order effects (such as practice or fatigue) as people participate in one condition only.  If a person is involved in several conditions, they may become bored, tired, and fed up by the time they come to the second condition or become wise to the requirements of the experiment!
  • Con : Differences between participants in the groups may affect results, for example, variations in age, gender, or social background.  These differences are known as participant variables (i.e., a type of extraneous variable ).
  • Control : After the participants have been recruited, they should be randomly assigned to their groups. This should ensure the groups are similar, on average (reducing participant variables).

2. Repeated Measures Design

Repeated Measures design is an experimental design where the same participants participate in each independent variable condition.  This means that each experiment condition includes the same group of participants.

Repeated Measures design is also known as within-groups or within-subjects design .

  • Pro : As the same participants are used in each condition, participant variables (i.e., individual differences) are reduced.
  • Con : There may be order effects. Order effects refer to the order of the conditions affecting the participants’ behavior.  Performance in the second condition may be better because the participants know what to do (i.e., practice effect).  Or their performance might be worse in the second condition because they are tired (i.e., fatigue effect). This limitation can be controlled using counterbalancing.
  • Pro : Fewer people are needed as they participate in all conditions (i.e., saves time).
  • Control : To combat order effects, the researcher counter-balances the order of the conditions for the participants.  Alternating the order in which participants perform in different conditions of an experiment.

Counterbalancing

Suppose we used a repeated measures design in which all of the participants first learned words in “loud noise” and then learned them in “no noise.”

We expect the participants to learn better in “no noise” because of order effects, such as practice. However, a researcher can control for order effects using counterbalancing.

The sample would be split into two groups: experimental (A) and control (B).  For example, group 1 does ‘A’ then ‘B,’ and group 2 does ‘B’ then ‘A.’ This is to eliminate order effects.

Although order effects occur for each participant, they balance each other out in the results because they occur equally in both groups.

counter balancing

3. Matched Pairs Design

A matched pairs design is an experimental design where pairs of participants are matched in terms of key variables, such as age or socioeconomic status. One member of each pair is then placed into the experimental group and the other member into the control group .

One member of each matched pair must be randomly assigned to the experimental group and the other to the control group.

matched pairs design

  • Con : If one participant drops out, you lose 2 PPs’ data.
  • Pro : Reduces participant variables because the researcher has tried to pair up the participants so that each condition has people with similar abilities and characteristics.
  • Con : Very time-consuming trying to find closely matched pairs.
  • Pro : It avoids order effects, so counterbalancing is not necessary.
  • Con : Impossible to match people exactly unless they are identical twins!
  • Control : Members of each pair should be randomly assigned to conditions. However, this does not solve all these problems.

Experimental design refers to how participants are allocated to an experiment’s different conditions (or IV levels). There are three types:

1. Independent measures / between-groups : Different participants are used in each condition of the independent variable.

2. Repeated measures /within groups : The same participants take part in each condition of the independent variable.

3. Matched pairs : Each condition uses different participants, but they are matched in terms of important characteristics, e.g., gender, age, intelligence, etc.

Learning Check

Read about each of the experiments below. For each experiment, identify (1) which experimental design was used; and (2) why the researcher might have used that design.

1 . To compare the effectiveness of two different types of therapy for depression, depressed patients were assigned to receive either cognitive therapy or behavior therapy for a 12-week period.

The researchers attempted to ensure that the patients in the two groups had similar severity of depressed symptoms by administering a standardized test of depression to each participant, then pairing them according to the severity of their symptoms.

2 . To assess the difference in reading comprehension between 7 and 9-year-olds, a researcher recruited each group from a local primary school. They were given the same passage of text to read and then asked a series of questions to assess their understanding.

3 . To assess the effectiveness of two different ways of teaching reading, a group of 5-year-olds was recruited from a primary school. Their level of reading ability was assessed, and then they were taught using scheme one for 20 weeks.

At the end of this period, their reading was reassessed, and a reading improvement score was calculated. They were then taught using scheme two for a further 20 weeks, and another reading improvement score for this period was calculated. The reading improvement scores for each child were then compared.

4 . To assess the effect of the organization on recall, a researcher randomly assigned student volunteers to two conditions.

Condition one attempted to recall a list of words that were organized into meaningful categories; condition two attempted to recall the same words, randomly grouped on the page.

Experiment Terminology

Ecological validity.

The degree to which an investigation represents real-life experiences.

Experimenter effects

These are the ways that the experimenter can accidentally influence the participant through their appearance or behavior.

Demand characteristics

The clues in an experiment lead the participants to think they know what the researcher is looking for (e.g., the experimenter’s body language).

Independent variable (IV)

The variable the experimenter manipulates (i.e., changes) is assumed to have a direct effect on the dependent variable.

Dependent variable (DV)

Variable the experimenter measures. This is the outcome (i.e., the result) of a study.

Extraneous variables (EV)

All variables which are not independent variables but could affect the results (DV) of the experiment. Extraneous variables should be controlled where possible.

Confounding variables

Variable(s) that have affected the results (DV), apart from the IV. A confounding variable could be an extraneous variable that has not been controlled.

Random Allocation

Randomly allocating participants to independent variable conditions means that all participants should have an equal chance of taking part in each condition.

The principle of random allocation is to avoid bias in how the experiment is carried out and limit the effects of participant variables.

Order effects

Changes in participants’ performance due to their repeating the same or similar test more than once. Examples of order effects include:

(i) practice effect: an improvement in performance on a task due to repetition, for example, because of familiarity with the task;

(ii) fatigue effect: a decrease in performance of a task due to repetition, for example, because of boredom or tiredness.

Print Friendly, PDF & Email

Book cover

Research Design in Business and Management pp 221–234 Cite as

Experimental Research Design

  • Stefan Hunziker 3 &
  • Michael Blankenagel 3  
  • First Online: 10 November 2021

3032 Accesses

1 Citations

This chapter addresses the peculiarities, characteristics, and major fallacies of experimental research designs. Experiments have a long and important history in the social, natural, and medicinal sciences. Unfortunately, in business and management this looks differently. This is astounding, as experiments are suitable for analyzing cause-and-effect relationships. A true experiment is a brilliant method for finding out if one element really causes other elements. Also, researchers find relevant information on how to write an experimental research design paper and learn about typical methodologies used for this research design. The chapter closes with referring to overlapping and adjacent research designs.

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF

Tax calculation will be finalised at checkout

Purchases are for personal use only

Aronson, E., Ellsworth, P., Carlsmith, J., & Gonzales, M. (1990). Methods of research in social psychology (2nd ed.). McGraw-Hill.

Google Scholar  

Bargh, J., Chen, M., & Burrows, L. (1996). Automaticity of social behavior: Direct effects of trait construct and stereotype activation on action. Journal of Personality and Social Psychology., 71 (2), 230–244.

Article   Google Scholar  

Biais, B., & Weber, M. (2009). Hindsight bias, risk perception, and investment performance. Management Science, 55 (6), 1018–1029.

Bortz, J. & Döring, N. (2006). Forschungsmethoden und evaluation . Springer.

Bowlin, K. O., Hales, J., & Kachelmeier, S. J. (2009). Experimental evidence of how prior experience as an auditor influences managers’ strategic reporting decisions. Rev Account Stud, 14 (1), 63–87.

Burmeister, K., & Schade, C. (2007). Are entrepreneurs’ decisions more biased? An experimental investigation of the susceptibility to status quo bias. Journal of Business Venturing, 22 (3), 340–362.

Christensen, L. B. (2007). Experimental methodology . Pearson/Allyn and Bacon.

de Vaus, D. A. (2001). Research design in social research . Reprinted. Los Angeles: SAGE Publications, Inc.

Doyle, A. C. (1890). The sign of the four. Lippincott’s Monthly Magazine . Ward, Lock & Co.

Franke, N., Schreier, M., & Kaiser, U. (2010). The “I designed it myself” effect in mass customization. Management Science, 56 (1), 125–140.

Friese, M., Wilhelm, H., & Michaela, W. (2009). The impulsive consumer: Predicting consumer behavior with implicit reaction time measurements. Social Psychology of Consumer Behavior (pp. 335–364). Psychology Press.

Fromkin, H. L., & Streufert, S. (1976). Laboratory experimentation. In M. D. Dunnette (Ed.), Handbook of industrial and organizational psychology (pp. 415–465). Rand McNally College.

Harbring, C., & Irlenbusch, B. (2011). Sabotage in tournaments: evidence from a laboratory experiment. Management Science, 57 (4), 611–627.

Hennig-Thurau, T., Groth, M., Paul, M., & Gremler, D. D. (2006). Are all smiles created equal? How emotional contagion and emotional labor affect service relationships. Journal of Marketing, 70 (3), 58–73.

Homburg, C., Koschate, N., & Hoyer, W. D. (2005). Do Satisfied customers really pay more? A study of the relationship between customer satisfaction and willingness to pay. Journal of Marketing, 69 (2), 84–96.

Johnson, B. (2001). Toward a new classification of nonexperimental quantitative research. Educational Researcher, 30 (2), 3–13.

Koschate-Fischer, N., & Schandelmeier, S. (2014). A Guideline for Designing Experimental Studies in Marketing research and a Critical Discussion of Selected Problem Areas. Journal of Business Economics, 84 (6), 793–826.

Krishnaswamy K. N., Sivakumar A. I. & Mathirajan M. (2009). Management research methodology: Integration of principles, methods and techniques . Dorling Kindersley.

Lödding, H., & Lohmann, S. (2012). INCAP – applying short-term flexibility to control inventories. International Journal of Production Research, 50 (3), 909–919.

Mohnen, A., Pokorny, K., & Sliwka, D. (2008). Transparency, inequity aversion, and the dynamics of peer pressure in teams: Theory and evidence. Journal of Labor Economics, 26 (4), 693–720.

Perdue, B. C., & Summers, J. O. (1986). Checking the success of manipulations in marketing experiments. Journal of Marketing Research, 23 (4), 317–326.

Robson, C. (2011). Real world research: A resource for users of social research methods in applied settings (3rd ed.). Wiley.

Rogers, W. S. (2003). Social psychology: Experimental and critical approaches . Open University Press.

Sandri, S., Schade, C., Mußhoff, O., & Odening, M. (2010). Holding on for too long? An experimental study on inertia in entrepreneurs’ and non-entrepreneurs’ disinvestment choices. Journal of Economic Behavior & Organization, 76 (1), 30–44.

Schoen, K., & Crilly, N. (2012). Implicit methods for testing product preference: Exploratory studies with the affective simon task. In J. Brasset, J. McDonnell, & M. Malpass (Eds.), Proceedings of 8th international design and emotion conference, ed. London: Central Saint Martins College of Art and Design.

Stier, W. (1999). Empirische Forschungsmethoden . Springer.

Trochim, W. (2005). Research methods: The concise knowledge base. Atomic Dog Pub.

Weber, M., & Zuchel, H. (2005). How do prior outcomes affect risk attitude? Comparing escalation of commitment and the house-money effect. Decision Analysis, 2 (1), 30–43.

Download references

Author information

Authors and affiliations.

Wirtschaft/IFZ – Campus Zug-Rotkreuz, Hochschule Luzern, Zug-Rotkreuz, Zug , Switzerland

Stefan Hunziker & Michael Blankenagel

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Stefan Hunziker .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Cite this chapter.

Hunziker, S., Blankenagel, M. (2021). Experimental Research Design. In: Research Design in Business and Management. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-34357-6_12

Download citation

DOI : https://doi.org/10.1007/978-3-658-34357-6_12

Published : 10 November 2021

Publisher Name : Springer Gabler, Wiesbaden

Print ISBN : 978-3-658-34356-9

Online ISBN : 978-3-658-34357-6

eBook Packages : Business and Economics (German Language)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • How it works

A Complete Guide to Experimental Research

Published by Carmen Troy at August 14th, 2021 , Revised On August 25, 2023

A Quick Guide to Experimental Research

Experimental research refers to the experiments conducted in the laboratory or observation under controlled conditions. Researchers try to find out the cause-and-effect relationship between two or more variables. 

The subjects/participants in the experiment are selected and observed. They receive treatments such as changes in room temperature, diet, atmosphere, or given a new drug to observe the changes. Experiments can vary from personal and informal natural comparisons. It includes three  types of variables ;

  • Independent variable
  • Dependent variable
  • Controlled variable

Before conducting experimental research, you need to have a clear understanding of the experimental design. A true experimental design includes  identifying a problem , formulating a  hypothesis , determining the number of variables, selecting and assigning the participants,  types of research designs , meeting ethical values, etc.

There are many  types of research  methods that can be classified based on:

  • The nature of the problem to be studied
  • Number of participants (individual or groups)
  • Number of groups involved (Single group or multiple groups)
  • Types of data collection methods (Qualitative/Quantitative/Mixed methods)
  • Number of variables (single independent variable/ factorial two independent variables)
  • The experimental design

Types of Experimental Research

Types of Experimental Research

Laboratory Experiment  

It is also called experimental research. This type of research is conducted in the laboratory. A researcher can manipulate and control the variables of the experiment.

Example: Milgram’s experiment on obedience.

Field Experiment

Field experiments are conducted in the participants’ open field and the environment by incorporating a few artificial changes. Researchers do not have control over variables under measurement. Participants know that they are taking part in the experiment.

Natural Experiments

The experiment is conducted in the natural environment of the participants. The participants are generally not informed about the experiment being conducted on them.

Examples: Estimating the health condition of the population. Did the increase in tobacco prices decrease the sale of tobacco? Did the usage of helmets decrease the number of head injuries of the bikers?

Quasi-Experiments

A quasi-experiment is an experiment that takes advantage of natural occurrences. Researchers cannot assign random participants to groups.

Example: Comparing the academic performance of the two schools.

Does your Research Methodology Have the Following?

  • Great Research/Sources
  • Perfect Language
  • Accurate Sources

If not, we can help. Our panel of experts makes sure to keep the 3 pillars of Research Methodology strong.

Research-Methodology-ads

How to Conduct Experimental Research?

Step 1. identify and define the problem.

You need to identify a problem as per your field of study and describe your  research question .

Example: You want to know about the effects of social media on the behavior of youngsters. It would help if you found out how much time students spend on the internet daily.

Example: You want to find out the adverse effects of junk food on human health. It would help if you found out how junk food frequent consumption can affect an individual’s health.

Step 2. Determine the Number of Levels of Variables

You need to determine the number of  variables . The independent variable is the predictor and manipulated by the researcher. At the same time, the dependent variable is the result of the independent variable.

In the first example, we predicted that increased social media usage negatively correlates with youngsters’ negative behaviour.

In the second example, we predicted the positive correlation between a balanced diet and a good healthy and negative relationship between junk food consumption and multiple health issues.

Step 3. Formulate the Hypothesis

One of the essential aspects of experimental research is formulating a hypothesis . A researcher studies the cause and effect between the independent and dependent variables and eliminates the confounding variables. A  null hypothesis is when there is no significant relationship between the dependent variable and the participants’ independent variables. A researcher aims to disprove the theory. H0 denotes it.  The  Alternative hypothesis  is the theory that a researcher seeks to prove.  H1or HA denotes it. 

Why should you use a Plagiarism Detector for your Paper?

It ensures:

  • Original work
  • Structure and Clarity
  • Zero Spelling Errors
  • No Punctuation Faults

Plagiarism Detector for your Paper

Step 4. Selection and Assignment of the Subjects

It’s an essential feature that differentiates the experimental design from other research designs . You need to select the number of participants based on the requirements of your experiment. Then the participants are assigned to the treatment group. There should be a control group without any treatment to study the outcomes without applying any changes compared to the experimental group.

Randomisation:  The participants are selected randomly and assigned to the experimental group. It is known as probability sampling. If the selection is not random, it’s considered non-probability sampling.

Stratified sampling : It’s a type of random selection of the participants by dividing them into strata and randomly selecting them from each level. 

Matching:   Even though participants are selected randomly, they can be assigned to the various comparison groups. Another procedure for selecting the participants is ‘matching.’ The participants are selected from the controlled group to match the experimental groups’ participants in all aspects based on the dependent variables.  

What is Replicability?

When a researcher uses the same methodology  and subject groups to carry out the experiments, it’s called ‘replicability.’ The  results will be similar each time. Researchers usually replicate their own work to strengthen external validity.

Step 5. Select a Research Design

You need to select a  research design  according to the requirements of your experiment. There are many types of experimental designs as follows.

Step 6. Meet Ethical and Legal Requirements

  • Participants of the research should not be harmed.
  • The dignity and confidentiality of the research should be maintained.
  • The consent of the participants should be taken before experimenting.
  • The privacy of the participants should be ensured.
  • Research data should remain confidential.
  • The anonymity of the participants should be ensured.
  • The rules and objectives of the experiments should be followed strictly.
  • Any wrong information or data should be avoided.

Tips for Meeting the Ethical Considerations

To meet the ethical considerations, you need to ensure that.

  • Participants have the right to withdraw from the experiment.
  • They should be aware of the required information about the experiment.
  • It would help if you avoided offensive or unacceptable language while framing the questions of interviews, questionnaires, or Focus groups.
  • You should ensure the privacy and anonymity of the participants.
  • You should acknowledge the sources and authors in your dissertation using any referencing styles such as APA/MLA/Harvard referencing style.

Step 7. Collect and Analyse Data.

Collect the data  by using suitable data collection according to your experiment’s requirement, such as observations,  case studies ,  surveys ,  interviews , questionnaires, etc. Analyse the obtained information.

Step 8. Present and Conclude the Findings of the Study.

Write the report of your research. Present, conclude, and explain the outcomes of your study .  

Frequently Asked Questions

What is the first step in conducting an experimental research.

The first step in conducting experimental research is to define your research question or hypothesis. Clearly outline the purpose and expectations of your experiment to guide the entire research process.

You May Also Like

A two-way ANOVA test examines the impact of independent variables on the expected outcome as well as their relationship to the outcome.

A variable is an attribute to which different values can be assigned. The value can be a characteristic, a number, or a quantity that can be counted. It is sometimes called a data item.

Quantitative research is associated with measurable numerical data. Qualitative research is where a researcher collects evidence to seek answers to a question.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

Our websites may use cookies to personalize and enhance your experience. By continuing without changing your cookie settings, you agree to this collection. For more information, please see our University Websites Privacy Notice .

Neag School of Education

Educational Research Basics by Del Siegle

Experimental research.

The major feature that distinguishes experimental research from other types of research is that the researcher manipulates the independent variable.  There are a number of experimental group designs in experimental research. Some of these qualify as experimental research, others do not.

  • In true experimental research , the researcher not only manipulates the independent variable, he or she also randomly assigned individuals to the various treatment categories (i.e., control and treatment).
  • In quasi experimental research , the researcher does not randomly assign subjects to treatment and control groups. In other words, the treatment is not distributed among participants randomly. In some cases, a researcher may randomly assigns one whole group to treatment and one whole group to control. In this case, quasi-experimental research involves using intact groups in an experiment, rather than assigning individuals at random to research conditions. (some researchers define this latter situation differently. For our course, we will allow this definition).
  • In causal comparative ( ex post facto ) research, the groups are already formed. It does not meet the standards of an experiment because the independent variable in not manipulated.

The statistics by themselves have no meaning. They only take on meaning within the design of your study. If we just examine stats, bread can be deadly . The term validity is used three ways in research…

  • I n the sampling unit, we learn about external validity (generalizability).
  • I n the survey unit, we learn about instrument validity .
  • In this unit, we learn about internal validity and external validity . Internal validity means that the differences that we were found between groups on the dependent variable in an experiment were directly related to what the researcher did to the independent variable, and not due to some other unintended variable (confounding variable). Simply stated, the question addressed by internal validity is “Was the study done well?” Once the researcher is satisfied that the study was done well and the independent variable caused the dependent variable (internal validity), then the research examines external validity (under what conditions [ecological] and with whom [population] can these results be replicated [Will I get the same results with a different group of people or under different circumstances?]). If a study is not internally valid, then considering external validity is a moot point (If the independent did not cause the dependent, then there is no point in applying the results [generalizing the results] to other situations.). Interestingly, as one tightens a study to control for treats to internal validity, one decreases the generalizability of the study (to whom and under what conditions one can generalize the results).

There are several common threats to internal validity in experimental research. They are described in our text.  I have review each below (this material is also included in the  PowerPoint Presentation on Experimental Research for this unit):

  • Subject Characteristics (Selection Bias/Differential Selection) — The groups may have been different from the start. If you were testing instructional strategies to improve reading and one group enjoyed reading more than the other group, they may improve more in their reading because they enjoy it, rather than the instructional strategy you used.
  • Loss of Subjects ( Mortality ) — All of the high or low scoring subject may have dropped out or were missing from one of the groups. If we collected posttest data on a day when the honor society was on field trip at the treatment school, the mean for the treatment group would probably be much lower than it really should have been.
  • Location — Perhaps one group was at a disadvantage because of their location.  The city may have been demolishing a building next to one of the schools in our study and there are constant distractions which interferes with our treatment.
  • Instrumentation Instrument Decay — The testing instruments may not be scores similarly. Perhaps the person grading the posttest is fatigued and pays less attention to the last set of papers reviewed. It may be that those papers are from one of our groups and will received different scores than the earlier group’s papers
  • Data Collector Characteristics — The subjects of one group may react differently to the data collector than the other group. A male interviewing males and females about their attitudes toward a type of math instruction may not receive the same responses from females as a female interviewing females would.
  • Data Collector Bias — The person collecting data my favors one group, or some characteristic some subject possess, over another. A principal who favors strict classroom management may rate students’ attention under different teaching conditions with a bias toward one of the teaching conditions.
  • Testing — The act of taking a pretest or posttest may influence the results of the experiment. Suppose we were conducting a unit to increase student sensitivity to prejudice. As a pretest we have the control and treatment groups watch Shindler’s List and write a reaction essay. The pretest may have actually increased both groups’ sensitivity and we find that our treatment groups didn’t score any higher on a posttest given later than the control group did. If we hadn’t given the pretest, we might have seen differences in the groups at the end of the study.
  • History — Something may happen at one site during our study that influences the results. Perhaps a classmate dies in a car accident at the control site for a study teaching children bike safety. The control group may actually demonstrate more concern about bike safety than the treatment group.
  • Maturation –There may be natural changes in the subjects that can account for the changes found in a study. A critical thinking unit may appear more effective if it taught during a time when children are developing abstract reasoning.
  • Hawthorne Effect — The subjects may respond differently just because they are being studied. The name comes from a classic study in which researchers were studying the effect of lighting on worker productivity. As the intensity of the factor lights increased, so did the work productivity. One researcher suggested that they reverse the treatment and lower the lights. The productivity of the workers continued to increase. It appears that being observed by the researchers was increasing productivity, not the intensity of the lights.
  • John Henry Effect — One group may view that it is competition with the other group and may work harder than than they would under normal circumstances. This generally is applied to the control group “taking on” the treatment group. The terms refers to the classic story of John Henry laying railroad track.
  • Resentful Demoralization of the Control Group — The control group may become discouraged because it is not receiving the special attention that is given to the treatment group. They may perform lower than usual because of this.
  • Regression ( Statistical Regression) — A class that scores particularly low can be expected to score slightly higher just by chance. Likewise, a class that scores particularly high, will have a tendency to score slightly lower by chance. The change in these scores may have nothing to do with the treatment.
  • Implementation –The treatment may not be implemented as intended. A study where teachers are asked to use student modeling techniques may not show positive results, not because modeling techniques don’t work, but because the teacher didn’t implement them or didn’t implement them as they were designed.
  • Compensatory Equalization of Treatmen t — Someone may feel sorry for the control group because they are not receiving much attention and give them special treatment. For example, a researcher could be studying the effect of laptop computers on students’ attitudes toward math. The teacher feels sorry for the class that doesn’t have computers and sponsors a popcorn party during math class. The control group begins to develop a more positive attitude about mathematics.
  • Experimental Treatment Diffusion — Sometimes the control group actually implements the treatment. If two different techniques are being tested in two different third grades in the same building, the teachers may share what they are doing. Unconsciously, the control may use of the techniques she or he learned from the treatment teacher.

When planning a study, it is important to consider the threats to interval validity as we finalize the study design. After we complete our study, we should reconsider each of the threats to internal validity as we review our data and draw conclusions.

Del Siegle, Ph.D. Neag School of Education – University of Connecticut [email protected] www.delsiegle.com

Logo for Mavs Open Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

14.1 What is experimental design and when should you use it?

Learning objectives.

Learners will be able to…

  • Describe the purpose of experimental design research
  • Describe nomethetic causality and the logic of experimental design
  • Identify the characteristics of a basic experiment
  • Discuss the relationship between dependent and independent variables in experiments
  • Identify the three major types of experimental designs

Pre-awareness check (Knowledge)

What are your thoughts on the phrase ‘experiment’ in the realm of social sciences? In an experiment, what is the independent variable?

The basics of experiments

In social work research, experimental design is used to test the effects of treatments, interventions, programs, or other conditions to which individuals, groups, organizations, or communities may be exposed to. There are a lot of experiments social work researchers can use to explore topics such as treatments for depression, impacts of school-based mental health on student outcomes, or prevention of abuse of people with disabilities. The American Psychological Association defines an experiment   as:

a series of observations conducted under controlled conditions to study a relationship with the purpose of drawing causal inferences about that relationship. An experiment involves the manipulation of an independent variable , the measurement of a dependent variable , and the exposure of various participants to one or more of the conditions being studied. Random selection of participants and their random assignment to conditions also are necessary in experiments .

In experimental design, the independent variable is the intervention, treatment, or condition that is being investigated as a potential cause of change (i.e., the experimental condition ). The effect, or outcome, of the experimental condition is the dependent variable. Trying out a new restaurant, dating a new person – we often call these things “experiments.” However, a true social science experiment would include recruitment of a large enough sample, random assignment to control and experimental groups, exposing those in the experimental group to an experimental condition, and collecting observations at the end of the experiment.

Social scientists use this level of rigor and control to maximize the internal validity of their research. Internal validity is the confidence researchers have about whether the independent variable (e.g, treatment) truly produces a change in the dependent, or outcome, variable. The logic and features of experimental design are intended to help establish causality and to reduce threats to internal validity , which we will discuss in Section 14.5 .

Experiments attempt to establish a nomothetic causal relationship between two variables—the treatment and its intended outcome.  We discussed the four criteria for establishing nomothetic causality in Section 4.3 :

  • plausibility,
  • covariation,
  • temporality, and
  • nonspuriousness.

Experiments should establish plausibility , having a plausible reason why their intervention would cause changes in the dependent variable. Usually, a theory framework or previous empirical evidence will indicate the plausibility of a causal relationship.

Covariation can be established for causal explanations by showing that the “cause” and the “effect” change together.  In experiments, the cause is an intervention, treatment, or other experimental condition. Whether or not a research participant is exposed to the experimental condition is the independent variable. The effect in an experiment is the outcome being assessed and is the dependent variable in the study. When the independent and dependent variables covary, they can have a positive association (e.g., those exposed to the intervention have increased self-esteem) or a negative association (e.g., those exposed to the intervention have reduced anxiety).

Since researcher controls when the intervention is administered, they can be assured that changes in the independent variable (the treatment) happens before changes in the dependent variable (the outcome). In this way, experiments assure temporality .

Finally, one of the most important features of experiments is that they allow researchers to eliminate spurious variables to support the criterion of nonspuriousness . True experiments are usually conducted under strictly controlled conditions. The intervention is given in the same way to each person, with a minimal number of other variables that might cause their post-test scores to change.

The logic of experimental design

How do we know that one phenomenon causes another? The complexity of the social world in which we practice and conduct research means that causes of social problems are rarely cut and dry. Uncovering explanations for social problems is key to helping clients address them, and experimental research designs are one road to finding answers.

Just because two phenomena are related in some way doesn’t mean that one causes the other. Ice cream sales increase in the summer, and so does the rate of violent crime; does that mean that eating ice cream is going to make me violent? Obviously not, because ice cream is great. The reality of that association is far more complex—it could be that hot weather makes people more irritable and, at times, violent, while also making people want ice cream. More likely, though, there are other social factors not accounted for in the way we just described this association.

As we have discussed, experimental designs can help clear up at least some of this fog by allowing researchers to isolate the effect of interventions on dependent variables by controlling extraneous variables . In true experimental design (discussed in the next section) and quasi-experimental design, researchers accomplish this w ith a control group or comparison group and the experimental group . The experimental group is sometimes called the treatment group because people in the experimental group receive the treatment or are exposed to the experimental condition (but we will call it the experimental group in this chapter.) The control/comparison group does not receive the treatment or intervention. Instead they may receive what is known as “treatment as usual” or perhaps no treatment at all.

research experimental type

In a well-designed experiment, the control group should look almost identical to the experimental group in terms of demographics and other relevant factors. What if we want to know the effect of CBT on social anxiety, but we have learned in prior research that men tend to have a more difficult time overcoming social anxiety? We would want our control and experimental groups to have a similar portions of men, since ostensibly, both groups’ results would be affected by the men in the group. If your control group has 5 women, 6 men, and 4 non-binary people, then your experimental group should be made up of roughly the same gender balance to help control for the influence of gender on the outcome of your intervention. (In reality, the groups should be similar along other dimensions, as well, and your group will likely be much larger.) The researcher will use the same outcome measures for both groups and compare them, and assuming the experiment was designed correctly, get a pretty good answer about whether the intervention had an effect on social anxiety.

Random assignment [/pb_glossary], also called randomization, entails using a random process to decide which participants are put into the control or experimental group (which participants receive an intervention and which do not). By randomly assigning participants to a group, you can reduce the effect of extraneous variables on your research because there won’t be a systematic difference between the groups.

Do not confuse random assignment with random sampling . Random sampling is a method for selecting a sample from a population and is rarely used in psychological research. Random assignment is a method for assigning participants in a sample to the different conditions, and it is an important element of all experimental research in psychology and other related fields. Random sampling helps a great deal with external validity, or generalizability , whereas random assignment increases internal validity .

Other Features of Experiments that Help Establish Causality

To control for spuriousness (as well as meeting the three other criteria for establishing causality), experiments try to control as many aspects of the research process as possible: using control groups, having large enough sample sizes, standardizing the treatment, etc. Researchers in large experiments often employ clinicians or other research staff to help them. Researchers train their staff members exhaustively, provide pre-scripted responses to common questions, and control the physical environment of the experiment so each person who participates receives the exact same treatment. Experimental researchers also document their procedures, so that others can review them and make changes in future research if they think it will improve on the ability to control for spurious variables.

An interesting example is Bruce Alexander’s (2010) Rat Park experiments. Much of the early research conducted on addictive drugs, like heroin and cocaine, was conducted on animals other than humans, usually mice or rats. The scientific consensus up until Alexander’s experiments was that cocaine and heroin were so addictive that rats, if offered the drugs, would consume them repeatedly until they perished. Researchers claimed this behavior explained how addiction worked in humans, but Alexander was not so sure. He knew rats were social animals and the experimental procedure from previous experiments did not allow them to socialize. Instead, rats were kept isolated in small cages with only food, water, and metal walls. To Alexander, social isolation was a spurious variable, causing changes in addictive behavior not due to the drug itself. Alexander created an experiment of his own, in which rats were allowed to run freely in an interesting environment, socialize and mate with other rats, and of course, drink from a solution that contained an addictive drug. In this environment, rats did not become hopelessly addicted to drugs. In fact, they had little interest in the substance. To Alexander, the results of his experiment demonstrated that social isolation was more of a causal factor for addiction than the drug itself.

One challenge with Alexander’s findings is that subsequent researchers have had mixed success replicating his findings (e.g., Petrie, 1996; Solinas, Thiriet, El Rawas, Lardeux, & Jaber, 2009). Replication involves conducting another researcher’s experiment in the same manner and seeing if it produces the same results. If the causal relationship is real, it should occur in all (or at least most) rigorous replications of the experiment.

Replicability

[INSERT A PARAGRAPH ABOUT REPLICATION/REPRODUCTION HERE. CAN USE/REFERENCE THIS   IF IT’S HELPFUL; include glossary definition as well as other general info]

To allow for easier replication, researchers should describe their experimental methods diligently. Researchers with the Open Science Collaboration (2015) [1] conducted the Reproducibility Project , which caused a significant controversy regarding the validity of psychological studies. The researchers with the project attempted to reproduce the results of 100 experiments published in major psychology journals since 2008. What they found was shocking. Although 97% of the original studies reported significant results, only 36% of the replicated studies had significant findings. The average effect size in the replication studies was half that of the original studies. The implications of the Reproducibility Project are potentially staggering, and encourage social scientists to carefully consider the validity of their reported findings and that the scientific community take steps to ensure researchers do not cherry-pick data or change their hypotheses simply to get published.

Generalizability

Let’s return to Alexander’s Rat Park study and consider the implications of his experiment for substance use professionals.  The conclusions he drew from his experiments on rats were meant to be generalized to the population. If this could be done, the experiment would have a high degree of external validity , which is the degree to which conclusions generalize to larger populations and different situations. Alexander argues his conclusions about addiction and social isolation help us understand why people living in deprived, isolated environments may become addicted to drugs more often than those in more enriching environments. Similarly, earlier rat researchers argued their results showed these drugs were instantly addictive to humans, often to the point of death.

Neither study’s results will match up perfectly with real life. There are clients in social work practice who may fit into Alexander’s social isolation model, but social isolation is complex. Clients can live in environments with other sociable humans, work jobs, and have romantic relationships; does this mean they are not socially isolated? On the other hand, clients may face structural racism, poverty, trauma, and other challenges that may contribute to their social environment. Alexander’s work helps understand clients’ experiences, but the explanation is incomplete. Human existence is more complicated than the experimental conditions in Rat Park.

Effectiveness versus Efficacy

Social workers are especially attentive to how social context shapes social life. This consideration points out a potential weakness of experiments. They can be rather artificial. When an experiment demonstrates causality under ideal, controlled circumstances, it establishes the efficacy of an intervention.

How often do real-world social interactions occur in the same way that they do in a controlled experiment? Experiments that are conducted in community settings by community practitioners are less easily controlled than those conducted in a lab or with researchers who adhere strictly to research protocols delivering the intervention. When an experiment demonstrates causality in a real-world setting that is not tightly controlled, it establishes the effectiveness of the intervention.

The distinction between efficacy and effectiveness demonstrates the tension between internal and external validity. Internal validity and external validity are conceptually linked. Internal validity refers to the degree to which the intervention causes its intended outcomes, and external validity refers to how well that relationship applies to different groups and circumstances than the experiment. However, the more researchers tightly control the environment to ensure internal validity, the more they may risk external validity for generalizing their results to different populations and circumstances. Correspondingly, researchers whose settings are just like the real world will be less able to ensure internal validity, as there are many factors that could pollute the research process. This is not to suggest that experimental research findings cannot have high levels of both internal and external validity, but that experimental researchers must always be aware of this potential weakness and clearly report limitations in their research reports.

Types of Experimental Designs

Experimental design is an umbrella term for a research method that is designed to test hypotheses related to causality under controlled conditions. Table 14.1 describes the three major types of experimental design (pre-experimental, quasi-experimental, and true experimental) and presents subtypes for each. As we will see in the coming sections, some types of experimental design are better at establishing causality than others. It’s also worth considering that true experiments, which most effectively establish causality , are often difficult and expensive to implement. Although the other experimental designs aren’t perfect, they still produce useful, valid evidence and may be more feasible to carry out.

Key Takeaways

  • Experimental designs are useful for establishing causality, but some types of experimental design do this better than others.
  • Experiments help researchers isolate the effect of the independent variable on the dependent variable by controlling for the effect of extraneous variables .
  • Experiments use a control/comparison group and an experimental group to test the effects of interventions. These groups should be as similar to each other as possible in terms of demographics and other relevant factors.
  • True experiments have control groups with randomly assigned participants; quasi-experimental types of experiments have comparison groups to which participants are not randomly assigned; pre-experimental designs do not have a comparison group.

TRACK 1 (IF YOU  ARE  CREATING A RESEARCH PROPOSAL FOR THIS CLASS):

  • Think about the research project you’ve been designing so far. How might you use a basic experiment to answer your question? If your question isn’t explanatory, try to formulate a new explanatory question and consider the usefulness of an experiment.
  • Why is establishing a simple relationship between two variables not indicative of one causing the other?

TRACK 2 (IF YOU  AREN’T  CREATING A RESEARCH PROPOSAL FOR THIS CLASS):

Imagine you are interested in studying child welfare practice. You are interested in learning more about community-based programs aimed to prevent child maltreatment and to prevent out-of-home placement for children.

  • Think about the research project stated above. How might you use a basic experiment to look more into this research topic? Try to formulate an explanatory question and consider the usefulness of an experiment.
  • Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349 (6251), aac4716. Doi: 10.1126/science.aac4716 ↵

an operation or procedure carried out under controlled conditions in order to discover an unknown effect or law, to test or establish a hypothesis, or to illustrate a known law.

treatment, intervention, or experience that is being tested in an experiment (the independent variable) that is received by the experimental group and not by the control group.

Ability to say that one variable "causes" something to happen to another variable. Very important to assess when thinking about studies that examine causation such as experimental or quasi-experimental designs.

circumstances or events that may affect the outcome of an experiment, resulting in changes in the research participants that are not a result of the intervention, treatment, or experimental condition being tested

causal explanations that can be universally applied to groups, such as scientific laws or universal truths

as a criteria for causal relationship, the relationship must make logical sense and seem possible

when the values of two variables change at the same time

as a criteria for causal relationship, the cause must come before the effect

an association between two variables that is NOT caused by a third variable

variables and characteristics that have an effect on your outcome, but aren't the primary variable whose influence you're interested in testing.

the group of participants in our study who do not receive the intervention we are researching in experiments with random assignment

the group of participants in our study who do not receive the intervention we are researching in experiments without random assignment

in experimental design, the group of participants in our study who do receive the intervention we are researching

The ability to apply research findings beyond the study sample to some broader population,

This is a synonymous term for generalizability - the ability to apply the findings of a study beyond the sample to a broader population.

performance of an intervention under ideal and controlled circumstances, such as in a lab or delivered by trained researcher-interventionists

The performance of an intervention under "real-world" conditions that are not closely controlled and ideal

the idea that one event, behavior, or belief will result in the occurrence of another, subsequent event, behavior, or belief

Doctoral Research Methods in Social Work Copyright © by Mavs Open Press. All Rights Reserved.

Share This Book

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 22 April 2024

Genetic insights into agronomic and morphological traits of drug-type cannabis revealed by genome-wide association studies

  • Maxime de Ronne 1 , 2 , 3 , 4 ,
  • Éliana Lapierre 1 , 2 , 3 , 4 &
  • Davoud Torkamaneh 1 , 2 , 3 , 4  

Scientific Reports volume  14 , Article number:  9162 ( 2024 ) Cite this article

Metrics details

  • Biotechnology
  • Computational biology and bioinformatics
  • Plant sciences

Cannabis sativa L., previously concealed by prohibition, is now a versatile and promising plant, thanks to recent legalization, opening doors for medical research and industry growth. However, years of prohibition have left the Cannabis research community lagging behind in understanding Cannabis genetics and trait inheritance compared to other major crops. To address this gap, we conducted a comprehensive genome-wide association study (GWAS) of nine key agronomic and morphological traits, using a panel of 176 drug-type Cannabis accessions from the Canadian legal market. Utilizing high-density genotyping-by-sequencing (HD-GBS), we successfully generated dense genotyping data in Cannabis , resulting in a catalog of 800 K genetic variants, of which 282 K common variants were retained for GWAS analysis. Through GWAS analysis, we identified 18 markers significantly associated with agronomic and morphological traits. Several identified markers exert a substantial phenotypic impact, guided us to putative candidate genes that reside in high linkage-disequilibrium (LD) with the markers. These findings lay a solid foundation for an innovative cannabis research, leveraging genetic markers to inform breeding programs aimed at meeting diverse needs in the industry.

Introduction

Cannabis ( Cannabis sativa L.), an annual and dioecious plant species belonging to the Cannabaceae family, stands as one of the earliest domesticated plants. Its rich history is intertwined with the socioeconomic and cultural development of human societies 1 , 2 . This versatile crop has served a multitude of purposes, offering valuable fibers for ropes and nets, abundant production of protein- and oil-rich seeds, applications in traditional medicine dating back to approximately 8000 BCE, and psychoactive properties 3 . Here, when referring to the plant, we will use its scientific genus name, Cannabis . In Canada, the trajectory of Cannabis cultivation took a significant turn, transitioning from a 1920s prohibition to the legalization of hemp cultivation in 1998, followed by the authorization of medical use in 2001 and recreational use in 2018 4 , 5 . Despite the fact that Cannabis is known to produce over 545 potentially bioactive secondary metabolites 6 , in Canada, the USA and the Europe, it is legally categorised based on the concentration of a single cannabinoid, the Δ 9 -tetrahydrocannabinol (THC), present in the trichomes of female flowers 7 . Cannabis plants with less than 0.3% total THC are classified as hemp-type, while those with greater than 0.3% total THC (calculated as (Tetrahydrocannabinolic acid × 0.877) + THC) are labeled as drug-type Cannabis . The shift in legislation has fueled the development of diverse industries, significantly contributing to Canada's gross domestic product (GDP) and job market, injecting approximately $43.5 billion into the economy and creating over 151,000 jobs in four years (2018–2022) 8 . The historical and societal significance of Cannabis is undeniable, and recent changes in legislation worldwide have propelled it into the forefront of scientific investigation, research and development 9 . Since the discovery of THC in 1964, extensive efforts have been made to characterize the metabolome of hundreds of Cannabis plants, leading to discovery of over 150 terpenoids, 120 cannabinoids and various flavonoids 10 , 11 . Likewise, there have been substantial strides in unraveling the Cannabis genome and creating a worldwide C. sativa genomics resource 3 , 12 , 13 , 14 . Notably, significant progress in Cannabis genome assembly has been achieved through the utilization of long-read sequencing technologies (i.e., PacBio and Oxford Nanopore Technologies) coupled with scaffold anchoring with genetic linkage maps and the integration of Hi-C data. These advancements have led to the development of four chromosome-level assemblies 15 , 16 . Among them, the cs10 v2 assembly (GenBank acc. no. GCA_900626175.2 ) is considered as the most complete and has been proposed as the reference genome for Cannabis by the International Cannabis Research Consortium (ICGRC) 17 . In this assembly, the C. sativa has been estimated to be around 875.7 Mb, characterized by a pair of sex chromosomes and nine autosomes, comprising 31,170 annotated genes 13 . The de novo assembly of Cannabis genomes was fraught with challenges due to a substantial level of heterozygosity (ranging from approximately 12.5–40.5%), and a remarkable abundance of repetitive elements, accounting for roughly 70% of the genome 3 . The in-depth characterization of the metabolome and genome of C. sativa provided new opportunities for medical research, industrial growth and the development of modern agronomic practices.

Despite progress such as increasing cannabinoid concentration, the twentieth century prohibition of Cannabis has hindered its cultivation from fully benefiting from the tools introduced during the Green Revolution 5 . For many years, Cannabis breeding occurred in clandestine operations, relying on undocumented methods and a dearth of modern technologies. Similar to other high-value crops, modern breeding technologies hold the promise of enhancing Cannabis traits to meet diverse needs, spanning manufacturing, medicinal, recreational, and culinary uses 18 . The cannabis research community is hugely undersized and suffers from a scarcity of understanding of Cannabis genetics and how key traits are expressed or inherited 19 . Thus, a better understanding of the genetic basis of agronomic and morphological traits of drug-type Cannabis appears to be a prerequisite for the development of improved Cannabis varieties, optimizing cultivation practices, and conserving valuable genetic resources 3 .

The advent of next-generation sequencing technology (NGS) 20 , which offers cost-effective high-throughput sequencing, coupled with the availability of powerful bioinformatic tools 21 , 22 , have facilitated the widespread adoption of genotype–phenotype association studies to investigate the relationship between genetic variation and phenotypic traits for a wide range of crops 23 . Recent classic quantitative trait loci (QTL) mapping studies have enabled identification of maturity-related QTL in both hemp 24 and drug-type Cannabis 25 . Classic QTL mapping analysis defines molecular markers linked to a phenotype segregating within parental lines, in contrast to modern genome-wide association studies (GWAS) which identify loci related to phenotypes within large populations of unrelated individuals 23 . GWAS use the information of linkage disequilibrium (LD) between a QTL and neighboring genetic markers to identify the regions on the genome that influence traits. However, when applied to a large set of individuals, the sequencing cost remains the most limiting factor, especially in heterozygous organisms like Cannabis where a high sequencing depth per sample is needed to accurately determine genotypes 26 . To address this challenge, cost-effective high-throughput genotyping methods (e.g., restriction-site associated DNA sequencing (RAD-Seq) 27 , genotyping-by-sequencing (GBS) 28 and High-Density GBS (HD-GBS) 29 , based on reduced-representation sequencing approaches (RRS) 30 , have been developed. Recent GWAS studies in hemp-type Cannabis 31 , 32 , 33 to investigate fiber quality, flowering time and sex determination and drug-type Cannabis 34 to investigate genetic basis of terpenes have enabled identification of significant genetic markers. The newly identified QTL will enable the early selection of promising individuals through marker-assisted selection (MAS) 35 , thereby reducing the labor and costs associated with development of improved varieties. Genetic association studies are, therefore, of significant value in advancing breeding programs towards molecular approaches 23 .

While flowering time and sex determination have been focal points in Cannabis breeding, the genetic basis of other important agronomic traits (e.g., yield, height, days to maturity, etc.) remain largely unexplored. Morphological traits should be duly considered due to their established intercorrelations with yield, maturity and cannabinoid profiles 36 . For instance, Cannabis plants cultivated for medicinal and recreational application exhibit shorter stature, have thinner stems, more nodes, higher floral density, and a different cannabinoid profiles compared to industrial hemp plants 37 . On the other hand, genetic backgrounds that prioritize yield may negatively impact THC production, and vice versa 36 . Investigating genetic variations associated with agronomic and morphological traits is essential for establishing the genetic groundwork for developing tailor-made Cannabis varieties, along with breeding tools such as MAS and genomic selection (GS) 38 .

To facilitate the development of molecular tools for Cannabis breeders and researchers, the present study provides high-value markers linked to essential agronomic and morphological traits, identified through GWAS conducted on 176 drug-type Cannabis accessions from the Canadian legal market. Markers associated with essential traits were identified using the multi-locus statistical method Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) 39 . In summary, this study lays the groundwork for a comprehensive understanding of the genetic foundations underpinning the agronomic and morphological traits in Cannabis . The markers identified through this research promise to significantly expedite breeding efforts, empowering us to cultivate Cannabis varieties optimized for various purposes and applications.

Experimental procedures

Plant material and phenotyping data.

All research activities, including the procurement and cultivation of Cannabis plants, were executed in accordance with our Cannabis research license (LIC-QX0ZJC7SIP-2021) and in full compliance with Health Canada’s regulations. In total, in this study, we used 176 drug-type accessions each accompanied by phenotyping data sourced from Lapierre et al . 1 . These accessions were selected from diverse sources to ensure representation of the broad spectrum of the drug-type Cannabis varieties available in the legal market of Canada (Supplementary Table S1 ).

In this study, we used four key productivity-related traits, including fresh biomass (FB; whole Cannabis plant excluding the roots), dried flower weight (DFW; representing yield), sexual maturity (SM; defined as the stage at which the first floral bud could be observed at the base of an axillary stem prior to the initiation of flowering) and harvest maturity (HM; days to maturity). Additionally, we included five morphological traits, namely stem diameter (SD), canopy diameter (CD), height, internode length index (ILI) and node counts (NC). It is worth noting that values were originally recorded in inches and were converted to centimeter for consistency. Histograms representing the distribution of each trait for the 176 accessions were generated using R v4.2.1 40 with the ‘ hist ’ function. Furthermore, a t -test was performed to determine whether the minimum and maximum values of each trait significantly differed from the overall population mean.

Sequencing and genotyping

Dna isolation, library preparation and sequencing.

Approximately 50 mg of young leaf tissue from each accession was collected for DNA extraction. The collected leaf tissues were air-dried for four days using a desiccating agent (Drierite; Xenia, OH, USA) and then ground with metallic beads in a RETSCH MM 400 mixer mill (Fisher Scientific, MA, USA). DNA extraction was carried out using the CTAB-chloroform protocol 41 . In brief, the powdered tissue was treated with a CTAB buffer solution, followed by a phenol–chloroform extraction procedure. The resulting DNA pellet underwent ethanol washing and was subsequently re-suspended in water. DNA quantification was carried out using a Qubit fluorometer with the dsDNA HS assay kit (Thermo Fisher Scientific, MA, USA), and concentrations were adjusted to 10 ng/μl for all samples. Final DNA samples were used to prepare HD-GBS libraries with Bfa I as described in Torkamaneh et al . 29 at the Institut de biologie intégrative et des systèmes (IBIS), Université Laval, QC, Canada. Sequencing was conducted on an Illumina NovaSeq 6000 (Illumina, CA, USA) with 150 paired-end reads at the Genome Quebec Service and Expertise Center (CESGQ), Montreal, QC, Canada.

SNP calling and filtration

Sequencing data were processed with the Fast-GBS v2.0 42 using the C. sativa cs10 v2 reference genome (GenBank acc. no. GCA_900626175.2 ) 15 . For variant calling a prerequisite of a minimum of 6 reads to call a single nucleotide polymorphism (SNP) was opted. Raw SNP data were filtered with VCFtools v0.1.16 43 to remove low-quality SNPs (QUAL < 10 and MQ < 30) and variants with proportion of missing data exceeding 80%. Missing data imputation was performed with BEAGLE 4.1 44 , followed by a second round of filtration, retaining only biallelic variants with heterozygosity less than 50% and a minor allele frequency (MAF) of > 0.06. Additionally, variants residing on unassembled scaffolds were removed. The resulting catalog of ~ 282 K SNPs was used to conducted genetic analysis, population structure assessment and GWAS (Supplementary Tables S2 ).

Genetic analysis

Marker description.

Read counts and coverage were calculated with SAMtools “coverage” parameter 45 . Proportion of heterozygous variants and MAF were estimated using TASSEL5 46 . The proportion of SNPs located within annotated genes was determined with BEDTools 47 by analyzing the number of SNPs overlapping with gene regions 48 (Supplementary Table S3 ). To visualize the distribution of SNP density, a plot was produced with rMVP 22 using ‘ plot.type  =  ”d” ’ parameter, in combination with the gene density distribution. The nucleotide diversity (π) 49 was measured in a sliding windows of 1000 bp across the genome using—window‐pi option of VCFtools 43 . Similarly, the pairwise π was calculated among different clusters.

LD decay and Haplotype block

Pairwise-LD was calculated with PLINK v1.9 50 using ‘ –r2 –ld-window-r2 0 ’ parameters . Long-range LD, measured as the allele frequency correlation (r 2 ), was determined for all pairwise SNPs within each chromosome independently (Supplementary Table S3 ). The LD decay curve line was fitted on the scatterplot using the smoothing spline regression following the procedure of Remington et al. 51 in the R environment (Fig.  2 b). The point of intersection between the LD curve and the predefined r 2 threshold determined the LD decay. Estimation of haplotype blocks (HBs) was performed with PLINK v1.9 using ‘ –blocks no-pheno-req –ld-window-kb 999 ’. A t -test was conducted in R to assess whether the LD decay of the chromosome X significantly differed from that of other chromosomes.

Population structure analysis

Population structure and admixture.

Population admixture was determined using a variational Bayesian inference algorithm implemented in fastStructure v1.0 52 for a number of subpopulations (K) set from 1 to 10. The optimal number of K (i.e., 3) explaining the population complexity was estimated using the ChooseK tool from fastStructure and admixture proportions were visualized using Distruct v2.3 (Fig.  2 c, Supplementary Fig. S1 ). The kinship matrix (K*) was generated using TASSEL5 with the Centered_IBS method and plotted with GAPIT v3 21 (Supplementary Fig. S3 ).

Discriminant analyses of principal components (DAPC) for population structure

Population structure was further investigated using discriminant analyses of principal components (DAPC) 53 using the R package ‘ adegenet ’ version 2.1.10. The number of cluster was estimated using ‘ find.cluster ’ function with a maximum limit set to 40 clusters and 200 principal components (PCs) (Fig.  2 d). Optimal number of clusters (i.e., K = 3) was determined by the minimal Bayesian Information Criterion (BIC) value for different numbers of K (Supplemental Fig. S2 ab). To visualize the DAPC using the ‘ scatter ’ function, the optimal number of PCs was estimated with two cross-validation procedures using ‘ optim.a.score ’ (i.e., PCs = 20, Supplemental Fig. S2 c) and ‘ xvalDapc ’ (i.e., PCs ≤ 20, Supplemental Fig. S2 d).

Comparison of population assignments and trait analysis

Cluster assignments from both fastStructure and DAPC were compared using the ‘ table ’ function for a K value of 3 and 6 (Supplementary Fig. S4 ). An analysis of variance (ANOVA) and permutational ANOVA (PERMANOVA) were performed for traits following and deviating from the normal distribution, respectively, using the ‘ adonis2 ’ function from R package ‘ vegan ’. Cluster assignments obtained from fastStructure were used as covariate. In cases where ANOVA/PERMANOVA indicated a significant difference, the post-hoc Tukey honestly significant difference (HSD) test was performed to determine which pairs were significantly different. Violin plots were generated with ‘ ggplot2 ’ in R and Tukey significant differences were represented by letter (Supplementary Fig. S5 ).

Genome-wide association analysis

Marker-trait association analysis was performed using the method BLINK 39 in GAPIT v3 21 , using the 282 K high-quality SNPs and the phenotyping data for nine different traits. The identification of false positive was minimized by incorporating population structure (i.e., P matrix generated with fastStructure for K = 3) and kinship (i.e., K* matrix generated with TASSEL5) for the analysis. The threshold of significance for marker-trait associations in both methods was set to ensure a false discovery rate < 0.05, adjusted with a Benjamini–Hochberg correction. Markers with a phenotypic variance explained (PVE) less than 3% were excluded from the analysis as they were considered uninformative and of limited interest. Manhattan plots showing –log 10 ( p ) distribution of markers by chromosome were generated with rMVP 22 using ‘ plot.type  =  ”m” ’ and quantile–quantile (QQ) plots were created with GAPIT v3 21 (Supplementary Fig. S6 ). Boxplot of the allelic classes of significant markers were generated with ‘ ggplot2 ’ in R (Supplementary Fig. S7 ).

Preliminary candidate gene identification

Due to the substantial genetic diversity present in Cannabis , only a limited number of SNPs exhibited a strong LD (r 2  ≥ 0.95). Therefore, to pinpoint genetic regions of interest, only markers in high LD (r 2  ≥ 0.75) with significant markers were retained to define haplotype blocks (HBs). Markers failing to form HB and residing outside of genetic regions were removed from the candidate gene investigation. Genes located in the HBs (defined by the 5ʹ-most and 3ʹ-most marker of the HB) were considered as putative candidate genes. The gene ontology (GO) annotations of these candidate genes were examined based on the description provided by the NCBI Cannabis sativa Annotation Release 100. To further confirm and provide a more detailed functional annotation of candidate genes, phylogenetic ortholog inferences were performed using OrthoFinder 54 with the Arabidopsis thaliana transcriptome (TAIR 11) 55 .

Results and discussion

A broad range of phenotypic variation among the 176 drug-type accessions.

The population displayed significant phenotypic diversity ( p  < 0.001) across the nine examined traits (Fig.  1 , Supplemental Table S1 ). For instance, FB exhibited a substantial variation, ranging from 90 to 1260 g, while plant height varied between 22 and 109 cm. SM also showed a significant diversity, with individuals initiating the first flower bud between 20 and 68 days. With the exception of SM, all other traits displayed a unimodal distribution, suggesting a complex genetic control involving multiple QTL. Furthermore, these traits exhibited highly skewed distributions, indicating that some accessions may carry specific alleles or combinations of alleles exerting a substantial impact on these traits. This phenotypic diversity within the Cannabis accessions provides a robust foundation for GWAS, aligning with established criteria for successful GWAS outcomes 23 .

figure 1

Frequency distribution of phenotypic data for 176 drug-type accessions used in this study. For each trait, the minimum and maximum values significantly differed ( t -test p  < 0.001) from the overall population mean.

Genetic diversity in the GWAS-panel revealed by dense genotyping

To achieve comprehensive marker coverage across the Cannabis genome, an HD-GBS approach was used. Sequencing of HD-GBS libraries generated 486 M reads, averaging 2.8 M reads per sample. This extensive sequencing effort resulted in an average per-sample coverage of 7.7% of the cs10 v2 assembly, achieving a cumulative coverage of 34.1% across the entire genome for the entire population. The analysis of variant calling from our sequencing data initially yielded a substantial dataset of 2.7 M raw variants that met the quality criteria. Following filtering for missing data and minor allele frequency (MAF of 1%), we successfully identified ~ 800 K polymorphic variants, with an overall proportion of missing data reaching 61% before imputation step. This SNP catalog meets the criteria required to perform a relevant missing data imputation 56 . Subsequently, we performed a secondary round of filtering, primarily aimed at retaining common variants, as defined by a MAF of 6%, retaining approximately 39% of the raw data. While this filtering step may exclude rare variants that could potentially influence complex traits, it is essential to reduce the risk of false-positive associations and ensure that a minimum of 10 accessions carries the significant allele, thereby preventing overfitting in GWAS models 23 . The HD-GBS approach and the filtering procedures resulted in a catalog of 282 K high-quality SNPs (all details in Supplemental Table S2 ). Within this catalog, 25.5% of the genotypes were found to be heterozygous and the SNPs exhibited an average MAF of 21.7%. For a detailed overview of filtering steps and the number of variants retained at each stage, refer to Supplementary Table S3 . Overall, this SNP catalog represents an extensive genetic resource for the subsequent GWAS and underscores the robustness of the genotyping strategy used in this study.

Markers were exceptionally well distributed across the genome, ensuring coverage of gene-rich regions. On average, there was one marker per every ~ 3 kb of the genome, which significantly enhances the likelihood of identifying markers in strong LD with putative candidate genes or regions (Fig.  2 a). Across the entire physical map, only 12 gaps exceeding 1 Mb, with the largest being 1.2 Mb, were identified. Comparing our dataset with the RAD-Seq method used in the study of Petit et al. 32 , 33 , by employing comparable filtration criteria, the HD-GBS approach yielded a comparable number of markers while utilizing only one-tenth of the sequencing efforts (averaging 2.8 M vs. 29.7 M reads per sample). Therefore, the density and genomic distribution of SNPs provided by the HD-GBS approach make it a cost-effective option for conducting GWAS on large Cannabis panel. Furthermore, this approach is compatible with the miniaturization of sequencing libraries using the NanoGBS procedure, which further contributes to substantial cost reduction in genotyping 57 .

The average extent of LD decay to its half ranged from 22.6 to 89.0 kb across different chromosomes (Fig.  2 b). It is important to note that LD decay is a relative value and does not precisely reflect to reality recombination rates throughout the entire genome, particularly between heterochromatic and euchromatic regions 58 . However, this measure proved valuable for comparing the impact of domestication and selection on recombination rates among different populations. In this context, the LD observed in the GWAS-panel showed rapid decay compared to modern cultivars of comparable genome size, such as soybean (where LD may extend over 100 kb 59 ) and tomato (where LD can extend over 1 Mb 60 ). Nevertheless, LD decayed to its half more slowly compared to a recent study of 110 domesticated and landrace Cannabis accessions from various worldwide origins, where LD decayed over approximately 10 kb 61 . This resulted in a large number of small HBs with an average size of ~ 4 kb (Supplemental Table S3 ). It is worth noting that the LD decay on the sex chromosome was almost twice slower ( p  < 0.001) compared to autosomes. These observations were consistent with the recent history of Cannabis cultivation in Canada, characterized by extensive hybridization efforts by breeders with a particular focus on sexual characteristics, such as the production of female flowers 2 .

Low level of population structure

The population structure within the GWAS-panel was assessed using the 282 K high-quality SNPs. Initially, the degree of admixture of individuals and clustering inference was estimated by fastStructure (Supplemental Table S4 ). While the model maximizing the marginal likelihood suggested a K value of 6, the optimal number of principal components (PCs) to explain the structure of the population was determined to be 3. The K value of 3 revealed two clusters (clusters 1 and 3, Fig.  2 c) with low admixture compared to a K value of 6 (Supplemental Fig. S1 ), indicating a more robust assignments with more homogeneous individuals within each cluster. Using the BIC criterion, DAPC inferred three clusters (Fig.  2 d, Supplemental Fig. S2 ab, Supplemental Table S4 ). The minimal BIC values were obtained with K values ranging from 3 to 6, consistent with the optimal number of clusters determined by fastStructure, where 3 represents the minimum value. Thus, a K of 3 was chosen to explain the structure of the GWAS panel. Comparing both methods, 94.3% and 90.0% concordant assignment were observed for K values of 3 and 6, respectively (Supplemental Fig. S4 ).

figure 2

Genome-wide distribution of markers, linkage disequilibrium (LD) and population structure analysis. ( a ) Density plot of markers and genes across the genome. Colors represent the number of SNPs within 1 Mb window size. ( b ) LD decay in each chromosome where LD values of intra-chromosomal pairwise markers were plotted against physical distance. ( c ) Admixture plot for K = 3 using fastStructure. The vertical lines represent the accessions, and the y-axis represents the probability that an individual belongs to a subgroup. ( d ) Discriminant analysis of principal components (DAPC) scatter plot showing population structure.

Nucleotide diversity ( θ π  ) across the three clusters varied from 8.44 × 10 −4 to 1.20 × 10 −3 . A lower level of genome-wide genetic diversity was observed here in drug-type cannabis (mean θ π  = 1.05 × 10 −3 ) compared to broader cannabis populations worldwide ( θ π  = 3.0 × 10 −3 ) 61 . This level of diversity is also lower than that found in other major crops such as soybean (mean  θ π  = 1.36 × 10 −3 ) 62 , rice ( θ π  = 4.0 × 10 −3 ) 63 and corn ( θ π  = 6.6 × 10 −3 ) 64 . Relatedness analysis among individuals revealed low intra- and inter-cluster genetic diversity, with accessions appearing neither significantly similar nor significantly distant (Supplemental Fig. S3 ). This is consistent with the cumulative variance explaining genetic variation in the population, showing gradual increase with number of retained PCs up to 176 PCs (number of accessions in the GWAS panel) rather than reaching a plateau (Supplemental Fig. S2 a). Despite the overall genetic homogeneity, significative differences were observed between clusters for traits such as SM, HM, height, NC and ILI (Supplemental Fig. S5 ). In particular, cluster K3 exhibited significant differences from the cluster K1 for these five traits, while the cluster K2 displayed intermediate trait values between K1 and K3. In different studies, similar clustering patterns related to drug-type and hemp-type accessions 61 , 65 , 66 , 67 or geographic origins 68 were documented, where each clusters grouped independently, albeit with low intra- and inter-cluster genetic diversity. Due to limited information on the pedigree of the GWAS panel, no correlation was observed between cluster assignment and geographic or germplasm origins. Additionally, no correlation was observed between the clustering and cannabinoid composition (data not shown) of these accessions.

The limited genetic diversity observed in cultivated drug-type Cannabis has historically been attributed to intensive clandestine breeding practices since the 1970s 2 , coupled with the impact of the war on drugs, which led to the destruction of many plants and seeds, effectively reducing the gene pool 5 , 69 . Despite the limited genetic diversity, Cannabis exhibits a remarkable phenotypic variation that are highly desirable for breeding programs. Hence, it could be hypothesized that a portion of the observed phenotypic variations in Cannabis may be attributed to transcriptional variations, along with potential contributions from epigenetic factors. In both plants and animals, factors such as variation in the number of gene copies (CNVs) 70 , epigenetic elements 71 , and the insertion/deletion of transposable elements (TEs) in gene control regions 72 , impact phenotypic diversity, especially those crucial in domestication and breeding 73 . Therefore, an associated SNP may be in strong LD with either a candidate gene, where an allelic variant alters the phenotype, or with a regulatory region that either enhances or suppresses the expression of the phenotype 74 .

The constrained availability of germplasm resources and low genetic diversity observed in Cannabis pose significant limitations for breeding, which, in turn, hinder innovation and the long-term sustainability of the crop 7 . In contrast to other crops where wild-type or landrace varieties are promising genetic pools to enrich genetic diversity in breeding programs 75 , the situation in Cannabis is more complex. Although hemp-type and drug-type Cannabis genetically diverged 76 , they still share a considerable common pool of genetic variation, limiting the ability to mine rare alleles 65 . Given the growing demand for cannabis products, there is a critical necessity to pinpoint suitable genetic resources that can not only support production but also serve as a source of genetic diversity to help ongoing breeding efforts 7 .

Identification of genomic regions controlling key agronomic and morphological traits

The GWAS analysis was performed using the method BLINK with the incorporation of population structure (P) and cryptic relatedness (K*) as covariates to minimize the risk of false-positive associations. In total, 18 markers associated with the nine traits were identified (Fig.  3 , Table 1 ). For all significant markers identified, the three genotypes were observed (Supplemental Fig. S7 ). Six of these SNPs (SNP_1, 4, 7, 8, 9 and 11; Table 1 ) demonstrated significant phenotypic impact, with the proportion of phenotypic variance explained (PVE) ranging from 18 to 45% while the remaining identified markers have a modest influence on the phenotype (PVE < 10%). Interestingly, several SNPs associated with different traits were located in close proximity to each other. For instance, SNP_9and _17 were situated within a region of about 38 kb on chromosome 1 (Chr01: 87456694–87494979) and were associated with ILI and height. The identification of 2 SNPs associated with correlated traits is consistent and suggests that this region of chromosome 1 plays a crucial role in modulating plant size in the GWAS panel. These markers are associated with key characteristics for Cannabis cultivation and are therefore of particular interest to breeders and growers. For instance, markers associated with smaller size can be advantageous for maximizing indoor cultivation, where smaller plants are preferred. Regarding the markers associated with a shorter flowering or maturation, they are advantageous for cultivators aiming for a quicker crop turnover. Similarly, the allele T at Chr09:59690286 (SNP_4) is associated with reduces canopy size and slightly the height, which can help maximize plant density in cultivation.

figure 3

Genome-wide association studies (GWAS) for nine agronomic and morphological traits in drug-type cannabis. Manhattan plot for productivity-related traits ( a ) and morphological traits ( b ). Each circle indicates the degree of association for a marker with a trait (y axis), while the x axis shows the physical position of each marker on a given chromosome across the genome. The horizontal grey line indicates the significance threshold ( p -value = 1.77 × 10 −7 , false discovery rate < 0.05). Marker-trait associations were performed with the Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) method.

Given that the traits under study appear to be governed by a complex genetic control involving multiple QTL, BLINK appeared to be the most suitable method as it can capture intricate interactions among several loci through multi-locus analysis 39 . Furthermore, this method has proven its effectiveness with large catalog of SNPs 77 , 79 , 79 and was ranked as the most statistically powerful method for multi-locus analyzes for GWAS in plants 21 , 39 , 80 . As the identification of high-value markers for Cannabis is in its early stages, the practical implementation of these markers by breeding programs will nevertheless require preliminary cross-validation. This can be achieved through meta-GWAS 81 , QTL mapping with biparental population and BSA. Additionally, comprehensive functional analyses of the candidate genes will be crucial. .

Investigation of putative candidate genes

Among the 18 associated SNPs, 11 were in high LD (r 2  ≥ 0.75) with other SNPs, forming HBs (Table 2 ). Notably, SNP_9 and _17 were part of the same HB, spanning ~ 97 kb on chromosome 1. The SNP _26 was located within LOC115699444 without forming HBs. The 11 HBs spanned ~ 250 kb, within which 21 annotated genes were identified. Consequently, these genes were considered as putative candidates genes associated with different traits. Recent genome annotation of cs10 48 facilitated the investigation of the functions of candidate genes (Table 2 ). An orthology analysis was conducted by comparing the protein sequences of candidate genes with the Arabidopsis proteome 55 . Functional annotations were similar for the majority of candidate genes and their respective orthologs, confirming the robustness of the functional annotation of the cs10 transcriptome.

The SNP_4, which showed associations with DFW, CD, and height, was found to be in high LD with LOC115722258 , associated with chloroplast metabolism and mechanisms. This suggests a potential link between the genetic variation of SNP_4 and the observed variations in these morphological traits through their impact on chloroplast-related processesIn addition to structural genes, regulatory genes, such as transcription factors, were identified among the potential candidate genes (e.g., LOC115706624 ). Approximately one-third of the associated SNPs were not in high LD with putative candidate gene, but they might more likely linked to gene regulatory regions. The in-silico identification of regulatory regions and their interaction with a gene is challenging and complex to link associated SNPs and the phenotype. However, this does not diminish their importance, especially for markers SNP_7 and _8, which were associated with a substantial impact on HM (PVE > 30%). These findings suggest that regulatory elements, such as transcription factors, may play a role in shaping the phenotypic variation in cultivated Cannabis . However, confirming the relevance of these candidate genes will still require further analysis.

In conclusion, this study marks a pioneering exploration of the genetic landscape of Canadian drug-type Cannabis through a comprehensive GWAS analysis, enriched by high-throughput genotyping and precise agronomic phenotyping data. Our findings open new avenues for advancing Cannabis breeding programs and addressing the diverse needs of emerging industries. The application of a high-density genotyping approach yielded an extensive catalog of high-quality SNPs, effectively capturing the genomic diversity of drug-type Cannabis . The distribution of these markers across different chromosomes, coupled with high quality phenotypic data, facilitated the identification of molecular markers associated with complex agronomic and morphological traits. These markers hold great promise for further investigations to elucidate their functional links with phenotype variations, making them valuable assets for precision breeding efforts.

As we move forward, this research paves the way for in-depth studies to uncover the biological mechanisms governing these traits, potentially uncovering hidden genetic potential within Cannabis populations. Furthermore, the implications of our work extend beyond immediate applications, as the identified markers are poised to play a pivotal role in the development of tailor-made Cannabis cultivars, spanning both medicinal and recreational sectors, capable of meeting the dynamic demands of rapidly evolving industries.

Future perspectives in this domain encompass a deeper exploration of the candidate genes associated with the identified markers, seeking to unravel the intricate genetic and molecular underpinnings of these key traits. Additionally, functional validation experiments and expression profiling could elucidate the precise mechanisms through which these markers exert their effects. Collaborative efforts between academia and industry are essential to harness this newfound genetic knowledge and translate it into practical breeding strategies, ensuring the continued innovation and sustainability of the Cannabis crop.

Data availability

The VCF files generated from the sequencing data and used for the analyzes of this study are on FigShare.com and will be accessible after acceptance of the manuscript. This includes the raw SNP data set for the 176 accessions, the 282 K imputed and filtered SNPs and the subdivision of the population by K clusters.

Abbreviations

Δ 9 -Tetrahydrocannabinol

International Cannabis Research Consortium

Next-generation sequencing

Genome-Wide Association Study

Quantitative trait loci

Linkage disequilibrium

Restriction-site associated DNA sequencing

Genotyping-by-sequencing

Marker-assisted selection

Genomic selection

Whole-genome sequencing

High-density GBS

Fresh biomass

Dried flower weight

Sexual maturity

Stem diameter

Canopy diameter

Internode Length Index

Node counts

Minor allele frequency

Haplotype block

Discriminant analyses of principal components

Settlement of MLM under progressively exclusive relationship

Bayesian-information and linkage-disequilibrium iteratively nested keyway

Analyse of variance

Permutational ANOVA

Gene ontology

Quantile–Quantile

Phenotypic variance explained

Lapierre, É., Monthony, A. S. & Torkamaneh, D. Genomics-based taxonomy to clarify cannabis classification. Genome 66 , 202–211 (2023).

Article   PubMed   Google Scholar  

Clarke, R. & Merlin, M. Cannabis: Evolution and Ethnobotany . (Univ of California Press, 2016).

Hurgobin, B. et al. Recent advances in Cannabis sativa genomics research. New Phytol. 230 , 73–89 (2021).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Cox, C. The Canadian Cannabis Act legalizes and regulates recreational cannabis use in 2018. Health Policy New York. 122 , 205–209 (2018).

Article   Google Scholar  

Welling, M. T. et al. A belated green revolution for Cannabis: Virtual genetic resources to fast-track cultivar development. Front. Plant Sci. 7 , 205761 (2016).

Martínez, V. et al. Cannabidiol and other non-psychoactive cannabinoids for prevention and treatment of gastrointestinal disorders: useful nutraceuticals?. Int. J. Mol. Sci. 21 , 3067 (2020).

Article   PubMed   PubMed Central   Google Scholar  

Torkamaneh, D. & Jones, A. M. P. Cannabis, the multibillion dollar plant that no genebank wanted. Genome 65 , 1–5 (2021).

Impact on the Canadian economy. (2023). Available at: https://ised-isde.canada.ca/site/competition-bureau-canada/en/how-we-foster-competition/education-and-outreach/planting-seeds-competition . (Accessed: 5th October 2023)

Hesami, M. et al. Recent advances in cannabis biotechnology. Ind. Crops Prod. 158 , 113026 (2020).

Article   CAS   Google Scholar  

Hanuš, L. O., Meyer, S. M., Muñoz, E., Taglialatela-Scafati, O. & Appendino, G. Phytocannabinoids: A unified critical inventory. Nat. Prod. Rep. 33 , 1357–1392 (2016).

Booth, J. K. & Bohlmann, J. Terpenes in Cannabis sativa —From plant genome to humans. Plant Sci. 284 , 67–72 (2019).

Article   CAS   PubMed   Google Scholar  

Kovalchuk, I. et al. The genomics of cannabis and its close relatives. Annu. Rev. Plant Biol. 71 , 713–739 (2020).

Grassa, C. J. et al. A new Cannabis genome assembly associates elevated cannabidiol (CBD) with hemp introgressed into marijuana. New Phytol. 230 , 1665–1679 (2021).

Laverty, K. U. et al. A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci. Genome Res. 29 , 146–156 (2019).

Grassa, C. J. et al. A complete Cannabis chromosome assembly and adaptive admixture for elevated cannabidiol (CBD) content. bioRxiv. https://doi.org/10.1101/458083 (2018).

Gao, S. et al. A high-quality reference genome of wild Cannabis sativa. Hortic. Res. 7 , 73.  https://doi.org/10.1038/s41438-020-0295-3  (2020).

Maoz, T. Making cannabis history in 2020. (2020). Available at: https://nrgene.com/making-cannabis-history-in-2020/ . (Accessed: 6th October 2023)

Morrell, P. L., Buckler, E. S. & Ross-Ibarra, J. Crop genomics: Advances and applications. Nat. Rev. Genet. 13 , 85–96 (2012).

Schwabe, A. L. & McGlaughlin, M. E. Genetic tools weed out misconceptions of strain reliability in Cannabis sativa: Implications for a budding industry. J. Cannabis Res. 1 , 1–16 (2019).

Metzker, M. L. Sequencing technologies the next generation. Nat. Rev. Genet. 11 , 31–46 (2010).

Wang, J. & Zhang, Z. GAPIT version 3: Boosting power and accuracy for genomic association and prediction. Genom. Proteom. Bioinform. 19 , 629–640 (2021).

Yin, L. et al. rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genom. Proteom. Bioinform. 19 , 619–628 (2021).

Torkamaneh, D. & Belzile, F. Genome-Wide Association Studies . 2481 , (Springer US, 2022).

Bakker, E., Holloway, A., K Waterman - US Patent App. 17/665, 500 & 2023, U. Autoflowering Markers. Google Patents (2021).

Welling, M. T. et al. An extreme-phenotype genome-wide association study identifies candidate cannabinoid pathway genes in Cannabis. Sci. Rep. 10 , 1–14 (2020).

Song, K., Li, L. & Zhang, G. Coverage recommendation for genotyping analysis of highly heterologous species using next-generation sequencing technology. Sci. Rep. 6 , 1–7 (2016).

Google Scholar  

Scariolo, F. et al. Genotyping analysis by rad-seq reads is useful to assess the genetic identity and relationships of breeding lines in lavender species aimed at managing plant variety protection. Genes (Basel). 12 , 1656 (2021).

Sonah, H. et al. An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS One 8 , 1–9 (2013).

Torkamaneh, D., Laroche, J., Boyle, B., Hyten, D. L. & Belzile, F. A bumper crop of SNPs in soybean through high-density genotyping-by-sequencing (HD-GBS). Plant Biotechnol. J. 19 , 860–862 (2021).

Poland, J. A. & Rife, T. W. Genotyping‐by‐sequencing for plant breeding and genetics. Plant Genome 5 . https://doi.org/10.3835/plantgenome2012.05.0005 (2012).

Sun, J. et al. Genome-wide association study of salt tolerance at the germination stage in hemp. Euphytica 219 , 1–16 (2023).

Petit, J. et al. Elucidating the genetic architecture of fiber quality in hemp (Cannabis sativa L.) using a genome-wide association study. Front. Genet. 11 , 566314. https://doi.org/10.3389/fgene.2020.566314  (2020).

Petit, J., Salentijn, E. M. J., Paulo, M. J., Denneboom, C. & Trindade, L. M. Genetic architecture of flowering time and sex determination in hemp (Cannabis sativa L): A genome-wide association study. Front. Plant Sci. 11 , 569958 (2020).

Watts, S. et al. Cannabis labelling is associated with genetic variation in terpene synthase genes. Nat. Plants. 7 , 1330–1334 (2021).

Collard, B. C. Y. & Mackill, D. J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 363 , 557–572 (2008).

Lapierre, É., de Ronne, M., Boulanger, R. & Torkamaneh, D. Comprehensive phenotypic characterization of diverse drug-type cannabis varieties from the Canadian Legal Market. Plants. 12 , 3756 (2023).

Piluzza, G., Delogu, G., Cabras, A., Marceddu, S. & Bullitta, S. Differentiation between fiber and drug types of hemp (Cannabis sativa L) from a collection of wild and domesticated accessions. Genet. Resour. Crop Evol. 60 , 2331–2342 (2013).

Jannink, J. L., Lorenz, A. J. & Iwata, H. Genomic selection in plant breeding: From theory to practice. Briefings Funct. Genom. Proteom. 9 , 166–177 (2010).

Huang, M., Liu, X., Zhou, Y., Summers, R. M. & Zhang, Z. BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience 8 , 1–12 (2019).

Article   ADS   Google Scholar  

R Core Team. R: The R Project for Statistical Computing. (2021). Available at: https://www.r-project.org/ . (Accessed: 10th June 2023)

Aboul-Maaty, N.A.-F. & Oraby, H.A.-S. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bull. Natl. Res. Cent. 43 , 1–10 (2019).

Torkamaneh, D., Laroche, J. & Belzile, F. Fast-gbs v2.0: An analysis toolkit for genotyping-by-sequencing data. Genome 63 , 577–581 (2020).

Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27 , 2156–2158 (2011).

Browning, B. L. & Browning, S. R. Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 98 , 116–126 (2016).

Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10 , 1–4 (2021).

Bradbury, P. J. et al. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23 , 2633–2635 (2007).

Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26 , 841–842 (2010).

NCBI Cannabis sativa Annotation Release 100. (2019). Available at: https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Cannabis_sativa/100/ . (Accessed: 11th October 2023)

Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. 76 , 5269–5273 (1979).

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81 , 559–575 (2007).

Remington, D. L. et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc. Natl. Acad. Sci. USA. 98 , 11479–11484 (2001).

Raj, A., Stephens, M. & Pritchard, J. K. FastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics 197 , 573–589 (2014).

Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11 , 1–15 (2010).

Emms, D. M. & Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 20 , 1–14 (2019).

Cheng, C. Y. et al. Araport11: A complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 89 , 789–804 (2017).

Torkamaneh, D. & Belzile, F. Scanning and filling: Ultra-dense SNP genotyping combining genotyping-by-sequencing, SNP array and whole-genome resequencing data. PLoS One 10 , e0131533 (2015).

Torkamaneh, D. et al. NanoGBS: A miniaturized procedure for GBS library preparation. Front. Genet. 11 , 1–8 (2020).

Zhang, J. et al. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genom. 16 , 1–11 (2015).

Viana, J. P. G. et al. Impact of multiple selective breeding programs on genetic diversity in soybean germplasm. Theor. Appl. Genet. 135 , 1591–1602 (2022).

Liu, X., Geng, X., Zhang, H., Shen, H. & Yang, W. Association and genetic identification of loci for four fruit traits in tomato using InDel markers. Front. Plant Sci. 8 , 275267 (2017).

Ren, G. et al. Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa. Sci. Adv. 7 , 2286–2302 (2021).

Torkamaneh, D. et al. Soybean (Glycine max) Haplotype Map (GmHapMap): A universal resource for soybean translational and functional genomics. Plant Biotechnol. J. 19 , 324–334 (2021).

Wang, W. et al. Genomic variation in 3010 diverse accessions of Asian cultivated rice. Nature. 557 , 43–49 (2018).

Chia, J. M. et al. Maize HapMap2 identifies extant variation from a genome in flux. Nat. Genet. 44 , 803–807 (2012).

Sawler, J. et al. The genetic structure of marijuana and hemp. PLoS One 10 , e0133292 (2015).

Lynch, R. C. et al. Genomic and chemical diversity in Cannabis. CRC. Crit. Rev. Plant Sci. 35 , 349–363 (2016).

Soorni, A., Fatahi, R., Haak, D. C., Salami, S. A. & Bombarely, A. Assessment of genetic diversity and population structure in Iranian Cannabis Germplasm. Sci. Rep. 7 , 1–10 (2017).

Zhang, J. et al. Genetic diversity and population structure of cannabis based on the genome-wide development of simple sequence repeat markers. Front. Genet. 11 , 543438 (2020).

Clarke, R. C. & Merlin, M. D. Cannabis domestication, breeding history, present-day genetic diversity, and future prospects. CRC. Crit. Rev. Plant Sci. 35 , 293–327 (2016).

Lye, Z. N. & Purugganan, M. D. Copy number variation in domestication. Trends Plant Sci. 24 , 352–365 (2019).

Springer, N. M. Epigenetics and crop improvement. Trends Genet. 29 , 241–247 (2013).

Gill, R. A. et al. On the role of transposable elements in the regulation of gene expression and subgenomic interactions in crop genomes. CRC. Crit. Rev. Plant Sci. 40 , 157–189 (2021).

Alonge, M. et al. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. (2020). https://doi.org/10.1016/j.cell.2020.05.021

Liseron-Monfils, C. & Ware, D. Revealing gene regulation and associations through biological networks. Curr. Plant Biol. 3–4 , 30–39 (2015).

Smýkal, P., Nelson, M. N., Berger, J. D. & Von Wettberg, E. J. B. The impact of genetic changes during crop domestication. Agronomy. 8 , 119 (2018).

Schwabe, A. L., Hansen, C. J., Hyslop, R. M. & McGlaughlin, M. E. Comparative genetic structure of cannabis sativa including federally produced, wild collected, and cultivated samples. Front. Plant Sci. 12 , 675770 (2021).

de Ronne, M. et al. Mapping of partial resistance to Phytophthora sojae in soybean PIs using whole-genome sequencing reveals a major QTL. Plant Genome 15 , e20184 (2022).

Zhong, H. et al. Uncovering the genetic mechanisms regulating panicle architecture in rice with GPWAS and GWAS. BMC Genom. 22 , 1–13 (2021).

Cui, Z. et al. Denser markers and advanced statistical method identified more genetic loci associated with husk traits in maize. Sci. Rep. 10 , (2020).

Kaler, A. S., Gillman, J. D., Beissinger, T. & Purcell, L. C. Comparing different statistical models and multiple testing corrections for association mapping in soybean and maize. Front. Plant Sci. 10 , 1794. https://doi.org/10.3389/fpls.2019.01794 (2020).

Izquierdo, P., Kelly, J. D., Beebe, S. E. & Cichy, K. Combination of meta-analysis of QTL and GWAS to uncover the genetic architecture of seed yield and seed yield components in common bean. Plant Genome 16 , e20328 (2023).

Download references

Acknowledgements

The authors wish to thank Fuga Group Inc. for supporting this project. The authors also extend their sincere appreciation to Justine Richard-Giroux, Rosemarie Boulanger and Sean Kyne for their valuable contributions to the tedious phenotyping of the GWAS-panel.

This work was conducted as part of a collaborative research project funded by Fuga Group Inc. and NSERC Alliance [#ALLRP 568653-21 to D.T.].

Author information

Authors and affiliations.

Département de Phytologie, Université Laval, Quebec City, Québec, Canada

Maxime de Ronne, Éliana Lapierre & Davoud Torkamaneh

Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Québec, Canada

Centre de Recherche et d’innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Québec, Canada

Institut Intelligence et Données (IID), Université Laval, Quebec City, Québec, Canada

You can also search for this author in PubMed   Google Scholar

Contributions

Maxime de Ronne: Conceptualization and Methodology; Data curation and analysis; Investigation; Visualization; Writing-original draft. Éliana Lapierre: Preparation of phenotypic data. Davoud Torkamaneh: Funding acquisition; Conceptualization and Methodology; Supervision; Writing-review. All authors have reviewed and approved the manuscript.

Corresponding author

Correspondence to Davoud Torkamaneh .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary figures., supplementary tables., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

de Ronne, M., Lapierre, É. & Torkamaneh, D. Genetic insights into agronomic and morphological traits of drug-type cannabis revealed by genome-wide association studies. Sci Rep 14 , 9162 (2024). https://doi.org/10.1038/s41598-024-58931-w

Download citation

Received : 09 November 2023

Accepted : 04 April 2024

Published : 22 April 2024

DOI : https://doi.org/10.1038/s41598-024-58931-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Cannabis sativa
  • Drug-type cannabis
  • Genome-wide association studies
  • High-density genotyping-by-sequencing
  • Agronomic and morphological traits
  • Sexual traits

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

research experimental type

X

UCL Psychology and Language Sciences

  • PALS Alumni

Menu

Experimental Psychology Seminar - John Greenwood, UCL

23 April 2024–24 April 2024, 12:30 pm–3:00 pm

JohnGreenwood_EPseminar

John Greenwood will present research demonstrating how crowding—where clutter merges visual elements—affects both peripheral and foveal vision. His studies illustrate similar error patterns in the typical vision and in conditions like amblyopia, suggesting that these effects are governed by 'pooling' models. These models propose that crowding simplifies visual scenes into a general 'gist', reducing the demand on neural resources. This research extends to how crowding independently affects color and motion judgments, offering insights into the visual system's multifaceted response to clutter.

Event Information

Venue: Room 313, 26 Bedford Way.

A buffet lunch will be available just before the talk at 12.30pm in room 313BW.

You may also attend virtually via zoom:  https://ucl.zoom.us/j/91768876812?pwd=aExJVmFTZnBZZCtFbmlGS0tSY2VCdz09 Meeting ID: 917 6887 6812 Passcode: 950231 Title: Using typical vision to understand clinical disorders of vision

Abstract: Our ability to recognise objects in the world is impaired in cluttered environments, even for objects that are clearly visible in isolation. This process, known as crowding , presents the fundamental limit on our peripheral vision. These disruptive effects are elevated in foveal vision (the centre of our gaze) during development, and further elevated in clinical disorders including amblyopia (‘lazy eye’) and nystagmus (uncontrolled eye movements), placing a limit on everyday tasks like reading.

Can we understand the mechanisms underlying these elevations using crowding in the typical periphery? I will first show that crowding produces the same kinds of errors in peripheral vision as in the foveal vision of typical and amblyopic children. These errors are well described in all cases by ‘pooling’ models that depict crowding as an unwanted combination of cluttered elements. In peripheral vision, crowding can also independently disrupt judgements of colour and motion for the same target object, suggesting the existence of multiple instances of crowding throughout the visual system. Dissociations between the crowding of colour and motion are similarly evident in amblyopic vision. Together, our findings depict crowding as a process that simplifies the visual scene to provide a ‘gist’ that can be efficiently encoded with reduced neural resources.

About the Speaker

John greenwood.

Associate Professor in Experimental Psychology at Experimental Psychology, UCL

I am Associate Professor in Experimental Psychology at University College London, working on visual perception. My lab examines spatial vision and 'crowding' in both typical peripheral vision and in clinical disorders such as amblyopia and nystagmus, as well as face recognition, visual imagery and hallucinations, and the perception of visual dimensions including motion, depth, and position. I joined the department in 2013 with a Career Development Award from the Medical Research Council, having previously undertaken postdoctoral research at the Institute of Ophthalmology at University College London (London, UK) with Prof. Steven Dakin and Dr. Peter Bex from 2008-2010, and at the Laboratoire Psychologie de la Perception of the Université Paris Descartes (Paris, France) with Patrick Cavanagh from 2011-2013. My Ph.D. was completed in 2007 at the School of Psychology of the Australian National University (Canberra, Australia), with Dr. Mark Edwards.

Help | Advanced Search

Computer Science > Artificial Intelligence

Title: character is destiny: can large language models simulate persona-driven decisions in role-playing.

Abstract: Can Large Language Models substitute humans in making important decisions? Recent research has unveiled the potential of LLMs to role-play assigned personas, mimicking their knowledge and linguistic habits. However, imitative decision-making requires a more nuanced understanding of personas. In this paper, we benchmark the ability of LLMs in persona-driven decision-making. Specifically, we investigate whether LLMs can predict characters' decisions provided with the preceding stories in high-quality novels. Leveraging character analyses written by literary experts, we construct a dataset LIFECHOICE comprising 1,401 character decision points from 395 books. Then, we conduct comprehensive experiments on LIFECHOICE, with various LLMs and methods for LLM role-playing. The results demonstrate that state-of-the-art LLMs exhibit promising capabilities in this task, yet there is substantial room for improvement. Hence, we further propose the CHARMAP method, which achieves a 6.01% increase in accuracy via persona-based memory retrieval. We will make our datasets and code publicly available.

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

Scripps Research reports progress toward creating vaccine against the harmful ‘zombie’ drug xylazine

Chemist Kim Janda is leading Scripps Research's effort to develop vaccine against the tranquilizer xylazine.

An experimental vaccine blocked the toxic effects of the drug — which is frequently added to heroin and illicit fentanyl — in experiments conducted on rodents, according to research published this month

  • Show more sharing options
  • Copy Link URL Copied!

Scripps Research in La Jolla says it has taken a promising step toward developing a vaccine to fight the effects of xylazine, an animal tranquilizer that’s illicitly added to fentanyl and heroin, triggering a rise in overdose deaths.

The institute’s experimental vaccine blocked xylazine’s toxic effect in experiments conducted on rodents, according to a paper published earlier this month in the journal Chemical Communications. It works by stimulating the immune system to create antibodies that reduce the level of xylazine in the blood stream, the institute said.

Veterinarians regularly use xylazine to sedate or calm everything from sheep and cattle to cats and dogs before surgery or while conducting diagnostic tests. It’s been approved for that purpose by the U.S. Food and Drug Administration. But it is not approved for use in humans because it can slow breathing and heart rates and produce dangerously low blood-pressure levels.

Scientists say xylazine, a non-opioid sedative, also can cause skin lesions and wounds that don’t heal and sometimes lead to the need to amputate parts of legs or arms.

Xyaline is often illicitly added to fentanyl and other drugs to lengthen the feeling of euphoria they can give, scientists say. It has taken on the nickname “zombie drug.”

“There is currently no remedy for xylazine poisoning other than supportive care, thus, we believe our research efforts and the data we have provided will pave the way for an effective treatment in humans,” Kim D. Janda, the Scripps chemist who is leading the research, said in a statement.

The precise number of human deaths caused by the addition of xylazine to fentanyl and other drugs is not known. But the Journal of the American Medical Association reported in January that at least 43 states reported deaths related to xylazine, which also is known as “tranq dope.”

Scripps Research is deeply involved in vaccine research and made significant contributions to the COVID-19 vaccines developed by Moderna and by Pfizer and BioNTech.

Get Essential San Diego, weekday mornings

Get top headlines from the Union-Tribune in your inbox weekday mornings, including top news, local, sports, business, entertainment and opinion.

You may occasionally receive promotional content from the San Diego Union-Tribune.

research experimental type

More from this Author

research experimental type

‘Gray-pril’ clouds will linger all week in San Diego County

April 22, 2024

San Diego, California - March 11: Campus life at Point Loma Nazarene University. Students walking in the middle of campus in Point Loma on Monday, March 11, 2024 in San Diego, California. (Alejandro Tamayo / The San Diego Union-Tribune)

Once again, Point Loma Nazarene University’s acceptance of gay people is called into question by its own students

April 20, 2024

UCSD's Scripps Center for Oceans and Human Health will lead the new study.

What’s polluting the oceans? UC San Diego to lead large study of contaminants’ source, fate and health impacts

April 16, 2024

San Diego Bay will be placid Tuesday and Wednesday.

San Diego County weather will finally turn warmer after long cool stretch

April 15, 2024

Campus life at Point Loma Nazarene University. Students walking in the middle of campus.

Refuge for the religious, or prestigious STEM powerhouse? Point Loma Nazarene University, at a crossroads, frets over its future

April 14, 2024

Saturday's earthquake occurred on the San Jacinto fault system.

3.8 earthquake near Borrego Springs briefly shakes parts of San Diego County

April 13, 2024

More in this section

San Diego, California - September 22: The first-floor conference room at UCSD Jacobs Medical Center which has been converted to an overflow treatment area. Brittany Brooks, RN in University City on Friday, Sept. 22, 2023 in San Diego, California. (Alejandro Tamayo / The San Diego Union-Tribune)

Hiring is hot for government and health care jobs. These sectors boosted San Diego’s employment gains

The San Diego region gained about 4,400 jobs in March. The demand for registered nurses leads local job openings.

April 19, 2024

The DermTech Smart Sticker can detect melanoma in skin cells lifted via its adhesive.

San Diego biotech company making melanoma test patch cuts 56% of its workforce

San Diego-based DermTech is also exploring the possibility of a merger, acquisition, sale of assets, licensing or other transaction.

April 18, 2024

Illumina Headquarters in San Diego.

Illumina gets two new executives as the San Diego biotech revamps its C-suite

Illumina’s chief financial officer since early 2023 is leaving the company, and a new one is already lined up

April 10, 2024

The total solar eclipse is seen from an Alaska Airlines flight from San Diego to Washington Dulles International Airport.

As more than half the sun slips into eclipse, oohs and ahs fill the air across San Diego County

The skies turn out to be much clearer than expected, enabling people to see a rare phenomenon that never disappoints

April 8, 2024

Wearing solar eclipse glasses, the flight crew, takes a photo with passengers.

San Diego travelers view eclipse from 33,000 feet

ABOARD FLIGHT AS322 — As tens of thousands of people flocked to cities from Texas to Maine for a chance to see the total solar eclipse, others took a chance on one of the rarest views of the phenomenon: out the window of a jetliner 33,000 feet in the air.

San Diego, Ft. Rosecrans National Cemetery: On Monday, April 1, 2024, after days of delays, SpaceX launched a Falcon 9 rocket carrying 22 Starlink satellites. Minutes after the launch, the rocket was visible from San Diego, including from Ft. Rosecrans National Cemetery. (Nelvin C. Cepeda / The San Diego Union-Tribune)

More rocket launches could light up the San Diego sky as SpaceX builds out satellite network

Space X asks the California Coastal Commission to OK as many as 36 launches annually from Vandenberg Space Force Base

April 6, 2024

Childhood dementia research gets funding boost from SA government and Little Heroes Foundation

A girl, two boys and a woman on a large round swing at a playground

Renee Staska's seven-year-old daughter Holly dreams of one day captaining the Port Adelaide women's football team.

But time is not on the side of the avid AFL fan, who alongside her five-and nine-year-old brothers, lives with a terminal illness.

"They think they're the fastest, the strongest, they have huge dreams," Ms Staska said.

"I don't want to be the one that takes the wind out of their sails and tells them that something is really wrong here.

"I just think they have every right to fulfil their dreams as much as they can."

A young girl smiling

The Adelaide siblings have all been diagnosed with Niemann-Pick Type C, which is one of more than 100 genetic conditions under the umbrella of childhood dementia.

According to the Australian Niemann-Pick Type C Disease Foundation, the disease causes an accumulation of cholesterol and other fatty acids in the body's cells, leading to progressive intellectual decline, loss of motor skills, seizures and dementia.

Most children with the illness die before turning 18.

Ms Staska said her children are already displaying symptoms.

A woman speaks into microphones while a man holds out his phone recording.

"They are really struggling to keep up with their peers, they're struggling to participate in school, reading, writing, concentration," she said.

"They get sick quite a lot and it takes them quite a long time to rebound.

"But these symptoms are nothing compared to what they have on the horizon."

Calls for funding answered

The State of Childhood Dementia 2022 report states that about 90 children die in Australia every year from childhood dementia – a similar number of deaths as from childhood cancer.

Despite the high fatality rate, a report released by the Childhood Dementia Initiative last month found the condition received more than four times less government research funding than childhood cancer per patient.

After years of campaigning, researchers in South Australia have received $500,000 from the state government and Little Heroes Foundation charity, to grow childhood dementia research at Flinders University.

A woman speaks into microphones at a press conference

"It will allow our research group to grow what we do from single disorder research to multiple childhood dementia research," Flinders University professor Kim Hemsley said.

"The investment is also going to develop the next generation of childhood dementia researchers, which is incredibly important.

"We all hope that these disorders will be treated in our lifetime, I sincerely hope that's so, but we need more researchers in this field to help us make that happen."

SA government stepping in

SA Health Minister Chris Picton said the $250,000 contribution from the state government was a "one-off", but he was "open to having ongoing discussions with both Flinders University and Little Heroes Foundation".

"[The] state government generally doesn't provide research funding, that's generally done through the NHMRC (National Health and Medical Research Council), but… there's a relatively narrow amount of money that's been coming through the NHMRC grant process for childhood dementia compared to other conditions," he said.

"I think that's an appropriate reason for us to step in on this occasion."

two children on a playground equipment, looked on by two men and a woman

The SA Premier Peter Malinauskas said around 150 South Australian children have childhood dementia.

He said the funding contribution from the state government was made following advocacy from One Nation upper house MP, Sarah Game.

"I can't think of anything more harrowing for a parent than the idea of having a child with dementia," he said during an at-times emotional press conference.

Little Heroes Foundation CEO Chris McDermott said only about 10 per cent of people know about childhood dementia and more community education was needed.

A woman sitting on the ground smiling at her two young sons

'We spend a lot of time hugging'

Ms Staska, who first spoke to the ABC about her children's condition in 2022 , described the funding announcement as "life-changing". 

She said the years ahead were "frightening", but her family tried to make the most of every day.

"That means saying 'yes' to a lot of things and exposing them [the children] to as many life experiences as I can," she said.

"We spend a lot more time hugging and we spend a lot more time having fun and making memories.

"There are families all over the country just like mine with children who are rapidly regressing and time is not on our side."

  • X (formerly Twitter)

Related Stories

All three of renee's children have childhood dementia, a disease that kills almost as many kids as cancer.

A woman sitting on the ground smiling at her two young sons

Families say childhood dementia is under-researched, calling for greater awareness to help improve their children's short lives

Two children draw, smiling.

Childhood dementia will cut these sisters' lives short. Their parents want better respite services — not sympathy

A young girl sits in the centre of the jaws of a large shark with her sister in a wheelchair behind her

Bruce felt isolated after his dementia diagnosis, now he's helping to break the stigma for others

A man with grey hair and a beard wearing a blue button up shirt standing in front of a vegetable gardening smiling.

  • Alzheimer's and Dementia
  • Child Health and Behaviour
  • Diseases and Disorders
  • Family and Relationships
  • Genetic disorders
  • Health Policy
  • Infant Health
  • State and Territory Government

IMAGES

  1. The 3 Types Of Experimental Design (2024)

    research experimental type

  2. What is Experimental Research & How is it Significant for Your Business

    research experimental type

  3. Experimental Research Design

    research experimental type

  4. A Complete Guide to Experimental Research

    research experimental type

  5. Experimental research

    research experimental type

  6. Experimental Research: Types, Examples & Methods

    research experimental type

VIDEO

  1. TYPES OF RESEARCH : Quick Review (Comprehensive Exam Reviewer)

  2. Types of Research in Psychology ! Descriptive, Correlational and Experimental Research in URDU

  3. Experimental research || Types of Experimental research

  4. Introduction to Research, Need for Research, Experimental Design -2 Unit-3 Biostatistics 8th sem

  5. 2.Types of Research in education

  6. Types of Experimental Research Design (MPC-005)

COMMENTS

  1. Experimental Research Designs: Types, Examples & Advantages

    This type of experimental research is commonly observed in the physical sciences. 3. Quasi-experimental Research Design. The word "Quasi" means similarity. A quasi-experimental design is similar to a true experimental design. However, the difference between the two is the assignment of the control group. In this research design, an ...

  2. Experimental Research Designs: Types, Examples & Methods

    The pre-experimental research design is further divided into three types. One-shot Case Study Research Design. In this type of experimental study, only one dependent group or variable is considered. The study is carried out after some treatment which was presumed to cause change, making it a posttest study.

  3. Experimental Design

    Experimental Design. Experimental design is a process of planning and conducting scientific experiments to investigate a hypothesis or research question. It involves carefully designing an experiment that can test the hypothesis, and controlling for other variables that may influence the results. Experimental design typically includes ...

  4. Experimental Research: What it is + Types of designs

    The classic experimental design definition is: "The methods used to collect data in experimental studies.". There are three primary types of experimental design: The way you classify research subjects based on conditions or groups determines the type of research design you should use. 01. Pre-Experimental Design.

  5. Guide to Experimental Design

    This minimizes several types of research bias, particularly sampling bias, survivorship bias, and attrition bias as time passes. Table of contents. ... Types & Examples Quasi-experimental design attempts to establish a cause-and-effect relationship by using criteria other than randomization. 1107. How to write a lab report A lab report conveys ...

  6. Types of Research Designs Compared

    Types of Research Designs Compared | Guide & Examples. Published on June 20, 2019 by Shona McCombes.Revised on June 22, 2023. When you start planning a research project, developing research questions and creating a research design, you will have to make various decisions about the type of research you want to do.. There are many ways to categorize different types of research.

  7. Exploring Experimental Research: Methodologies, Designs, and

    Experimental research serves as a fundamental scientific method aimed at unraveling. cause-and-effect relationships between variables across various disciplines. This. paper delineates the key ...

  8. What Is a Research Design

    Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research. Types of quantitative research designs. Quantitative designs can be split into four main types. Experimental and quasi-experimental designs allow you to test cause ...

  9. A Quick Guide to Experimental Design

    Step 1: Define your variables. You should begin with a specific research question. We will work with two research question examples, one from health sciences and one from ecology: Example question 1: Phone use and sleep. You want to know how phone use before bedtime affects sleep patterns.

  10. Guide to experimental research design

    There are three main types of experimental research design. The research type you use will depend on the criteria of your experiment, your research budget, and environmental limitations. Pre-experimental research design. A pre-experimental research study is a basic observational study that monitors independent variables' effects.

  11. Experimental research

    Experimental research is one of the most difficult of research designs, and should not be taken lightly. This type of research is often best with a multitude of methodological problems. First, though experimental research requires theories for framing hypotheses for testing, much of current experimental research is atheoretical.

  12. Experimental Design: Definition and Types

    An experimental design is a detailed plan for collecting and using data to identify causal relationships. Through careful planning, the design of experiments allows your data collection efforts to have a reasonable chance of detecting effects and testing hypotheses that answer your research questions. An experiment is a data collection ...

  13. Study designs: Part 1

    Research study designs are of many types, each with its advantages and limitations. The type of study design used to answer a particular research question is determined by the nature of question, the goal of research, and the availability of resources. ... (experimental studies - e.g., administration of a drug). If a drug had been started in ...

  14. Experimental Design: Types, Examples & Methods

    Three types of experimental designs are commonly used: 1. Independent Measures. Independent measures design, also known as between-groups, is an experimental design where different participants are used in each condition of the independent variable. This means that each condition of the experiment includes a different group of participants.

  15. Experimental Research

    Experimental science is the queen of sciences and the goal of all speculation. Roger Bacon (1214-1294) Download chapter PDF. Experiments are part of the scientific method that helps to decide the fate of two or more competing hypotheses or explanations on a phenomenon. The term 'experiment' arises from Latin, Experiri, which means, 'to ...

  16. Experimental Design

    According to Campbell and Stanley , there are three basic types of true experimental designs: (1) pretest-posttest control group design, (2) Solomon four-group design, and (3) posttest-only control group design. The pretest-posttest control group design is the most widely used design in medical, social, educational, and psychological research ...

  17. Experimental Research Design

    These issues are germane to research of all types (exploratory, explanatory, descriptive, evaluation research). However, the term "research design" typically does not refer to the issues discussed above. The term "experimental research design" is centrally concerned with constructing research that is high in causal (or internal) validity.

  18. Experimental Research Design

    Abstract. This chapter addresses the peculiarities, characteristics, and major fallacies of experimental research designs. Experiments have a long and important history in the social, natural, and medicinal sciences. Unfortunately, in business and management this looks differently. This is astounding, as experiments are suitable for analyzing ...

  19. A Complete Guide to Experimental Research

    Before conducting experimental research, you need to have a clear understanding of the experimental design. A true experimental design includes identifying a problem , formulating a hypothesis , determining the number of variables, selecting and assigning the participants, types of research designs , meeting ethical values, etc.

  20. Experimental Research: Definition, Types and Examples

    The three main types of experimental research design are: 1. Pre-experimental research. A pre-experimental research study is an observational approach to performing an experiment. It's the most basic style of experimental research. Free experimental research can occur in one of these design structures: One-shot case study research design: In ...

  21. Experimental Research

    The major feature that distinguishes experimental research from other types of research is that the researcher manipulates the independent variable. There are a number of experimental group designs in experimental research. Some of these qualify as experimental research, others do not.

  22. 14.1 What is experimental design and when should you use it?

    Key Takeaways. Experimental designs are useful for establishing causality, but some types of experimental design do this better than others. Experiments help researchers isolate the effect of the independent variable on the dependent variable by controlling for the effect of extraneous variables.; Experiments use a control/comparison group and an experimental group to test the effects of ...

  23. Genetic insights into agronomic and morphological traits of drug-type

    Although hemp-type and drug-type Cannabis genetically diverged 76, they still share a considerable common pool of genetic variation, limiting the ability to mine rare alleles 65.

  24. Experimental Psychology Seminar

    Experimental Psychology Seminar - John Greenwood, UCL. 23 April 2024-24 April 2024, 12:30 pm-3:00 pm

  25. Experimental investigation on response mechanism and impact resistance

    In this paper, a new type of foldcore sandwich panel (tentatively called X-type foldcore sandwich panel) is proposed by combining the X-type corrugated sandwich panel and the Miura-ori sandwich panel. The experimental specimens are prepared by using a glass fiber-reinforced polymer.

  26. Exploration on relation between vehicle oscillation type and platoon

    Finally, the paper analyzes the classification results of the experimental dataset and explores the relationship between vehicle oscillation type and platoon oscillation. The research finding indicates that the oscillation classification effectiveness of the CLS model is significantly superior to other algorithms.

  27. [2404.12138v1] Character is Destiny: Can Large Language Models Simulate

    Can Large Language Models substitute humans in making important decisions? Recent research has unveiled the potential of LLMs to role-play assigned personas, mimicking their knowledge and linguistic habits. However, imitative decision-making requires a more nuanced understanding of personas. In this paper, we benchmark the ability of LLMs in persona-driven decision-making. Specifically, we ...

  28. Scripps Research reports progress toward xylazine vaccine

    An experimental vaccine blocked the toxic effects of the drug — which is frequently added to heroin and illicit fentanyl — in experiments conducted on rodents, according to research published ...

  29. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  30. Childhood dementia research gets funding boost from SA government and

    According to the Australian Niemann-Pick Type C Disease Foundation, the disease causes an accumulation of cholesterol and other fatty acids in the body's cells, leading to progressive intellectual ...