What Are the Products of Photosynthesis?

Result of Photosynthesis in Plants

  • Biochemistry
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

Photosynthesis is the name given to the set of chemical reactions performed by plants to convert energy from the sun into chemical energy in the form of sugar. Specifically, plants use energy from sunlight to react carbon dioxide and water to produce sugar ( glucose ) and oxygen . Many reactions occur, but the overall chemical reaction for photosynthesis is:

  • 6 CO 2 + 6 H 2 O + light → C 6 H 12 O 6 + 6 O 2
  • Carbon Dioxide + Water + Light yields Glucose + Oxygen

In a plant, the carbon dioxide enters via leaf stomates by diffusion . Water is absorbed through the roots and is transported to leaves through the xylem. Solar energy is absorbed by chlorophyll in the leaves. The reactions of photosynthesis occur in the chloroplasts of plants. In photosynthetic bacteria, the process takes place where chlorophyll or a related pigment is embedded in the plasma membrane. The oxygen and water produced in photosynthesis exit through the stomata.

Key Takeaways

  • In photosynthesis, energy from light is used to convert carbon dioxide and water into glucose and oxygen.
  • For 6 carbon dioxide and 6 water molecules, 1 glucose molecule and 6 oxygen molecules are produced.

Actually, plants reserve very little of the glucose for immediate use. Glucose molecules are combined by dehydration synthesis to form cellulose, which is used as a structural material. Dehydration synthesis is also used to convert glucose to starch, which plants use to store energy.

Intermediate Products of Photosynthesis

The overall chemical equation is a summary of a series of chemical reactions. These reactions occur in two stages. The light reactions require light (as you might imagine), while the dark reactions are controlled by enzymes. They don't require darkness to occur -- they simply don't depend on light.

The light reactions absorb light and harness the energy to power electron transfers. Most photosynthetic organisms capture visible light, although there are some that use infrared light. Products of these reactions are adenosine triphosphate ( ATP ) and reduced nicotinamide adenine dinucleotide phosphate (NADPH). In plant cells, the light-dependent reactions occur in the chloroplast thylakoid membrane. The overall reaction for the light-dependent reactions is:

  • 2 H 2 O + 2 NADP +  + 3 ADP + 3 P i  + light → 2 NADPH + 2 H +  + 3 ATP + O 2

In the dark stage, ATP and NADPH ultimately reduce carbon dioxide and other molecules. Carbon dioxide from the air is "fixed" into a biologically usable form, glucose. In plants, algae, and cyanobacteria, the dark reactions are termed the Calvin cycle. Bacteria may use different reactions, including a reverse Krebs cycle . The overall reaction for the light-independent reaction of a plant (Calvin cycle) is:

  • 3 CO 2  + 9 ATP + 6 NADPH + 6 H +  → C 3 H 6 O 3 -phosphate + 9 ADP + 8 P i  + 6 NADP +  + 3 H 2 O

During carbon fixation, the three-carbon product of the Calvin cycle is converted into the final carbohydrate product.

Factors That Affect the Rate of Photosynthesis

Like any chemical reaction, the availability of the reactants determines the amount of products that can be made. Limiting the availability of carbon dioxide or water slows the production of glucose and oxygen. Also, the rate of the reactions is affected by temperature and the availability of minerals that may be needed in the intermediate reactions.

The overall health of the plant (or other photosynthetic organism) also plays a role. The rate of metabolic reactions is determined in part by the maturity of the organism and whether it's flowering or bearing fruit.

What Is Not a Product of Photosynthesis?

If you're asked about photosynthesis on a test, you may be asked to identify the products of the reaction. That's pretty easy, right? Another form of the question is to ask what is not a product of photosynthesis. Unfortunately, this won't be an open-ended question, which you could easily answer with "iron" or "a car" or "your mom." Usually this is a multiple choice question, listing molecules which are reactants or products of photosynthesis. The answer is any choice except glucose or oxygen. The question may also be phrased to answer what is not a product of the light reactions or the dark reactions. So, it's a good idea to know the overall reactants and products for the photosynthesis general equation, the light reactions, and the dark reactions.

  • Bidlack, J.E.; Stern, K.R.; Jansky, S. (2003). Introductory Plant Biology . New York: McGraw-Hill. ISBN 978-0-07-290941-8.
  • Blankenship, R.E. (2014). Molecular Mechanisms of Photosynthesis (2nd ed.). John Wiley & Sons. ISBN 978-1-4051-8975-0.
  • Reece J.B., et al. (2013). Campbell Biology . Benjamin Cummings. ISBN 978-0-321-77565-8.
  • Examples of Chemical Reactions in Everyday Life
  • Photosynthesis Basics - Study Guide
  • Photosynthesis Vocabulary Terms and Definitions
  • The Photosynthesis Formula: Turning Sunlight into Energy
  • Calvin Cycle Steps and Diagram
  • 10 Fascinating Photosynthesis Facts
  • Chloroplast Function in Photosynthesis
  • Chlorophyll Definition and Role in Photosynthesis
  • The Balanced Chemical Equation for Photosynthesis
  • All About Photosynthetic Organisms
  • Thylakoid Definition and Function
  • Simple Chemical Reactions
  • Chemosynthesis Definition and Examples
  • An Introduction to Types of Respiration
  • Understanding Endothermic and Exothermic Reactions

end product of photosynthesis formula

Photosynthesis – Equation, Formula & Products

Core concepts.

In this tutorial, you will learn all about photosynthesis . We begin with an introduction to photosynthesis and its balanced chemical equation. Then, we analyze the two key stages involved in this process and take a look at the final products. Lastly, we consider the different types of photosynthesis.

Topics Covered in Other Articles

  • What is a Chemical Reaction? Physical vs Chemical Change Examples
  • What is a Reactant in Chemistry?
  • How to Balance Redox Reactions
  • Common Oxidizing Agents & Reducing Agents
  • What is Gluconeogenesis?

Introduction to Photosynthesis

The process by which plants and other organisms convert light energy (sunlight) into chemical energy (glucose) is known as photosynthesis. Sunlight powers a series of reactions that use water and carbon dioxide to synthesize glucose and release oxygen as a byproduct. Energy is stored in the chemical bonds of glucose and can be later harvested to fuel the organism’s activities through cellular respiration or fermentation .

Photosynthesis is an endergonic process because it requires an input of energy from the surroundings in order for a chemical change to take place. Furthermore, photosynthesis is a reduction-oxidation (redox) reaction , meaning that it involves the transfer of electrons between chemical species. During the process, carbon dioxide is reduced (i.e., gains electrons) to form glucose, and water is oxidized (i.e., loses electrons) to form molecular oxygen.

The complex process of photosynthesis takes place in chloroplasts (i.e., membrane-bound organelles in plant and algal cells). Chloroplasts have an outer membrane and an inner membrane. The stroma is the fluid-filled space within the inner membrane; it surrounds flattened sac-like structures known as thylakoids. Thylakoids consist of a thylakoid space (lumen) surrounded by a thylakoid membrane. The thylakoid membrane contains photosystems, which are large complexes of proteins and pigments. There are two types of photosystems: photosystem I (PSI) and photosystem II (PSII).

Chloroplast Structure

Chemical Equation for Photosynthesis

The overall balanced equation for photosynthesis is commonly written as 6 CO 2 + 6 H 2 O → C 6 H 12 O 6 + 6 O 2 (shown below). In other words, six molecules of carbon dioxide and six molecules of water react in the presence of sunlight to produce one molecule of glucose (a six-carbon sugar) and six molecules of oxygen. 

Chemical Equation for Photosynthesis

Stages of Photosynthesis

There are two main stages of photosynthesis: the light-dependent reactions and the Calvin cycle.

Light-Dependent Reactions

The light-dependent reactions use light energy to make ATP (an energy-carrying molecule) and NADPH (an electron carrier) for use in the Calvin cycle. In addition, oxygen is released as a result of the oxidation of water. In plants and algae, the light-dependent reactions take place in the thylakoid membrane of chloroplasts. The most common form of the light-dependent reactions is a process known as non-cyclic photophosphorylation. This process involves two key steps: ATP synthesis (via photosystem II) and NADPH synthesis (via photosystem I).

  • Step 1 (ATP Synthesis): Pigments in photosystem II (such as chlorophylls) absorb light and energize electrons. A proton gradient is formed as these excited electrons travel down an electron transport chain and release energy that pumps hydrogen ions from the stroma to the thylakoid lumen. The splitting of water molecules through photolysis produces hydrogen ions (as well as oxygen molecules) that further contribute to this electrochemical gradient. As hydrogen ions flow down their gradient (i.e., back across the thylakoid membrane and into the stroma), they travel through an enzyme known as ATP synthase. ATP synthase catalyzes the formation of adenosine triphosphate (ATP) using ADP (adenosine diphosphate) and inorganic phosphate (P i ).
  • Step 2 (NADPH Synthesis): Electrons are transferred to photosystem I and energized by the light absorbed by PSI pigments. The electrons reach the end of the electron transport chain and are passed to an enzyme known as ferredoxin-NADP + reductase (FNR). FNR catalyzes the reaction by which NADP + is reduced to NADPH.

Z-Scheme Diagram of Photosynthesis

Calvin Cycle

The Calvin cycle (also referred to as the light-independent reactions) takes place in the stroma of chloroplasts and is not directly dependent on sunlight. Instead, this stage utilizes the products of the light-dependent reactions (ATP and NADPH), along with carbon dioxide, to synthesize glucose. The Calvin cycle consists of three basic steps: carbon fixation, reduction, and regeneration.

  • Step 1 (Carbon Fixation): RuBisCO (the most abundant enzyme on Earth) catalyzes the carboxylation of ribulose-1,5-biphosphate (RuBP) by carbon dioxide to produce an unstable six-carbon compound. This six-carbon compound is then readily converted into two molecules of 3-phosphoglyceric acid (3-PGA).
  • Step 2 (Reduction): An enzyme known as phosphoglycerate kinase catalyzes the phosphorylation of 3-PGA by ATP to produce 1,3-biphosphoglyceric acid (1,3-BPG) and ADP. Next, another enzyme (glyceraldehyde 3-phosphate dehydrogenase) catalyzes the reduction of 1,3-BPG by NADPH to produce glyceraldehyde 3-phosphate (G3P) and NADP + .
  • Step 3 (Regeneration): Every turn of the Calvin cycle produces two molecules of G3P. Therefore, six turns of the cycle produce twelve molecules of G3P. Two of these G3P molecules exit the cycle and are used to synthesize one molecule of glucose. Meanwhile, the other ten molecules of G3P remain in the cycle and are used to regenerate six RuBP molecules. The regeneration of RuBP requires ATP, but it allows the cycle to continue.

Calvin Cycle Diagram

Products of Photosynthesis

The major product of photosynthesis is glucose, a simple sugar with the molecular formula C 6 H 12 O 6 . Plants and other photosynthetic organisms use glucose for numerous functions, including those listed below.

  • Cellular Respiration: Glucose is broken down in order to produce ATP (which can be used to fuel other cellular activities) through a process known as cellular respiration.
  • Biosynthesis of Starch and Cellulose: Glucose molecules can be linked together to form complex carbohydrates such as starch and cellulose. Plants and other organisms use starch to store energy and cellulose to support/rigidify their cell walls.
  • Protein Synthesis: Glucose can be combined with nitrates (from the soil) to produce amino acids, which can then be used to build proteins.

In addition, oxygen is released into the atmosphere during the process of photosynthesis. Plants (along with many other organisms) use oxygen to carry out aerobic respiration.

Types of Photosynthesis

There are three main types of photosynthesis: C3, C4, and CAM (crassulacean acid metabolism). They differ in the way that they manage photorespiration, a wasteful process that occurs when the enzyme rubisco acts on oxygen instead of carbon dioxide. Photorespiration competes with the Calvin cycle and decreases the efficiency of photosynthesis (by wasting energy and using up fixed carbon).

C3 Photosynthesis

The majority of plants use C3 photosynthesis, a process in which no special features or adaptations are used to combat photorespiration. Hot, dry climates are not ideal for C3 plants (e.g., rice, wheat, and barley) because of the increased rate of photorespiration, which is due to the buildup of oxygen that occurs when plants close their stomata (leaf pores) in order to prevent water loss.

end product of photosynthesis formula

C4 Photosynthesis

C4 photosynthesis reduces photorespiration by performing the initial carbon dioxide fixation and Calvin cycle in two different cell types. This process utilizes an additional enzyme known as phosphoenolpyruvate (PEP) carboxylase. PEP carboxylase does not react with oxygen (unlike rubisco) and is able to catalyze a reaction between carbon dioxide and PEP in the mesophyll cells to produce the intermediate four-carbon compound oxaloacetate. Oxaloacetate is then reduced to malate and transported to bundle sheath cells. In these cells, malate undergoes decarboxylation, forming a special compartment for the concentration of carbon dioxide around rubisco.

As a result, the Calvin cycle can proceed as normal, and an opportunity for rubisco to bind to oxygen is prevented. C4 plants (e.g., maize and sugarcane) have a competitive advantage over C3 plants in hot, dry environments where the benefits of reduced photorespiration outweigh the additional energy costs associated with C4 photosynthesis.

C4 Plants (Maize)

CAM Photosynthesis

Crassulacean acid metabolism, also known as CAM photosynthesis, reduces photorespiration by performing the initial carbon dioxide fixation and Calvin cycle at separate times. CAM plants (e.g., cactus and pineapple) open their stomata at night, allowing carbon dioxide to enter the leaf. The carbon dioxide is converted to oxaloacetate by PEP carboxylase, the same enzyme used in C4 photosynthesis. Oxaloacetate is subsequently reduced to malate, which is stored as malic acid in vacuoles .

During the day (when light is readily available), CAM plants close their stomata and prepare for the Calvin cycle. Malate is transported into chloroplasts and broken down to release carbon dioxide, which is heavily concentrated around the enzyme rubisco. Similar to C4 photosynthesis, crassulacean acid metabolism is an energetically expensive process. However, it is quite useful for plants in hot, arid climates that need to minimize photorespiration and conserve water.

CAM Plants (Cacti)

Further Reading

  • What is Gibbs Free Energy?
  • Endothermic vs Exothermic Reactions
  • Catalysts & Activation Energy
  • Proteins and Amino Acids
  • Claisen Condensations

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

What Are the Products of Photosynthesis?

Products of Photosynthesis

Photosynthesis is a set of chemical reactions that plants and other organisms use to make chemical energy in the form of sugar. Like any chemical reaction, photosynthesis has reactants and products . Overall, the reactants of photosynthesis are carbon dioxide and water, while the products of photosynthesis are oxygen and glucose (a sugar).

Here’s a closer look at the products of photosynthesis and the balanced equation for the reaction.

The reactants for photosynthesis are carbon dioxide and water, while the products are the sugar glucose and oxygen.

Balanced Chemical Equation for Photosynthesis

Photosynthesis actually involves many chemical reactions, but the net balanced equation is that six moles of carbon dioxide react with six moles of water to produce one mole of glucose and six moles of oxygen. Light from the Sun provides the activation energy for the reaction. Sometimes light is listed in the balanced equation as a reactant, but it’s usually omitted.

6 CO 2  + 6 H 2 O → C 6 H 12 O 6  + 6 O 2

Carbon Dioxide + Water + Light → Glucose + Oxygen

Closer Look at the Products of Photosynthesis

Photosynthesis occurs in a series of steps that are classified as light-dependent reactions and light-independent reactions. Adding up the reactants and products of these reactions gives the overall equation for photosynthesis, but it’s good to know the inputs and outputs for each stage.

Light-Dependent Reactions

Photosynthesis Overview

The light-dependent reactions or light reactions absorb certain wavelengths of light to make adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide phosphate (NADPH). The light reactions occur in the chloroplast thylakoid membrane. The overall balanced equation for the light-dependent reactions is:

2 H 2 O + 2 NADP +  + 3 ADP + 3 P i  + light → 2 NADPH + 2 H +  + 3 ATP + O 2

Light-Independent Reactions

While the light reactions use water, the light-independent reactions use carbon dioxide. The light-independent reactions are also called the dark reactions. These reactions do not require darkness, but they don’t depend on light to proceed. In plants, algae, and cyanobacteria, the dark reactions are called the Calvin cycle. Bacteria use different reactions, including the reverse Krebs cycle.

The overall balanced equation for the light-independent reactions (Calvin cycle) in plants is:

3 CO 2  + 9 ATP + 6 NADPH + 6 H +  → C 3 H 6 O 3 -phosphate + 9 ADP + 8 P i  + 6 NADP +  + 3 H 2 O

Finally, the three-carbon product from the Calvin cycle becomes glucose during the process of carbon fixation.

Other Products of Photosynthesis

Glucose is the direct product of photosynthesis, but plants turn most of the sugar into other compounds. These are indirect products. Linking glucose units forms starch and cellulose. Cellulose is a structural material. Plants store starch or link it to fructose (another sugar) to form sucrose (table sugar).

What Is Not a Product of Photosynthesis?

On an exam, you may need to identify which chemical is not a product of photosynthesis. For the overall process, choose any answer except “glucose” or “oxygen.” It’s good to know the overall reactants and products of the light reactions and dark reactions, in case you’re asked about them. The products of the light reactions are ATP , NADPH, protons, and oxygen. The products of the dark reactions are C 3 H 6 O 3 -phosphate, ADP, inorganic phosphate, NADP + , and water.

Where Does Photosynthesis Occur?

In addition to knowing the reactants and products of photosynthesis, you may need to know where photosynthesis occurs in different organisms.

  • In plants, photosynthesis occurs in organelles called chloroplasts. Photosynthetic protists also contain chloroplasts. Leaves contain the highest concentration of chloroplasts in plants. Plants obtain carbon dioxide via diffusion through leaf stomata. Water comes from the roots and travels to the leaves via the xylem . Chlorophyll in chloroplasts absorbs solar energy. Oxygen from photosynthesis exits the plant via leaf stomata.
  • Photosynthesis occurs in photosynthetic bacteria in the plasma membrane. Chlorophyll or related pigments are embedded in this membrane.
  • Bidlack, J.E.; Stern, K.R.; Jansky, S. (2003).  Introductory Plant Biology . New York: McGraw-Hill. ISBN 978-0-07-290941-8.
  • Blankenship, R.E. (2014).  Molecular Mechanisms of Photosynthesis  (2nd ed.). John Wiley & Sons. ISBN 978-1-4051-8975-0.
  • Reece J.B., et al. (2013).  Campbell Biology . Benjamin Cummings. ISBN 978-0-321-77565-8.

Related Posts

Module 6: Metabolic Pathways

Photosynthesis, identify the basic components and steps of photosynthesis.

The processes in all organisms—from bacteria to humans—require energy. To get this energy, many organisms access stored energy by eating, that is, by ingesting other organisms. But where does the stored energy in food originate? All of this energy can be traced back to photosynthesis.

Photosynthesis is essential to all life on earth; both plants and animals depend on it. It is the only biological process that can capture energy that originates in outer space (sunlight) and convert it into chemical compounds (carbohydrates) that every organism uses to power its metabolism. In brief, the energy of sunlight is captured and used to energize electrons, which are then stored in the covalent bonds of sugar molecules. How long lasting and stable are those covalent bonds? The energy extracted today by the burning of coal and petroleum products represents sunlight energy captured and stored by photosynthesis around 300 million years ago.

Photo a shows a fern leaf. Photo b shows thick, green algae growing on water. Micrograph c shows cyanobacteria, which are green rods about 10 microns long. Photo D shows black smoke pouring out of a deep sea vent covered with red worms. Micrograph E shows rod-shaped bacteria about 1.5 microns long.

Figure 1. Photoautotrophs including (a) plants, (b) algae, and (c) cyanobacteria synthesize their organic compounds via photosynthesis using sunlight as an energy source. Cyanobacteria and planktonic algae can grow over enormous areas in water, at times completely covering the surface. In a (d) deep sea vent, chemoautotrophs, such as these (e) thermophilic bacteria, capture energy from inorganic compounds to produce organic compounds. The ecosystem surrounding the vents has a diverse array of animals, such as tubeworms, crustaceans, and octopi that derive energy from the bacteria. (credit a: modification of work by Steve Hillebrand, U.S. Fish and Wildlife Service; credit b: modification of work by “eutrophication&hypoxia”/Flickr; credit c: modification of work by NASA; credit d: University of Washington, NOAA; credit e: modification of work by Mark Amend, West Coast and Polar Regions Undersea Research Center, UAF, NOAA)

A photo shows deer running through tall grass beside a forest.

Figure 2. The energy stored in carbohydrate molecules from photosynthesis passes through the food chain. The predator that eats these deer receives a portion of the energy that originated in the photosynthetic vegetation that the deer consumed. (credit: modification of work by Steve VanRiper, U.S. Fish and Wildlife Service)

Plants, algae, and a group of bacteria called cyanobacteria are the only organisms capable of performing photosynthesis (Figure 1). Because they use light to manufacture their own food, they are called photoautotrophs (literally, “self-feeders using light”). Other organisms, such as animals, fungi, and most other bacteria, are termed heterotrophs (“other feeders”), because they must rely on the sugars produced by photosynthetic organisms for their energy needs. A third very interesting group of bacteria synthesize sugars, not by using sunlight’s energy, but by extracting energy from inorganic chemical compounds; hence, they are referred to as chemoautotrophs .

The importance of photosynthesis is not just that it can capture sunlight’s energy. A lizard sunning itself on a cold day can use the sun’s energy to warm up. Photosynthesis is vital because it evolved as a way to store the energy in solar radiation (the “photo” part) as high-energy electrons in the carbon-carbon bonds of carbohydrate molecules (the “synthesis” part). Those carbohydrates are the energy source that heterotrophs use to power the synthesis of ATP via respiration. Therefore, photosynthesis powers 99 percent of Earth’s ecosystems. When a top predator, such as a wolf, preys on a deer (Figure 2), the wolf is at the end of an energy path that went from nuclear reactions on the surface of the sun, to light, to photosynthesis, to vegetation, to deer, and finally to wolf.

Learning Objectives

  • Identify the reactants and products of photosynthesis
  • Describe the visible and electromagnetic spectrums of light as they applies to photosynthesis
  • Describe the light-dependent reactions that take place during photosynthesis
  • Identify the light-independent reactions in photosynthesis

Photosynthesis is a multi-step process that requires sunlight, carbon dioxide (which is low in energy), and water as substrates (Figure 3). After the process is complete, it releases oxygen and produces glyceraldehyde-3-phosphate (GA3P), simple carbohydrate molecules (which are high in energy) that can subsequently be converted into glucose, sucrose, or any of dozens of other sugar molecules. These sugar molecules contain energy and the energized carbon that all living things need to survive.

Photo of a tree. Arrows indicate that the tree uses carbon dioxide, water, and sunlight to make sugars and oxygen.

Figure 3. Photosynthesis uses solar energy, carbon dioxide, and water to produce energy-storing carbohydrates. Oxygen is generated as a waste product of photosynthesis.

The following is the chemical equation for photosynthesis (Figure 4):

The photosynthesis equation is shown. According to this equation, six carbon dioxide and six water molecules produce one sugar molecule and six oxygen molecules. The sugar molecule is made of six carbons, twelve hydrogens, and six oxygens. Sunlight is used as an energy source.

Figure 4. The basic equation for photosynthesis is deceptively simple. In reality, the process takes place in many steps involving intermediate reactants and products. Glucose, the primary energy source in cells, is made from two three-carbon GA3Ps.

Although the equation looks simple, the many steps that take place during photosynthesis are actually quite complex. Before learning the details of how photoautotrophs turn sunlight into food, it is important to become familiar with the structures involved.

In plants, photosynthesis generally takes place in leaves, which consist of several layers of cells. The process of photosynthesis occurs in a middle layer called the  mesophyll . The gas exchange of carbon dioxide and oxygen occurs through small, regulated openings called stomata (singular: stoma), which also play roles in the regulation of gas exchange and water balance. The stomata are typically located on the underside of the leaf, which helps to minimize water loss. Each stoma is flanked by guard cells that regulate the opening and closing of the stomata by swelling or shrinking in response to osmotic changes.

In all autotrophic eukaryotes, photosynthesis takes place inside an organelle called a  chloroplast . For plants, chloroplast-containing cells exist in the mesophyll. Chloroplasts have a double membrane envelope (composed of an outer membrane and an inner membrane). Within the chloroplast are stacked, disc-shaped structures called thylakoids . Embedded in the thylakoid membrane is chlorophyll, a pigment (molecule that absorbs light) responsible for the initial interaction between light and plant material, and numerous proteins that make up the electron transport chain. The thylakoid membrane encloses an internal space called the thylakoid lumen . As shown in Figure 5, a stack of thylakoids is called a granum , and the liquid-filled space surrounding the granum is called stroma or “bed” (not to be confused with stoma or “mouth,” an opening on the leaf epidermis).

Practice Question

This illustration shows a chloroplast, which has an outer membrane and an inner membrane. The space between the outer and inner membranes is called the intermembrane space. Inside the inner membrane are flat, pancake-like structures called thylakoids. The thylakoids form stacks called grana. The liquid inside the inner membrane is called the stroma, and the space inside the thylakoid is called the thylakoid lumen.

Figure 5. Photosynthesis takes place in chloroplasts, which have an outer membrane and an inner membrane. Stacks of thylakoids called grana form a third membrane layer.

On a hot, dry day, plants close their stomata to conserve water. What impact will this have on photosynthesis?

The Two Parts of Photosynthesis

Photosynthesis takes place in two sequential stages: the light-dependent reactions and the light independent-reactions. In the  light-dependent reactions , energy from sunlight is absorbed by chlorophyll and that energy is converted into stored chemical energy. In the light-independent reactions , the chemical energy harvested during the light-dependent reactions drive the assembly of sugar molecules from carbon dioxide. Therefore, although the light-independent reactions do not use light as a reactant, they require the products of the light-dependent reactions to function. In addition, several enzymes of the light-independent reactions are activated by light. The light-dependent reactions utilize certain molecules to temporarily store the energy: These are referred to as energy carriers. The energy carriers that move energy from light-dependent reactions to light-independent reactions can be thought of as “full” because they are rich in energy. After the energy is released, the “empty” energy carriers return to the light-dependent reaction to obtain more energy. Figure 6 illustrates the components inside the chloroplast where the light-dependent and light-independent reactions take place.

This illustration shows a chloroplast with an outer membrane, an inner membrane, and stacks of membranes inside the inner membrane called thylakoids. The entire stack is called a granum. In the light reactions, energy from sunlight is converted into chemical energy in the form of ATP and NADPH. In the process, water is used and oxygen is produced. Energy from ATP and NADPH are used to power the Calvin cycle, which produces GA3P from carbon dioxide. ATP is broken down to ADP and Pi, and NADPH is oxidized to NADP+. The cycle is completed when the light reactions convert these molecules back into ATP and NADPH.

Figure 6. Photosynthesis takes place in two stages: light dependent reactions and the Calvin cycle. Light-dependent reactions, which take place in the thylakoid membrane, use light energy to make ATP and NADPH. The Calvin cycle, which takes place in the stroma, uses energy derived from these compounds to make GA3P from CO 2 .

Photosynthesis at the Grocery Store

A photo shows people shopping in a grocery store.

Figure 7. Foods that humans consume originate from photosynthesis. (credit: Associação Brasileira de Supermercados)

Major grocery stores in the United States are organized into departments, such as dairy, meats, produce, bread, cereals, and so forth. Each aisle (Figure 7) contains hundreds, if not thousands, of different products for customers to buy and consume.

Although there is a large variety, each item links back to photosynthesis. Meats and dairy link because the animals were fed plant-based foods. The breads, cereals, and pastas come largely from starchy grains, which are the seeds of photosynthesis-dependent plants. What about desserts and drinks? All of these products contain sugar—sucrose is a plant product, a disaccharide, a carbohydrate molecule, which is built directly from photosynthesis. Moreover, many items are less obviously derived from plants: for instance, paper goods are generally plant products, and many plastics (abundant as products and packaging) can be derived from algae or from oil, the fossilized remains of photosynthetic organisms. Virtually every spice and flavoring in the spice aisle was produced by a plant as a leaf, root, bark, flower, fruit, or stem. Ultimately, photosynthesis connects to every meal and every food a person consumes.

Spectrums of Light

How can light be used to make food? When a person turns on a lamp, electrical energy becomes light energy. Like all other forms of kinetic energy, light can travel, change form, and be harnessed to do work. In the case of photosynthesis, light energy is converted into chemical energy, which photoautotrophs use to build carbohydrate molecules. However, autotrophs only use a few specific components of sunlight.

What Is Light Energy?

The sun emits an enormous amount of electromagnetic radiation (solar energy). Humans can see only a fraction of this energy, which portion is therefore referred to as “visible light.” The manner in which solar energy travels is described as waves. Scientists can determine the amount of energy of a wave by measuring its wavelength, the distance between consecutive points of a wave. A single wave is measured from two consecutive points, such as from crest to crest or from trough to trough (Figure 8).

The illustration shows two waves. The distance between the crests (or troughs) is the wavelength.

Figure 8. The wavelength of a single wave is the distance between two consecutive points of similar position (two crests or two troughs) along the wave.

Visible light constitutes only one of many types of electromagnetic radiation emitted from the sun and other stars. Scientists differentiate the various types of radiant energy from the sun within the electromagnetic spectrum. The electromagnetic spectrum is the range of all possible frequencies of radiation (Figure 9). The difference between wavelengths relates to the amount of energy carried by them.

The illustration lists the types of electromagnetic radiation in order of increasing wavelength. These include gamma rays, X-rays, ultraviolet, visible, infrared, and radio. Gamma rays have a very short wavelength, on the order of one thousandth of a nanometer. Radio waves have a very long wavelength, on the order of one kilometer. Visible light ranges from 380 nanometers at the violet end of the spectrum, to 750 nanometers at the red end of the spectrum.

Figure 9. The sun emits energy in the form of electromagnetic radiation. This radiation exists at different wavelengths, each of which has its own characteristic energy. All electromagnetic radiation, including visible light, is characterized by its wavelength.

Each type of electromagnetic radiation travels at a particular wavelength. The longer the wavelength (or the more stretched out it appears in the diagram), the less energy is carried. Short, tight waves carry the most energy. This may seem illogical, but think of it in terms of a piece of moving a heavy rope. It takes little effort by a person to move a rope in long, wide waves. To make a rope move in short, tight waves, a person would need to apply significantly more energy.

The electromagnetic spectrum (Figure 9) shows several types of electromagnetic radiation originating from the sun, including X-rays and ultraviolet (UV) rays. The higher-energy waves can penetrate tissues and damage cells and DNA, explaining why both X-rays and UV rays can be harmful to living organisms.

Absorption of Light

Light energy initiates the process of photosynthesis when pigments absorb the light. Organic pigments, whether in the human retina or the chloroplast thylakoid, have a narrow range of energy levels that they can absorb. Energy levels lower than those represented by red light are insufficient to raise an orbital electron to a populatable, excited (quantum) state. Energy levels higher than those in blue light will physically tear the molecules apart, called bleaching. So retinal pigments can only “see” (absorb) 700 nm to 400 nm light, which is therefore called visible light. For the same reasons, plants pigment molecules absorb only light in the wavelength range of 700 nm to 400 nm; plant physiologists refer to this range for plants as photosynthetically active radiation.

The visible light seen by humans as white light actually exists in a rainbow of colors. Certain objects, such as a prism or a drop of water, disperse white light to reveal the colors to the human eye. The visible light portion of the electromagnetic spectrum shows the rainbow of colors, with violet and blue having shorter wavelengths, and therefore higher energy. At the other end of the spectrum toward red, the wavelengths are longer and have lower energy (Figure 10).

The illustration shows the colors of visible light. In order of decreasing wavelength, these are red, orange, yellow, green, blue, indigo, and violet.

Figure 10. The colors of visible light do not carry the same amount of energy. Violet has the shortest wavelength and therefore carries the most energy, whereas red has the longest wavelength and carries the least amount of energy. (credit: modification of work by NASA)

Understanding Pigments

Different kinds of pigments exist, and each has evolved to absorb only certain wavelengths (colors) of visible light. Pigments reflect or transmit the wavelengths they cannot absorb, making them appear in the corresponding color.

Chlorophylls and carotenoids are the two major classes of photosynthetic pigments found in plants and algae; each class has multiple types of pigment molecules. There are five major chlorophylls:  a , b , c and d and a related molecule found in prokaryotes called bacteriochlorophyll. Chlorophyll a and chlorophyll b are found in higher plant chloroplasts and will be the focus of the following discussion.

With dozens of different forms, carotenoids are a much larger group of pigments. The carotenoids found in fruit—such as the red of tomato (lycopene), the yellow of corn seeds (zeaxanthin), or the orange of an orange peel (β-carotene)—are used as advertisements to attract seed dispersers. In photosynthesis, carotenoids function as photosynthetic pigments that are very efficient molecules for the disposal of excess energy. When a leaf is exposed to full sun, the light-dependent reactions are required to process an enormous amount of energy; if that energy is not handled properly, it can do significant damage. Therefore, many carotenoids reside in the thylakoid membrane, absorb excess energy, and safely dissipate that energy as heat.

Each type of pigment can be identified by the specific pattern of wavelengths it absorbs from visible light, which is the  absorption spectrum . The graph in Figure 11 shows the absorption spectra for chlorophyll  a , chlorophyll b , and a type of carotenoid pigment called β-carotene (which absorbs blue and green light). Notice how each pigment has a distinct set of peaks and troughs, revealing a highly specific pattern of absorption. Chlorophyll a absorbs wavelengths from either end of the visible spectrum (blue and red), but not green. Because green is reflected or transmitted, chlorophyll appears green. Carotenoids absorb in the short-wavelength blue region, and reflect the longer yellow, red, and orange wavelengths.

Chlorophyll a and chlorophyll b are made up of a long hydrocarbon chain attached to a large, complex ring made up of nitrogen and carbon. Magnesium is associated with the center of the ring. Chlorophyll b differs from chlorophyll a in that it has a CHO group instead of a CH3 group associated with one part of the ring. Beta-carotene is a branched hydrocarbon with a six-membered carbon ring at each end. Each chart shows the absorbance spectra for chlorophyll a, chlorophyll b, and β-carotene. The three pigments absorb blue-green and orange-red wavelengths of light but have slightly different spectra.

Figure 11. (a) Chlorophyll a, (b) chlorophyll b, and (c) β-carotene are hydrophobic organic pigments found in the thylakoid membrane. Chlorophyll a and b, which are identical except for the part indicated in the red box, are responsible for the green color of leaves. β-carotene is responsible for the orange color in carrots. Each pigment has (d) a unique absorbance spectrum.

The photo shows undergrowth in a forest.

Figure 12. Plants that commonly grow in the shade have adapted to low levels of light by changing the relative concentrations of their chlorophyll pigments. (credit: Jason Hollinger)

Many photosynthetic organisms have a mixture of pigments; using them, the organism can absorb energy from a wider range of wavelengths. Not all photosynthetic organisms have full access to sunlight. Some organisms grow underwater where light intensity and quality decrease and change with depth. Other organisms grow in competition for light. Plants on the rainforest floor must be able to absorb any bit of light that comes through, because the taller trees absorb most of the sunlight and scatter the remaining solar radiation (Figure 12).

When studying a photosynthetic organism, scientists can determine the types of pigments present by generating absorption spectra. An instrument called a  spectrophotometer can differentiate which wavelengths of light a substance can absorb. Spectrophotometers measure transmitted light and compute from it the absorption. By extracting pigments from leaves and placing these samples into a spectrophotometer, scientists can identify which wavelengths of light an organism can absorb. Additional methods for the identification of plant pigments include various types of chromatography that separate the pigments by their relative affinities to solid and mobile phases.

Light-Dependent Reactions

The overall function of light-dependent reactions is to convert solar energy into chemical energy in the form of NADPH and ATP. This chemical energy supports the light-independent reactions and fuels the assembly of sugar molecules. The light-dependent reactions are depicted in Figure 13. Protein complexes and pigment molecules work together to produce NADPH and ATP.

Illustration a shows the structure of PSII, which is embedded in the thylakoid membrane. At the core of PSII is the reaction center. The reaction center is surrounded by the light-harvesting complex, which contains antenna pigment molecules that shunt light energy toward a pair of chlorophyll a molecules in the reaction center. As a result, an electron is excited and transferred to the primary electron acceptor. A water molecule is split, releasing two electrons which are used to replace excited electrons. Illustration b shows the structure of PSI, which is similar in structure to PSII. However, PSII uses an electron from the chloroplast electron transport chain also embedded in the thylakoid membrane to replace the excited electron.

Figure 13. A photosystem consists of a light-harvesting complex and a reaction center. Pigments in the light-harvesting complex pass light energy to two special chlorophyll a molecules in the reaction center. The light excites an electron from the chlorophyll a pair, which passes to the primary electron acceptor. The excited electron must then be replaced. In (a) photosystem II, the electron comes from the splitting of water, which releases oxygen as a waste product. In (b) photosystem I, the electron comes from the chloroplast electron transport chain discussed below.

The actual step that converts light energy into chemical energy takes place in a multiprotein complex called a  photosystem , two types of which are found embedded in the thylakoid membrane, photosystem II (PSII) and photosystem I (PSI) (Figure 14). The two complexes differ on the basis of what they oxidize (that is, the source of the low-energy electron supply) and what they reduce (the place to which they deliver their energized electrons).

Both photosystems have the same basic structure; a number of antenna proteins to which the chlorophyll molecules are bound surround the reaction center where the photochemistry takes place. Each photosystem is serviced by the light-harvesting complex, which passes energy from sunlight to the reaction center; it consists of multiple antenna proteins that contain a mixture of 300–400 chlorophyll  a and b molecules as well as other pigments like carotenoids. The absorption of a single photon or distinct quantity or “packet” of light by any of the chlorophylls pushes that molecule into an excited state. In short, the light energy has now been captured by biological molecules but is not stored in any useful form yet. The energy is transferred from chlorophyll to chlorophyll until eventually (after about a millionth of a second), it is delivered to the reaction center. Up to this point, only energy has been transferred between molecules, not electrons.

This illustration shows the components involved in the light reactions, which are all embedded in the thylakoid membrane. Photosystem II uses light energy to strip electrons from water, producing half an oxygen molecule and two protons in the process. The excited electron is then passed through the chloroplast electron transport chain to photosystem I. Photosystem I passes the electron to NADP+ reductase, which uses it to convert NADP+ and a proton to NADPH. As the electron transport chain moves electrons, it pumps protons into the thylakoid lumen. The splitting of water also adds electrons to the lumen, and the reduction of NADPH removes protons from the stroma. The net result is a low pH inside the thylakoid lumen, and a high pH outside, in the stroma. ATP synthase embedded the thylakoid membrane moves protons down their electrochemical gradient, from the lumen to the stroma, and uses the energy from this gradient to make ATP.

Figure 14. The photosystem II (PSII) reaction center and the photosystem I (PSI).

In the photosystem II (PSII) reaction center, energy from sunlight is used to extract electrons from water. The electrons travel through the chloroplast electron transport chain to photosystem I (PSI), which reduces NADP + to NADPH. The electron transport chain moves protons across the thylakoid membrane into the lumen. At the same time, splitting of water adds protons to the lumen, and reduction of NADPH removes protons from the stroma. The net result is a low pH in the thylakoid lumen, and a high pH in the stroma. ATP synthase uses this electrochemical gradient to make ATP. What is the initial source of electrons for the chloroplast electron transport chain?

  • carbon dioxide

The reaction center contains a pair of chlorophyll  a molecules with a special property. Those two chlorophylls can undergo oxidation upon excitation; they can actually give up an electron in a process called a photoact . It is at this step in the reaction center, that light energy is converted into an excited electron. All of the subsequent steps involve getting that electron onto the energy carrier NADPH for delivery to the Calvin cycle where the electron is deposited onto carbon for long-term storage in the form of a carbohydrate. PSII and PSI are two major components of the photosynthetic electron transport chain , which also includes the cytochrome complex . The cytochrome complex, an enzyme composed of two protein complexes, transfers the electrons from the carrier molecule plastoquinone (Pq) to the protein plastocyanin (Pc), thus enabling both the transfer of protons across the thylakoid membrane and the transfer of electrons from PSII to PSI.

The reaction center of PSII (called  P680 ) delivers its high-energy electrons, one at the time, to the primary electron acceptor , and through the electron transport chain (Pq to cytochrome complex to plastocyanine) to PSI. P680’s missing electron is replaced by extracting a low-energy electron from water; thus, water is split and PSII is re-reduced after every photoact. Splitting one H 2 O molecule releases two electrons, two hydrogen atoms, and one atom of oxygen. Splitting two molecules is required to form one molecule of diatomic O 2 gas. About 10 percent of the oxygen is used by mitochondria in the leaf to support oxidative phosphorylation. The remainder escapes to the atmosphere where it is used by aerobic organisms to support respiration.

As electrons move through the proteins that reside between PSII and PSI, they lose energy. That energy is used to move hydrogen atoms from the stromal side of the membrane to the thylakoid lumen. Those hydrogen atoms, plus the ones produced by splitting water, accumulate in the thylakoid lumen and will be used synthesize ATP in a later step. Because the electrons have lost energy prior to their arrival at PSI, they must be re-energized by PSI, hence, another photon is absorbed by the PSI antenna. That energy is relayed to the PSI reaction center (called  P700 ). P700 is oxidized and sends a high-energy electron to NADP + to form NADPH. Thus, PSII captures the energy to create proton gradients to make ATP, and PSI captures the energy to reduce NADP + into NADPH. The two photosystems work in concert, in part, to guarantee that the production of NADPH will roughly equal the production of ATP. Other mechanisms exist to fine tune that ratio to exactly match the chloroplast’s constantly changing energy needs.

Generating an Energy Carrier: ATP

As in the intermembrane space of the mitochondria during cellular respiration, the buildup of hydrogen ions inside the thylakoid lumen creates a concentration gradient. The passive diffusion of hydrogen ions from high concentration (in the thylakoid lumen) to low concentration (in the stroma) is harnessed to create ATP, just as in the electron transport chain of cellular respiration. The ions build up energy because of diffusion and because they all have the same electrical charge, repelling each other.

To release this energy, hydrogen ions will rush through any opening, similar to water jetting through a hole in a dam. In the thylakoid, that opening is a passage through a specialized protein channel called the ATP synthase. The energy released by the hydrogen ion stream allows ATP synthase to attach a third phosphate group to ADP, which forms a molecule of ATP (Figure 14). The flow of hydrogen ions through ATP synthase is called chemiosmosis because the ions move from an area of high to an area of low concentration through a semi-permeable structure.

Light-Independent Reactions

After the energy from the sun is converted into chemical energy and temporarily stored in ATP and NADPH molecules, the cell has the fuel needed to build carbohydrate molecules for long-term energy storage. The products of the light-dependent reactions, ATP and NADPH, have lifespans in the range of millionths of seconds, whereas the products of the light-independent reactions (carbohydrates and other forms of reduced carbon) can survive for hundreds of millions of years. The carbohydrate molecules made will have a backbone of carbon atoms. Where does the carbon come from? It comes from carbon dioxide, the gas that is a waste product of respiration in microbes, fungi, plants, and animals.

In plants, carbon dioxide (CO 2 ) enters the leaves through stomata, where it diffuses over short distances through intercellular spaces until it reaches the mesophyll cells. Once in the mesophyll cells, CO 2 diffuses into the stroma of the chloroplast—the site of light-independent reactions of photosynthesis. These reactions actually have several names associated with them. Another term, the Calvin cycle , is named for the man who discovered it, and because these reactions function as a cycle. Others call it the Calvin-Benson cycle to include the name of another scientist involved in its discovery. The most outdated name is dark reactions, because light is not directly required (Figure 15). However, the term dark reaction can be misleading because it implies incorrectly that the reaction only occurs at night or is independent of light, which is why most scientists and instructors no longer use it.

This illustration shows that ATP and NADPH produced in the light reactions are used in the Calvin cycle to make sugar.

Figure 15. Light reactions harness energy from the sun to produce chemical bonds, ATP, and NADPH. These energy-carrying molecules are made in the stroma where carbon fixation takes place.

The light-independent reactions of the Calvin cycle can be organized into three basic stages: fixation, reduction, and regeneration.

Stage 1: Fixation

In the stroma, in addition to CO 2 , two other components are present to initiate the light-independent reactions: an enzyme called ribulose bisphosphate carboxylase (RuBisCO), and three molecules of ribulose bisphosphate (RuBP), as shown in Figure 16. RuBP has five atoms of carbon, flanked by two phosphates.

A diagram of the Calvin cycle is shown with its three stages: carbon fixation, 3-PGA reduction, and regeneration of RuBP. In stage 1, the enzyme RuBisCO adds a carbon dioxide to the five-carbon molecule RuBP, producing two three-carbon 3-PGA molecules. In stage 2, two NADPH and two ATP are used to reduce 3-PGA to GA3P. In stage 3 RuBP is regenerated from GA3P. One ATP is used in the process. Three complete cycles produces one new GA3P, which is shunted out of the cycle and made into glucose (C6H12O6).

Figure 16. The Calvin cycle has three stages.

In stage 1, the enzyme RuBisCO incorporates carbon dioxide into an organic molecule, 3-PGA. In stage 2, the organic molecule is reduced using electrons supplied by NADPH. In stage 3, RuBP, the molecule that starts the cycle, is regenerated so that the cycle can continue. Only one carbon dioxide molecule is incorporated at a time, so the cycle must be completed three times to produce a single three-carbon GA3P molecule, and six times to produce a six-carbon glucose molecule.

Which of the following statements is true?

  • In photosynthesis, oxygen, carbon dioxide, ATP, and NADPH are reactants. GA3P and water are products.
  • In photosynthesis, chlorophyll, water, and carbon dioxide are reactants. GA3P and oxygen are products.
  • In photosynthesis, water, carbon dioxide, ATP, and NADPH are reactants. RuBP and oxygen are products.
  • In photosynthesis, water and carbon dioxide are reactants. GA3P and oxygen are products.

RuBisCO catalyzes a reaction between CO 2 and RuBP. For each CO 2 molecule that reacts with one RuBP, two molecules of another compound (3-PGA) form. PGA has three carbons and one phosphate. Each turn of the cycle involves only one RuBP and one carbon dioxide and forms two molecules of 3-PGA. The number of carbon atoms remains the same, as the atoms move to form new bonds during the reactions (3 atoms from 3CO 2 + 15 atoms from 3RuBP = 18 atoms in 3 atoms of 3-PGA). This process is called  carbon fixation , because CO 2 is “fixed” from an inorganic form into organic molecules.

Stage 2: Reduction

ATP and NADPH are used to convert the six molecules of 3-PGA into six molecules of a chemical called glyceraldehyde 3-phosphate (G3P). That is a reduction reaction because it involves the gain of electrons by 3-PGA. Recall that a  reduction is the gain of an electron by an atom or molecule. Six molecules of both ATP and NADPH are used. For ATP, energy is released with the loss of the terminal phosphate atom, converting it into ADP; for NADPH, both energy and a hydrogen atom are lost, converting it into NADP + . Both of these molecules return to the nearby light-dependent reactions to be reused and reenergized.

Stage 3: Regeneration

Interestingly, at this point, only one of the G3P molecules leaves the Calvin cycle and is sent to the cytoplasm to contribute to the formation of other compounds needed by the plant. Because the G3P exported from the chloroplast has three carbon atoms, it takes three “turns” of the Calvin cycle to fix enough net carbon to export one G3P. But each turn makes two G3Ps, thus three turns make six G3Ps. One is exported while the remaining five G3P molecules remain in the cycle and are used to regenerate RuBP, which enables the system to prepare for more CO 2 to be fixed. Three more molecules of ATP are used in these regeneration reactions.

Evolution of Photosynthesis

This photo shows short, round prickly cacti growing in cracks in a rock.

Figure 17. The harsh conditions of the desert have led plants like these cacti to evolve variations of the light-independent reactions of photosynthesis. These variations increase the efficiency of water usage, helping to conserve water and energy. (credit: Piotr Wojtkowski)

During the evolution of photosynthesis, a major shift occurred from the bacterial type of photosynthesis that involves only one photosystem and is typically anoxygenic (does not generate oxygen) into modern oxygenic (does generate oxygen) photosynthesis, employing two photosystems. This modern oxygenic photosynthesis is used by many organisms—from giant tropical leaves in the rainforest to tiny cyanobacterial cells—and the process and components of this photosynthesis remain largely the same. Photosystems absorb light and use electron transport chains to convert energy into the chemical energy of ATP and NADH. The subsequent light-independent reactions then assemble carbohydrate molecules with this energy.

Photosynthesis in desert plants has evolved adaptations that conserve water. In the harsh dry heat, every drop of water must be used to survive. Because stomata must open to allow for the uptake of CO 2 , water escapes from the leaf during active photosynthesis. Desert plants have evolved processes to conserve water and deal with harsh conditions. A more efficient use of CO 2 allows plants to adapt to living with less water. Some plants such as cacti (Figure 17) can prepare materials for photosynthesis during the night by a temporary carbon fixation/storage process, because opening the stomata at this time conserves water due to cooler temperatures. In addition, cacti have evolved the ability to carry out low levels of photosynthesis without opening stomata at all, a mechanism to face extremely dry periods.

Now that we’ve learned about the different pieces of photosynthesis, let’s put it all together. This video walks you through the process of photosynthesis as a whole:

In Summary: An Overview of Photosynthesis

The process of photosynthesis transformed life on Earth. By harnessing energy from the sun, photosynthesis evolved to allow living things access to enormous amounts of energy. Because of photosynthesis, living things gained access to sufficient energy that allowed them to build new structures and achieve the biodiversity evident today.

Only certain organisms, called photoautotrophs, can perform photosynthesis; they require the presence of chlorophyll, a specialized pigment that absorbs certain portions of the visible spectrum and can capture energy from sunlight. Photosynthesis uses carbon dioxide and water to assemble carbohydrate molecules and release oxygen as a waste product into the atmosphere. Eukaryotic autotrophs, such as plants and algae, have organelles called chloroplasts in which photosynthesis takes place, and starch accumulates. In prokaryotes, such as cyanobacteria, the process is less localized and occurs within folded membranes, extensions of the plasma membrane, and in the cytoplasm.

The pigments of the first part of photosynthesis, the light-dependent reactions, absorb energy from sunlight. A photon strikes the antenna pigments of photosystem II to initiate photosynthesis. The energy travels to the reaction center that contains chlorophyll  a to the electron transport chain, which pumps hydrogen ions into the thylakoid interior. This action builds up a high concentration of ions. The ions flow through ATP synthase via chemiosmosis to form molecules of ATP, which are used for the formation of sugar molecules in the second stage of photosynthesis. Photosystem I absorbs a second photon, which results in the formation of an NADPH molecule, another energy and reducing power carrier for the light-independent reactions.

Check Your Understanding

Answer the question(s) below to see how well you understand the topics covered in the previous section. This short quiz does  not  count toward your grade in the class, and you can retake it an unlimited number of times.

Use this quiz to check your understanding and decide whether to (1) study the previous section further or (2) move on to the next section.

  • Authored by : Shelli Carter and Lumen Learning. Provided by : Lumen Learning. License : CC BY: Attribution
  • Biology. Provided by : OpenStax CNX. Located at : http://cnx.org/contents/[email protected] . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/contents/[email protected]
  • Photosynthesis: Crash Course Biology #8. Authored by : CrashCourse. Located at : https://youtu.be/sQK3Yr4Sc_k . License : All Rights Reserved . License Terms : Standard YouTube License

Visible Body Learn Anatomy

  • Overview of Cells
  • Prokaryotic Cells
  • Eukaryotic Cells
  • Prokaryotic vs. Eukaryotic Cells
  • Monocot and Dicot Overview
  • Monocot and Dicot Roots
  • Monocot and Dicot Stems
  • Monocot and Dicot Leaves
  • Monocot Glossary
  • Dicot Glossary
  • DNA and Chromosomes Overview
  • Eukaryotic Chromosomes
  • Prokaryotic Chromosomes
  • Eukaryotic vs. Prokaryotic Chromosomes
  • DNA Structure
  • Red Blood Cells and Platelets
  • Granular Myeloid White Blood Cells
  • Agranular Myeloid White Blood Cells
  • Lymphoid White Blood Cells
  • Reactants and Products

Leaf Structures

Photosynthesis Reactions

  • Evolution Overview
  • Mechanisms of Evolution

Visible Body Learn Biology

Photosynthesis: Reactants and Products

© 2024 Visible Body

Photosynthesis

end product of photosynthesis formula

1. Photosynthesis is the process plants use to make their own food.

Like all living things, plants need energy to carry out the processes that keep them alive. They get this energy from food. Humans and most other animals are heterotrophs, meaning we have to consume other organisms—plants, other animals, or some combination of the two—for food. However, plants are autotrophs, meaning they create their own food.

Plants use sunlight to convert water and carbon dioxide into glucose and oxygen in a process called photosynthesis . In biology, this information is often expressed using a chemical equation .

Chemical equations typically show the molecules that enter the reaction (the reactants ) to the left and the molecules that result from the reaction (the products ) to the right, separated by an arrow that indicates a reaction taking place.

[Reactants] → [Products]

You can think of the reactants as the ingredients for preparing a meal and the products as the different dishes in that meal.

With that in mind, let’s take a look at the chemical equation for photosynthesis:

Sunlight + 6 CO 2 + 6 H 2 O → C 6 H 12 O 6 + 6 O 2 CO 2 = carbon dioxide H 2 O = water C 6 H 12 O 6 = glucose O 2 = oxygen * Sometimes, you’ll see sunlight, or a symbol indicating the sun, over the arrow in the equation.

Therefore, to produce one molecule of glucose (and 6 molecules of oxygen gas), a plant needs 6 molecules of carbon dioxide and 6 molecules of water.

2. The reactants of photosynthesis are carbon dioxide and water.

We’ve established that plants need carbon dioxide (CO 2 ) and water (H 2 O) to produce their food, but where do these reactants come from and how do they get where they need to go inside the plant?

Plants take in carbon dioxide from the air through small openings in their leaves called stomata. Some plants (most monocots) have stomata on both sides of their leaves, and others (dicots and a few monocots) only have stomata on the underside, or lower epidermis.

Plants take in carbon dioxide from the air through small openings in their leaves called stomata.

Plants get water from the soil surrounding their roots, and water gets to the leaves by traveling through the xylem, part of the plant’s vascular system. In leaves, the xylem and phloem are contained in the vascular bundle.

Once inside the leaf, the carbon dioxide and water molecules move into the cells of the mesophyll, the layer of ground tissue between the upper and lower epidermis. Within these cells, organelles called chloroplasts use the carbon dioxide and water to carry out photosynthesis.

3. Light energy from the sun initiates photosynthesis in the chloroplasts of plant cells.

Plant cells have special organelles called chloroplasts, which serve as the sites for the reactions that make up photosynthesis. Their thylakoid membranes contain a pigment called chlorophyll, which absorbs photons (light energy) from the sun, initiating the light-dependent reactions that take place within the thylakoids.

Chloroplasts are organelles within plant cells that serve as the sites for the reactions that make up photosynthesis.

During these reactions, water molecules (H 2 O) are broken down. NADPH and ATP—high energy molecules that power the production of glucose—are produced during the light-dependent reactions, as well. Electrons and hydrogen ions from the water are used to build NADPH. Hydrogen ions also power the conversion of ADP to ATP.

4. The products of photosynthesis are glucose and oxygen.

Did you know that oxygen is actually a waste product of photosynthesis? Although the hydrogen atoms from the water molecules are used in the photosynthesis reactions, the oxygen molecules are released as oxygen gas (O 2 ). (This is good news for organisms like humans and plants that use oxygen to carry out cellular respiration!) Oxygen passes out of the leaves through the stomata.

The light-independent reactions of photosynthesis—also known as the Calvin cycle—use enzymes in the stroma, along with the energy-carrying molecules (ATP and NADPH) from the light-dependent reactions, to break down carbon dioxide molecules (CO 2 ) into a form that is used to build glucose.The mitochondria in the plant’s cells use cellular respiration to break glucose down into a usable form of energy (ATP), which fuels all the plant’s activities.

After the light-independent reactions, glucose is often made into larger sugars like sucrose or carbohydrates like starch or cellulose. Sugars leave the leaf through the phloem and can travel to the roots for storage or to other parts of the plant, where they’re used as energy to fuel the plant’s activities.

Download lab activities

Download biology eBooks

External Sources

An article on chemical equation notation from cK-12.

Related Articles

3D rendering of a dissected frog with the words "A biology course for everyone"

For students

For instructors

Get our awesome anatomy emails!

When you select "Subscribe" you will start receiving our email newsletter. Use the links at the bottom of any email to manage the type of emails you receive or to unsubscribe. See our privacy policy for additional details.

  • User Agreement
  • Permissions

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Biology LibreTexts

8.6: The Light-Dependent Reactions of Photosynthesis - Processes of the Light-Dependent Reactions

  • Last updated
  • Save as PDF
  • Page ID 13208

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Learning Objectives

  • Describe how light energy is converted into ATP and NADPH.

How Light-Dependent Reactions Work

The overall function of light-dependent reactions, the first stage of photosynthesis, is to convert solar energy into chemical energy in the form of NADPH and ATP, which are used in light-independent reactions and fuel the assembly of sugar molecules. Protein complexes and pigment molecules work together to produce NADPH and ATP.

Producing Chemical Energy

Light energy is converted into chemical energy in a multiprotein complex called a photosystem. Two types of photosystems, photosystem I (PSI) and photosystem II (PSII), are found in the thylakoid membrane inside the chloroplast. Each photosystem consists of multiple antenna proteins that contain a mixture of 300–400 chlorophyll a and b molecules, as well as other pigments like carotenoids. Cytochrome b6f complex and ATP synthase are also major protein complexes in the thylakoid membrane that work with the photosystems to create ATP and NADPH.

image

The two photosystems absorb light energy through proteins containing pigments, such as chlorophyll. The light-dependent reactions begin in photosystem II. In PSII, energy from sunlight is used to split water, which releases two electrons, two hydrogen atoms, and one oxygen atom. When a chlorophyll a molecule within the reaction center of PSII absorbs a photon, the electron in this molecule attains a higher energy level. Because this state of an electron is very unstable, the electron is transferred to another molecule creating a chain of redox reactions called an electron transport chain (ETC). The electron flow goes from PSII to cytochrome b6f to PSI; as electrons move between these two photosystems, they lose energy. Because the electrons have lost energy prior to their arrival at PSI, they must be re-energized by PSI. Therefore, another photon is absorbed by the PSI antenna. That energy is transmitted to the PSI reaction center. This reaction center, known as P700, is oxidized and sends a high-energy electron to reduce NADP+ to NADPH. This process illustrates oxygenic photosynthesis, wherein the first electron donor is water and oxygen is created as a waste product.

image

Cytochrome b6f and ATP synthase work together to create ATP. This process, called photophosphorylation, occurs in two different ways. In non-cyclic photophosphorylation, cytochrome b6f uses the energy of electrons from PSII to pump hydrogen ions from the lumen (an area of high concentration) to the stroma (an area of low concentration). The energy released by the hydrogen ion stream allows ATP synthase to attach a third phosphate group to ADP, which forms ATP. This flow of hydrogen ions through ATP synthase is called chemiosmosis because the ions move from an area of high to an area of low concentration through a semi-permeable structure. In cyclic photophosphorylation, cytochrome b6f uses the energy of electrons from both PSII and PSI to create more ATP and to stop the production of NADPH. Cyclic phosphorylation is important to maintain the right proportions of NADPH and ATP, which will carry out light-independent reactions later on.

The net-reaction of all light-dependent reactions in oxygenic photosynthesis is: 2H 2 O + 2NADP+ + 3ADP + 3Pi → O 2 + 2NADPH + 3ATP

  • Light energy splits water and extracts electrons in photosystem II (PSII); then electrons are moved from PSII to cytochrome b6f to photosystem I (PSI) and reduce in energy.
  • Electrons are re-energized in PSI and those high energy electrons reduce NADP + to NADPH.
  • In non-cyclic photophosphorylation, cytochrome b6f uses the energy of electrons from PSII to pump hydrogen ions from the lumen to the stroma; this energy allows ATP synthase to attach a third phosphate group to ADP, which forms ATP.
  • In cyclic photophosphorylation, cytochrome b6f uses the energy of electrons from both PSII and PSI to create more ATP and to stop the production of NADPH, maintaining the right proportions of NADPH and ATP.
  • photosystem : Either of two biochemical systems, active in chloroplasts, that are part of photosynthesis.
  • photophosphorylation : The addition of a phosphate (PO43-) group to a protein or other organic molecule by photosynthesis.
  • chemiosmosis : The movement of ions across a selectively permeable membrane, down their electrochemical gradient.

Contributions and Attributions

  • visible light. Provided by : Wiktionary. Located at : http://en.wiktionary.org/wiki/visible_light . License : CC BY-SA: Attribution-ShareAlike
  • OpenStax College, Biology. October 16, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m44448/latest...ol11448/latest . License : CC BY: Attribution
  • Boundless. Provided by : Boundless Learning. Located at : www.boundless.com//biology/de...netic-spectrum . License : CC BY-SA: Attribution-ShareAlike
  • wavelength. Provided by : Wiktionary. Located at : en.wiktionary.org/wiki/wavelength . License : CC BY-SA: Attribution-ShareAlike
  • OpenStax College, The Light-Dependent Reactions of Photosynthesis. October 16, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m44448/latest...e_08_02_03.jpg . License : CC BY: Attribution
  • OpenStax College, The Light-Dependent Reactions of Photosynthesis. October 16, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m44448/latest...e_08_02_02.jpg . License : CC BY: Attribution
  • spectrophotometer. Provided by : Wiktionary. Located at : en.wiktionary.org/wiki/spectrophotometer . License : CC BY-SA: Attribution-ShareAlike
  • carotenoid. Provided by : Wiktionary. Located at : en.wiktionary.org/wiki/carotenoid . License : CC BY-SA: Attribution-ShareAlike
  • chlorophyll. Provided by : Wiktionary. Located at : en.wiktionary.org/wiki/chlorophyll . License : CC BY-SA: Attribution-ShareAlike
  • OpenStax College, The Light-Dependent Reactions of Photosynthesis. October 16, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m44448/latest...e_08_02_04.jpg . License : CC BY: Attribution
  • OpenStax College, The Light-Dependent Reactions of Photosynthesis. October 16, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m44448/latest..._02_05abcd.jpg . License : CC BY: Attribution
  • OpenStax College, The Light-Dependent Reactions of Photosynthesis. October 16, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m44448/latest...e_08_02_06.jpg . License : CC BY: Attribution
  • photosystem. Provided by : Wiktionary. Located at : en.wiktionary.org/wiki/photosystem . License : CC BY-SA: Attribution-ShareAlike
  • Cell Biology/Energy supply/Light Dependent Reactions. Provided by : Wikibooks. Located at : en.wikibooks.org/wiki/Cell_Bi...dent_Reactions . License : CC BY-SA: Attribution-ShareAlike
  • photophosphorylation. Provided by : Wikipedia. Located at : en.Wikipedia.org/wiki/photophosphorylation . License : CC BY-SA: Attribution-ShareAlike
  • chemiosmosis. Provided by : Wikipedia. Located at : en.Wikipedia.org/wiki/chemiosmosis . License : CC BY-SA: Attribution-ShareAlike
  • OpenStax College, The Light-Dependent Reactions of Photosynthesis. October 16, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m44448/latest...e_08_02_08.jpg . License : CC BY: Attribution
  • OpenStax College, The Light-Dependent Reactions of Photosynthesis. October 16, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m44448/latest...08_02_07ab.png . License : CC BY: Attribution
  • Biology Article

Photosynthesis

Photosynthesis is a process by which phototrophs convert light energy into chemical energy, which is later used to fuel cellular activities. The chemical energy is stored in the form of sugars, which are created from water and carbon dioxide.

end product of photosynthesis formula

Table of Contents

  • What is Photosynthesis?
  • Site of photosynthesis

Photosynthesis definition states that the process exclusively takes place in the chloroplasts through photosynthetic pigments such as chlorophyll a, chlorophyll b, carotene and xanthophyll. All green plants and a few other autotrophic organisms utilize photosynthesis to synthesize nutrients by using carbon dioxide, water and sunlight. The by-product of the photosynthesis process is oxygen.Let us have a detailed look at the process, reaction and importance of photosynthesis.

What Is Photosynthesis in Biology?

The word “ photosynthesis ” is derived from the Greek words  phōs  (pronounced: “fos”) and σύνθεσις (pronounced: “synthesis “) Phōs means “light” and σύνθεσις   means, “combining together.” This means “ combining together with the help of light .”

Photosynthesis also applies to other organisms besides green plants. These include several prokaryotes such as cyanobacteria, purple bacteria and green sulfur bacteria. These organisms exhibit photosynthesis just like green plants.The glucose produced during photosynthesis is then used to fuel various cellular activities. The by-product of this physio-chemical process is oxygen.

Photosynthesis Reaction

A visual representation of the photosynthesis reaction

  • Photosynthesis is also used by algae to convert solar energy into chemical energy. Oxygen is liberated as a by-product and light is considered as a major factor to complete the process of photosynthesis.
  • Photosynthesis occurs when plants use light energy to convert carbon dioxide and water into glucose and oxygen. Leaves contain microscopic cellular organelles known as chloroplasts.
  • Each chloroplast contains a green-coloured pigment called chlorophyll. Light energy is absorbed by chlorophyll molecules whereas carbon dioxide and oxygen enter through the tiny pores of stomata located in the epidermis of leaves.
  • Another by-product of photosynthesis is sugars such as glucose and fructose.
  • These sugars are then sent to the roots, stems, leaves, fruits, flowers and seeds. In other words, these sugars are used by the plants as an energy source, which helps them to grow. These sugar molecules then combine with each other to form more complex carbohydrates like cellulose and starch. The cellulose is considered as the structural material that is used in plant cell walls.

Where Does This Process Occur?

Chloroplasts are the sites of photosynthesis in plants and blue-green algae.  All green parts of a plant, including the green stems, green leaves,  and sepals – floral parts comprise of chloroplasts – green colour plastids. These cell organelles are present only in plant cells and are located within the mesophyll cells of leaves.

Also Read:  Photosynthesis Early Experiments

Photosynthesis Equation

Photosynthesis reaction involves two reactants, carbon dioxide and water. These two reactants yield two products, namely, oxygen and glucose. Hence, the photosynthesis reaction is considered to be an endothermic reaction. Following is the photosynthesis formula:

Unlike plants, certain bacteria that perform photosynthesis do not produce oxygen as the by-product of photosynthesis. Such bacteria are called anoxygenic photosynthetic bacteria. The bacteria that do produce oxygen as a by-product of photosynthesis are called oxygenic photosynthetic bacteria.

Structure Of Chlorophyll

Structure of chlorophyll

The structure of Chlorophyll consists of 4 nitrogen atoms that surround a magnesium atom. A hydrocarbon tail is also present. Pictured above is chlorophyll- f,  which is more effective in near-infrared light than chlorophyll- a

Chlorophyll is a green pigment found in the chloroplasts of the  plant cell   and in the mesosomes of cyanobacteria. This green colour pigment plays a vital role in the process of photosynthesis by permitting plants to absorb energy from sunlight. Chlorophyll is a mixture of chlorophyll- a  and chlorophyll- b .Besides green plants, other organisms that perform photosynthesis contain various other forms of chlorophyll such as chlorophyll- c1 ,  chlorophyll- c2 ,  chlorophyll- d and chlorophyll- f .

Also Read:   Biological Pigments

Process Of Photosynthesis

At the cellular level,  the photosynthesis process takes place in cell organelles called chloroplasts. These organelles contain a green-coloured pigment called chlorophyll, which is responsible for the characteristic green colouration of the leaves.

As already stated, photosynthesis occurs in the leaves and the specialized cell organelles responsible for this process is called the chloroplast. Structurally, a leaf comprises a petiole, epidermis and a lamina. The lamina is used for absorption of sunlight and carbon dioxide during photosynthesis.

Structure of Chloroplast

Structure of Chloroplast. Note the presence of the thylakoid

“Photosynthesis Steps:”

  • During the process of photosynthesis, carbon dioxide enters through the stomata, water is absorbed by the root hairs from the soil and is carried to the leaves through the xylem vessels. Chlorophyll absorbs the light energy from the sun to split water molecules into hydrogen and oxygen.
  • The hydrogen from water molecules and carbon dioxide absorbed from the air are used in the production of glucose. Furthermore, oxygen is liberated out into the atmosphere through the leaves as a waste product.
  • Glucose is a source of food for plants that provide energy for  growth and development , while the rest is stored in the roots, leaves and fruits, for their later use.
  • Pigments are other fundamental cellular components of photosynthesis. They are the molecules that impart colour and they absorb light at some specific wavelength and reflect back the unabsorbed light. All green plants mainly contain chlorophyll a, chlorophyll b and carotenoids which are present in the thylakoids of chloroplasts. It is primarily used to capture light energy. Chlorophyll-a is the main pigment.

The process of photosynthesis occurs in two stages:

  • Light-dependent reaction or light reaction
  • Light independent reaction or dark reaction

Stages of Photosynthesis

Stages of Photosynthesis in Plants depicting the two phases – Light reaction and Dark reaction

Light Reaction of Photosynthesis (or) Light-dependent Reaction

  • Photosynthesis begins with the light reaction which is carried out only during the day in the presence of sunlight. In plants, the light-dependent reaction takes place in the thylakoid membranes of chloroplasts.
  • The Grana, membrane-bound sacs like structures present inside the thylakoid functions by gathering light and is called photosystems.
  • These photosystems have large complexes of pigment and proteins molecules present within the plant cells, which play the primary role during the process of light reactions of photosynthesis.
  • There are two types of photosystems: photosystem I and photosystem II.
  • Under the light-dependent reactions, the light energy is converted to ATP and NADPH, which are used in the second phase of photosynthesis.
  • During the light reactions, ATP and NADPH are generated by two electron-transport chains, water is used and oxygen is produced.

The chemical equation in the light reaction of photosynthesis can be reduced to:

2H 2 O + 2NADP+ + 3ADP + 3Pi → O 2 + 2NADPH + 3ATP

Dark Reaction of Photosynthesis (or) Light-independent Reaction

  • Dark reaction is also called carbon-fixing reaction.
  • It is a light-independent process in which sugar molecules are formed from the water and carbon dioxide molecules.
  • The dark reaction occurs in the stroma of the chloroplast where they utilize the NADPH and ATP products of the light reaction.
  • Plants capture the carbon dioxide from the atmosphere through stomata and proceed to the Calvin photosynthesis cycle.
  • In the Calvin cycle , the ATP and NADPH formed during light reaction drive the reaction and convert 6 molecules of carbon dioxide into one sugar molecule or glucose.

The chemical equation for the dark reaction can be reduced to:

3CO 2 + 6 NADPH + 5H 2 O + 9ATP → G3P + 2H+ + 6 NADP+ + 9 ADP + 8 Pi

* G3P – glyceraldehyde-3-phosphate

Calvin cycle

Calvin photosynthesis Cycle (Dark Reaction)

Also Read:  Cyclic And Non-Cyclic Photophosphorylation

Importance of Photosynthesis

  • Photosynthesis is essential for the existence of all life on earth. It serves a crucial role in the food chain – the plants create their food using this process, thereby, forming the primary producers.
  • Photosynthesis is also responsible for the production of oxygen – which is needed by most organisms for their survival.

Frequently Asked Questions

1. what is photosynthesis explain the process of photosynthesis., 2. what is the significance of photosynthesis, 3. list out the factors influencing photosynthesis., 4. what are the different stages of photosynthesis, 5. what is the calvin cycle, 6. write down the photosynthesis equation..

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Biology related queries and study materials

Your result is as below

Request OTP on Voice Call

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Post My Comment

end product of photosynthesis formula

very useful

It’s very helpful ☺️

Please What Is Meant By 300-400 PPM

PPM stands for Parts-Per-Million. It corresponds to saying that 300 PPM of carbon dioxide indicates that if one million gas molecules are counted, 300 out of them would be carbon dioxide. The remaining nine hundred ninety-nine thousand seven hundred are other gas molecules.

Thank you very much Byju’s! I couldn’t find the answer anywhere. But luckily I hit upon this website. Awesome explanation and illustration.

byjus = Wow!

It helps me a lot thank you

Thanks in a million I love Byjus!

Super Byjus

Thanks helped a lot

Very interesting and helpful site.

Nice it is very uesful

It’s very useful 👍 Thank you Byju’s

Thank you very much Byju’s! I couldn’t find the answer anywhere. But luckily I hit upon this website. Awesome explanation and illustration.

Thank you BYJU’S for helping me in further clarifying my concepts

Excellent material easy to understand

Indeed, it’s precise and understandable. I like it.

end product of photosynthesis formula

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Middle school biology - NGSS

Course: middle school biology - ngss   >   unit 3, photosynthesis in organisms.

  • Understand: photosynthesis in organisms
  • Apply: photosynthesis in organisms

end product of photosynthesis formula

Key points:

  • Many organisms make their own food through photosynthesis . Plants, algae, and some unicellular organisms do photosynthesis.
  • Photosynthesis is powered by energy from sunlight. This energy is used to rearrange atoms in carbon dioxide and water to make oxygen and sugars.
  • Carbon dioxide and water are inputs of photosynthesis. These inputs come from the environment.
  • The oxygen is released into the environment.
  • The sugars can provide chemical energy . This energy can be used by the organism to live and grow. The sugars can also be used to build the organism’s structures, or they can be stored for later use.
  • Photosynthesis is usually carried out in chloroplasts . Chloroplasts are cell structures that contain molecules called chlorophyll . Chlorophyll helps capture light energy.

Want to join the conversation?

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Incredible Answer

IMAGES

  1. Photosynthesis

    end product of photosynthesis formula

  2. Photosynthesis Equation, Process, Reaction

    end product of photosynthesis formula

  3. Photosynthesis

    end product of photosynthesis formula

  4. Photosynthesis Equation Photosynthesis Formula Biology Education Stock

    end product of photosynthesis formula

  5. Photosynthesis Explained

    end product of photosynthesis formula

  6. What Are the Products of Photosynthesis?

    end product of photosynthesis formula

VIDEO

  1. Photosynthesis, Respiration, and Food Synthesis Pathway Links

  2. What is Photosynthesis?

  3. Photosynthesis Equation

  4. What are the 4 end products of photosynthesis?

  5. Photosynthesis

  6. Photosynthesis

COMMENTS

  1. Photosynthesis

    Photosynthesis Equation. 6 CO 2 + 6 H 2 O + Light -> C 6 H 12 O 6 + 6 O 2 + 6 H 2 O. Above is the overall reaction for photosynthesis. Using the energy from light and the hydrogens and electrons from water, the plant combines the carbons found in carbon dioxide into more complex molecules. ... Two of these molecules combined equals one glucose ...

  2. What Is the End Product of Photosynthesis?

    The Formula. The formula associated with the process of photosynthesis is. 6H 2 O + 6CO 2 = C 6 H 12 O 6 + 6O 2. This formula tells you is that six molecules of water plus six molecules of carbon dioxide will produce one molecule of glucose plus six molecules of oxygen. This entire process goes through two distinct stages before it is completed.

  3. Photosynthesis

    In chemical terms, photosynthesis is a light-energized oxidation-reduction process. (Oxidation refers to the removal of electrons from a molecule; reduction refers to the gain of electrons by a molecule.) In plant photosynthesis, the energy of light is used to drive the oxidation of water (H 2 O), producing oxygen gas (O 2 ), hydrogen ions (H ...

  4. 8.1: Overview of Photosynthesis

    Main Structures and Summary of Photosynthesis. Photosynthesis is a multi-step process that requires sunlight, carbon dioxide (which is low in energy), and water as substrates (Figure 8.1.3 8.1. 3 ). After the process is complete, it releases oxygen and produces glyceraldehyde-3-phosphate (GA3P), simple carbohydrate molecules (which are high in ...

  5. 4.1.3: Photosynthesis Overview and Equation

    Photosynthesis Equation. Photosynthesis is a multi-step process that requires sunlight, carbon dioxide (which is low in energy), and water as substrates (Figure 4.1.3.2 4.1.3. 2 ). After the process is complete, it releases oxygen and produces glyceraldehyde-3-phosphate (GA3P), simple carbohydrate molecules (which are high in energy) that can ...

  6. What Are the Products of Photosynthesis?

    In photosynthesis, energy from light is used to convert carbon dioxide and water into glucose and oxygen. For 6 carbon dioxide and 6 water molecules, 1 glucose molecule and 6 oxygen molecules are produced. Actually, plants reserve very little of the glucose for immediate use. Glucose molecules are combined by dehydration synthesis to form ...

  7. Photosynthesis review (article)

    In photosynthesis, solar energy is harvested as chemical energy in a process that converts water and carbon dioxide to glucose. Oxygen is released as a byproduct. In cellular respiration, oxygen is used to break down glucose, releasing chemical energy and heat in the process. Carbon dioxide and water are products of this reaction.

  8. Intro to photosynthesis (article)

    In photosynthesis, solar energy is harvested as chemical energy in a process that converts water and carbon dioxide to glucose. Oxygen is released as a byproduct. In cellular respiration, oxygen is used to break down glucose, releasing chemical energy and heat in the process. Carbon dioxide and water are products of this reaction.

  9. Photosynthesis

    The overall balanced equation for photosynthesis is commonly written as 6 CO 2 + 6 H 2 O → C 6 H 12 O 6 + 6 O 2 (shown below). In other words, six molecules of carbon dioxide and six molecules of water react in the presence of sunlight to produce one molecule of glucose (a six-carbon sugar) and six molecules of oxygen.

  10. What Are the Products of Photosynthesis?

    The products of photosynthesis are glucose (a sugar) and oxygen. Photosynthesis is a set of chemical reactions that plants and other organisms use to make chemical energy in the form of sugar. Like any chemical reaction, photosynthesis has reactants and products. Overall, the reactants of photosynthesis are carbon dioxide and water, while the ...

  11. Photosynthesis (video)

    C6H12O6 is the chemical formula of the sugar glucose. The +6O2 shows that after the reaction, there are 6 molecules of O2 leftover along with the creation of a molecule of glucose. ... the energy at the end of the process is much greater than the energy that the ingredients had at the outset. This means that photosynthesis is a sort of useful ...

  12. Photosynthesis

    Photosynthesis is a multi-step process that requires sunlight, carbon dioxide (which is low in energy), and water as substrates (Figure 3). After the process is complete, it releases oxygen and produces glyceraldehyde-3-phosphate (GA3P), simple carbohydrate molecules (which are high in energy) that can subsequently be converted into glucose, sucrose, or any of dozens of other sugar molecules.

  13. Photosynthesis: Reactants and Products

    You can think of the reactants as the ingredients for preparing a meal and the products as the different dishes in that meal. With that in mind, let's take a look at the chemical equation for photosynthesis: Sunlight + 6 CO 2 + 6 H 2 O → C 6 H 12 O 6 + 6 O 2. CO 2 = carbon dioxide. H 2 O = water. C 6 H 12 O 6 = glucose.

  14. 2.23: Photosynthesis Summary

    As you have seen, photosynthesis includes many steps all conveniently condensed into one simple equation. In the five concepts describing photosynthesis, this process has been presented in an introductory fashion. ... The light reactions also release oxygen gas as a waste product. The reactions of the Calvin cycle add carbon (from carbon ...

  15. The Calvin cycle (article)

    In the Calvin cycle, carbon atoms from CO 2 are fixed (incorporated into organic molecules) and used to build three-carbon sugars. This process is fueled by, and dependent on, ATP and NADPH from the light reactions. Unlike the light reactions, which take place in the thylakoid membrane, the reactions of the Calvin cycle take place in the stroma ...

  16. What is the basic formula for photosynthesis?

    The process of photosynthesis is commonly written as: 6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2.This means that the reactants, six carbon dioxide molecules and six water molecules, are converted by light energy captured by chlorophyll (implied by the arrow) into a sugar molecule and six oxygen molecules, the products. The sugar is used by the organism, and the oxygen is released as a by-product.

  17. 5.1: Overview of Photosynthesis

    These sugar molecules contain the energy that living things need to survive. Figure 5.1.4 5.1. 4: Photosynthesis uses solar energy, carbon dioxide, and water to release oxygen and to produce energy-storing sugar molecules. The complex reactions of photosynthesis can be summarized by the chemical equation shown in Figure 5.1.5 5.1.

  18. What Are the Reactants & Products in the Equation for Photosynthesis

    The first product, and primary reason for the process, is simple sugar. This sugar, called glucose, is the end result of the conversion of solar energy to chemical energy. It represents stored energy that can be used by the plant, or consumed by other organisms. Oxygen is also a product of photosynthesis.

  19. PDF Photosynthesis

    Photosynthesis Photosynthesis is the process by ... Photosynthesis may be summarised by the word equation: carbon dioxide + water glucose + oxygen The conversion of usable sunlight energy into chemical energy is associated with the action of the ... • one molecule is the initial end product of photosynthesis; it is quickly converted to ...

  20. Light-dependent reactions (photosynthesis reaction) (article)

    The light-dependent reactions use light energy to make two molecules needed for the next stage of photosynthesis: the energy storage molecule ATP and the reduced electron carrier NADPH. In plants, the light reactions take place in the thylakoid membranes of organelles called chloroplasts.

  21. 8.6: The Light-Dependent Reactions of Photosynthesis

    The overall function of light-dependent reactions, the first stage of photosynthesis, is to convert solar energy into chemical energy in the form of NADPH and ATP, which are used in light-independent reactions and fuel the assembly of sugar molecules. ... wherein the first electron donor is water and oxygen is created as a waste product. Figure ...

  22. Photosynthesis

    The by-product of the photosynthesis process is oxygen.Let us have a detailed look at the process, reaction and importance of photosynthesis. ... Hence, the photosynthesis reaction is considered to be an endothermic reaction. Following is the photosynthesis formula: ... Check your score and answers at the end of the quiz. Start Quiz. Congrats!

  23. Photosynthesis in organisms (article)

    Photosynthesis is a vital process that converts light energy into chemical energy and organic molecules. In this article, you will learn how different organisms perform photosynthesis, what types of pigments and reactions are involved, and how photosynthesis affects the biosphere. Khan Academy is a free online learning platform that offers courses in various subjects, including biology.