correlational research titles examples for highschool students

120+ Great Correlational Research Topics For Students In 2024

Want to know the best correlational research topics for students? Ever wondered about the connections between things? That’s what correlation research is all about! In this article, we’ll dive into correlation research topics for students, explaining and offering a big list of interesting topics. Whether you’re a high school student starting a science project or a college student looking for a thesis idea, there’s something here for everyone.

Also Like To Read: Business Research Topics for College Students

Table of Contents

What Is Correlational Research?

Correlation research is about exploring connections between different things. It helps determine if changes in one thing are linked to changes in another. But remember, just because things are linked doesn’t mean one causes the other. It’s like finding patterns without saying one thing makes the other happen.

How To Choose Great Correlational Research Topics For Students

Picking the right topic is crucial for a good study. Here are some tips:

How To Choose Great Correlational Research Topics For Students

  • Pick What Interests You:  Choose topics that you find interesting. It makes studying more enjoyable.
  • Look Around:  Think about things happening around you or in the news. What’s interesting or important?
  • Read Some Studies:  Check out what others have studied. Is there something missing or not clear? That could be your topic.
  • Brainstorm Ideas:  Make a list of ideas. Big ideas and small ideas – anything that comes to mind.

List of Interesting Correlational Research Topics For Students

Now, let’s explore a variety of topics you can dig into across different areas:

Cool Correlational Research Topics For High School Students

  • How does bullying relate to academic performance?
  • Do good study habits connect to better grades?
  • Exploring the link between student success and parents’ involvement.
  • Discussing test scores and study time.
  • Understanding the correlation between physical and mental health.
  • Examining nutrition and its impact on study concentration.
  • Investigated the correlation between video games and good grades. 
  • Relationship between personality traits and subject preference.
  • The link between study time and poor grades.
  • How does trainers’ support connect to students’ mental health?

Most Recent Correlation Research Topics for STEM Students

  • Exploring the connection between food and drug efficacy.
  • Investigating the correlation between exercise and sleep.
  • Understanding sleep patterns and heart rate.
  • Examining the link between weather seasons and body immunity.
  • Connecting wind speed and energy supply.
  • Investigating rainfall extent and crop yields.
  • Exploring respiratory health and air pollution.
  • Correlation between carbon emissions and global warming.
  • Stress and its connection to mental health.
  • Bridge capacity and preferred design.

Examples in Correlational Research For College Students

  • The correlation between parental guidance and career decisions.
  • Differences between student grades and career choices.
  • A Teacher’ qualifications and students’ success example in class.
  • Major Link between teachers’ age and students’ performance.
  • Example of Clarifying students’ workload and subject choice.
  • Difference between teachers’ morale and students’ grades.
  • Example in School location and performance metrics.
  • Relationship between school curriculum and performance.
  • Relating school programs to students’ absenteeism.
  • Difference In Academic success vs teachers’ gender

Nursing-Related Correlation Questions

  • Relationship between sleep quality and post-surgery management
  • Does patient healing correlate with the choice of drugs?
  • What is the difference between physical activity levels and depression?
  • How does nurse-patient communication connect to patient recovery?
  • The correlation between age and child mortality in mothers.
  • Does patient education correlate with prompt recovery?
  • The connection between spirituality and drug use.
  • How does adherence to drugs correlate with age?
  • Major Correlation between routine nursing and back pain.
  • Is there a connection between chemotherapy and fatigue?

Technology Ralted Correlation Research Topics For Students

  • Relationship between screen time and eye strain
  • The link between video games and IQ levels
  • Does loneliness correlate with tech dependence?
  • The connection between wireless technology and infertility.
  • Relationship between smartphone usage and sleep quality
  • Does academic performance correlate with technology exposure?
  • Relationship between technology and physical activity levels
  • Correlation between self-esteem and technology
  • The link between technology and memory sharpness.
  • Is there a correlation between screen time and headaches?

Qualitative Correlational Research Topics For Students in Economics

  • Inflation and unemployment rates correlation.
  • Financial liberation and foreign aid connection.
  • Trade policies and foreign investors’ correlation.
  • Income and a nation’s well-being link.
  • Salary levels and education levels correlation.
  • Urbanization and economic progress connection.
  • Economy growth rate and national budget correlation.
  • Marital status and employed population link.
  • Early retirements and the country’s growth connection.
  • Energy prices and economic growth correlation.

Quantitative Correlational Research Questions in Nursing

  • Correlation between racism and population size.
  • Propaganda and marketing connection.
  • Cults and social class correlation.
  • Bullying and skin color connection.
  • Child abuse and marriages correlation.
  • Aging and hormones connection.
  • Leadership and communication correlation.
  • Depression and discrimination connection.
  • Cognitive behavior therapy and age correlation.
  • Eating disorders and genetics connection.

Correlational Research Titles About Business

  • Remote employees and business growth correlation.
  • Business ethic laws and productivity connection.
  • Language and business growth correlation.
  • Foreign investments and cultural differences link.
  • Monopoly and businesses closure correlation.
  • Cultural practices and business survival connection.
  • Customer behaviors and product choice correlation.
  • Advertising and business innovations connection.
  • Labor laws and taxation correlation.
  • Technology and business trends link.

Best Correlational Research Sample Title Examples for Statistics Essays

  • Rent costs and population correlation.
  • COVID-19 vaccination and health budget connection.
  • Technology and data sample collection correlation.
  • Education costs and income connection.
  • Education levels and job satisfaction correlation.
  • Local trade volumes and dollar exchange rates connection.
  • Loans and small businesses’ growth rate correlation.
  • Online and offline surveys connection.
  • Wage analysis and employee age correlation.
  • National savings and employment rates connection.

Good Correlational Research Examples for Sociology Research Papers

  • Social media and kids’ behaviors in school correlation.
  • Food culture and modern lifestyle diseases connection.
  • Health equity and deaths correlation.
  • Gender stereotypes and unemployment connection .
  • Women’s behaviors and mainstream media programs correlation.
  • Age differences and abusive marriages connection.
  • Children’s obesity and social class correlation.
  • Infertility and mental health among couples connection.
  • Bullying and past violence encounters in kids correlation.
  • Genetically modified foods and lifestyle diseases connection.

Exciting Correlational Research Topic & Title Examples

  • The relationship between social media use and levels of anxiety in adolescents.
  • Correlation between sleep patterns and academic performance in college students.

Correlational Research Topics For Students

  • The connection between parental involvement and students’ academic achievement.
  • Relationship between technology use in the classroom and student engagement.

Hot Correlational Research Topics For Students In Sociology

  • Correlation between income levels and access to healthcare services.
  • The impact of social media usage on interpersonal relationships.

Most Interesting Correlational Research Topics For Health Sciences

  • Relationship between exercise frequency and mental health in adults.
  • Correlation between diet and the prevalence of chronic diseases.

Correlational Research Topics About Business In The Philippines

  • The relationship between employee job satisfaction and organizational productivity.
  • Correlation between leadership styles and team performance in the workplace.

Environmental Science Correlational Research Topics

  • The connection between air quality and respiratory health in urban areas.
  • Relationship between waste disposal practices and environmental sustainability.

Economics Correlational Research Topics For Students

  • Correlation between inflation rates and consumer spending habits.
  • The impact of education levels on individual income and economic growth.

Good Correlational Research Topics For Students About Political Science

  • Relationship between political ideologies and voting behavior.
  • Correlation between government transparency and public trust.

Communication-Related Correlational Research Topics

  • The connection between media consumption and political opinions.
  • Relationship between communication styles and workplace conflicts.

Linguistics-Related Correlational Research Topics For Students

  • Correlation between bilingualism and cognitive abilities in children.
  • The impact of language diversity on team collaboration in multinational companies.

Anthropology Correlational Research Topics For Students

  • Relationship between cultural diversity and mental health outcomes.
  • Correlation between traditional practices and community well-being.

Greatest Correlational Research Topics For Criminal Justice

  • The connection between socioeconomic status and crime rates.
  • Relationship between community policing and trust in law enforcement.

Best Correlational Research Topics For Students In Nursing and Healthcare

  • Correlation between nurse-patient communication and patient satisfaction.
  • The impact of nurse staffing levels on patient outcomes.

Computer Science-Related Correlational Research Topics

  • Relationship between smartphone usage and productivity in the tech industry.
  • Correlation between programming skills and job success in the IT field.

Engineering Correlational Research Topics For Students

  • The connection between environmental engineering practices and pollution levels.
  • Relationship between project management strategies and construction project success.

What Are The Best Topics For Correlational Research About Accountancy, Business, And Management Students?

Here are some correlational research topics for Accountancy, Business, and Management students:

So that’s all about the best correlational research topics for students. You can explore its essence and present many captivating topics spanning various disciplines. From psychology to business, education to STEM, a wealth of intriguing correlations is waiting to be uncovered. Remember, correlation does not imply causation, but with careful analysis and interpretation, correlational research can offer valuable insights into the interconnectedness of phenomena.

So, whether you’re a high school student embarking on a science project or a seasoned researcher seeking inspiration, the world of correlation research awaits your exploration.

Related Posts

Qualitative Research Topics for High School Students

100+ Most Qualitative Research Topics For High School Students In 2024

Google Scholar Research Topics

100+ Most Interesting Google Scholar Research Topics For Students [Updated 2024]

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

130+ Correlational Research Topics: Great Ideas For Students

Correlational Research Topics

The correlational research example title you decide to write will determine the uniqueness of your research paper. Choose a well-thought title that brings out the best of your expertise. Are you confused about which topic suits you? This article will let you know the best correlational research topics for students.

What is Correlation Research?

Correlational research involves looking at the affiliation between two or more study variables. The results of the study will have either a positive, negative, or zero correlation. More so, the research can either be quantitative or qualitative.

Now that you have the answer to “what are correlational studies,” we’ll focus on the various example topics students can use to write excellent papers.

Correlational Research Titles Examples for Highschool Students

Correlation topic examples for stem students, correlational research examples in education, correlational research questions in nursing, examples of correlational research topics in technology, correlational quantitative research topic examples in economics, correlational research topics in psychology, correlational research titles about business, correlational research sample title examples for statistics essays, correlational research examples for sociology research papers.

If you want your high school correlational research paper to stand out, go for creative and fun titles. Get a correlation research example below.

  • How can you relate bullying and academic performance?
  • Study habits vs academic grades
  • Evaluating the link between student success and parents’ involvement
  • Discuss test scores and study time
  • Physical and mental health: The correlation
  • Nutrition and study concentration
  • The connection between good results and video games
  • Clarifying the relationship between personality traits and subject preference
  • The relationship between study time and poor grades
  • The correlation between trainers’ support and students’ mental health
  • The association between school bullying and absenteeism
  • The effects of academic degrees on students’ career development
  • Is there a correlation between teaching styles and students’ learning ability

These research topics for STEM students are game-changers. However, try any of the titles below regarding correlation in research.

The connection between:

  • Food and drug efficacy
  • Exercise and sleep
  • Sleep patterns and heart rate
  • Weather seasons and body immunity
  • Wind speed and energy supply
  • Rainfall extent and crop yields
  • Respiratory health and air pollution
  • Carbon emissions and global warming
  • Stress and mental health
  • Bridge capacity and preferred design
  • Building quality and insulation capability
  • Fuel efficiency and vehicle weight
  • 19 th and 20 th Century approaches to stem subjects

As you learn more about the thesis statement about social media , keep a keen eye on each example of the correlational research paper we list below.

  • The correlation between parental guidance and career decision
  • Differences between student grades and career choice
  • Teachers’ qualifications and students’ success in class
  • The connection between teachers’ age and students’ performance
  • Clarifying students’ workload and subject choice
  • The link between teachers’ morale and students’ grades
  • Discuss school location and performance metrics
  • Clarifying the relationship between school curriculum and performance
  • Relating school programs to students’ absenteeism
  • Academic success vs teachers’ gender
  • The association between parental income and school selection
  • The effects of many subjects on students’ career choice
  • The relationship between school grading and dropout rates

In addition to biochemistry topics and anatomy research paper topics , it also helps to know correlational research topics in nursing. Some of them include the following:

  • Is there a relationship between sleep quality and post-surgery management?
  • Is there a correlation between patient healing and the choice of drugs?
  • Is there a link between physical activity levels and depression?
  • Is there an association between nurse-patient communication and patient recovery?
  • What is the correlation between age and child mortality in mothers?
  • Is there a correlation between patient education and prompt recovery?
  • What is the correlation between spirituality and the use of drugs?
  • What is the link between patient adherence to drugs and age?
  • What is the correlation between routine nursing and back pain?
  • Is there a correlation between chemotherapy and fatigue?
  • Is there a relationship between age and cholesterol levels?
  • Is there a relationship between blood pressure and sleep disturbances?
  • What is the link between drug use and organ failure?

A technology research-oriented paper should show your prowess in any area you tackle. Pick any example of a correlational research question from the list below for your research.

  • Is there a relationship between screen time and eye strain?
  • What is the link between video games and IQ levels?
  • Is there a correlation between loneliness and tech dependence?
  • What is the link between wireless technology and infertilities
  • Is there a relationship between smartphone usage and sleep quality?
  • Is there a correlation between academic performance and technology exposure?
  • Is there a relationship between technology and physical activity levels?
  • What is the correlation between self-esteem and technology?
  • What is the link between technology and memory sharpness?
  • What is the correlation between screen time and headaches?
  • Is there a correlation between technology and anxiety?
  • Is there a link between a sedentary lifestyle and technology?
  • What is the correlation between tech dependence and communication skills?

The best example of correlational design in quantitative research will help you kickstart your research paper. In your paper, focus on discussing the relationship between the following:

  • Inflation and unemployment rates
  • Financial liberation and foreign aid
  • Trade policies and foreign investors
  • Income and nation’s well being
  • Salary levels and education levels
  • Urbanization and economic progress
  • Economy growth rate and national budget
  • Marital status and employed population
  • Early retirements and the country’s growth
  • Energy prices and economic growth
  • Employee satisfaction and job retention
  • Small-scale businesses and exploitative loans
  • Educated population and nation’s economic levels

Depending on the preferred correlation method in research, your paper approach will vary. As you look at these social issues research topics , psychology correlational topics also come in handy.

Discuss the link between the following in your paper:

  • Racism and population size
  • Propaganda and marketing
  • Cults and social class
  • Bullying and skin color
  • Child abuse and marriages
  • Aging and hormones
  • Leadership and communication
  • Depression and discrimination
  • Cognitive behavior therapy and age
  • Eating disorders and genetics
  • Attention and kids’ gender
  • Speech disorder and tech dependence
  • Perception and someone’s age

Business and economics research paper topics vary, but you should always go for the best. Here are some ideal topics for your correlation research paper in business.

Assess the link between:

  • Remote employees and business growth
  • Business ethic laws and productivity
  • Language and business growth
  • Foreign investments and cultural differences
  • Monopoly and businesses closure
  • Cultural practices and business survival
  • Customer behaviors and products choice
  • Advertising and business innovations
  • Labor laws and taxation
  • Technology and business trends
  • Tourism and local economies
  • Business sanctions and currency value
  • Immigration and unemployment

You’ve probably encountered social media research topics and wondered whether you could get some focusing on statistics. Below examples will get you sorted.

Clarifying the relationship between:

  • Rent costs and population
  • COVID-19 vaccination and health budget
  • Technology and data sample collection
  • Education costs and income
  • Education levels and job satisfaction
  • Local trade volumes and dollar exchange rates
  • Loans and small businesses’ growth rate
  • Online and offline surveys
  • Wage analysis and employee age
  • National savings and employment rates
  • Poverty and income inequality
  • Trade and economic growth
  • Interest rates and consumer borrowing behavior trends

In sociology, there are so many argumentative essay topics to write about. But when it comes to correlational topics, many students have a problem.

Write a sociology correlational research paper focusing on the association between:

  • Social media and kids’ behaviors in school
  • Food culture and modern lifestyle diseases
  • Health equity and deaths
  • Gender stereotypes and unemployment
  • Women’s behaviors and mainstream media programs
  • Age differences and abusive marriages
  • Children’s obesity and social class
  • Infertility and mental health among couples
  • Bullying and past violence encounters in kids
  • Genetically modified foods and lifestyle diseases
  • Religious education and improving technology
  • Social media and modern friendships
  • Divorce and children education

Let’s now help you write your research paper on time. Whether it’s on sociology, economics, nursing or any other course, we are here for you. Our expert writers offer the best help on correlational research paper writing .

Leave a Reply Cancel reply

CodeAvail

Top 150+ Correlational Research Topics For Students [2024]

Correlational Research Topics For Students

Correlational research looks at how two or more things relate without saying one causes the other. It tries to find patterns and connections between different things to see how changes in one might be connected to changes in another.

In education, correlational studies are super important because they help us understand how different factors affect how well students learn. Whether looking at teaching methods or considering students’ backgrounds, correlational research helps teachers determine how to help students do better in school.

Our blog is here to give students interesting correlational research topics. We want to make it easy for students to find ideas and get excited about doing research. 

We aim to get you thinking and curious about how things are connected so you can learn more about them.

What is Correlation? An Introduction

Table of Contents

Correlation is defined as how two variables change simultaneously. It helps us comprehend their relationship. 

When two variables are correlated, changes in one tend to be associated with changes in the other, but it doesn’t necessarily mean that one causes the other. 

Correlation can be positive, meaning both variables move in the same direction, or negative, where they move in opposite directions. 

Understanding correlation is crucial in various fields like science, economics, and social sciences, as it allows us to identify patterns, make predictions, and better comprehend the complexities of the world around us.

Also Read: “ Top 151+ Quantitative Research Topics for ABM Students “.

Benefits of Correlational Research Topics For Students

Correlational research topics offer numerous benefits for students, allowing them to explore relationships between variables and understand the complexity of real-world phenomena. Here are several benefits of correlational research topics for students:

Enhances critical thinking skills

Engaging in correlational research encourages students to analyze data, draw conclusions, and evaluate the relationships between variables, fostering critical thinking abilities.

Provides real-world application

Correlational research topics often relate to everyday phenomena, allowing students to apply theoretical concepts to practical situations promoting a deeper understanding of the subject matter.

Fosters research skills

Conducting correlational studies equips students with valuable research skills, including data collection, analysis, and interpretation, essential for academic and professional success.

Stimulates curiosity and creativity

Exploring correlational research topics ignites curiosity and creativity, inspiring students to explore new ideas, generate hypotheses, and develop innovative solutions to complex problems.

Prepares for future academic pursuits

Engaging in correlational research prepares students for future academic endeavors by honing their research abilities and preparing them for more advanced research projects at higher levels of education.

List of Interesting Correlational Research Topics For Students

Here’s a list of interesting correlational research topics for students across various disciplines:

  • The correlation between teacher enthusiasm and student engagement.
  • The relationship between parental involvement and student academic performance.
  • Correlating study habits with GPA in high school students.
  • The impact of class size on student achievement.
  • Relationship between technology use and learning outcomes.
  • Correlation between sleep quality and academic success in college students.
  • The correlation between extracurricular activity and academic achievement.
  • Correlation between self-esteem and academic achievement.
  • The influence of school climate on student behavior and achievement.
  • Relationship between student-teacher rapport and academic success.

Health and Wellness

  • Correlation between exercise frequency and mental health.
  • Relationship between diet and stress levels in college students.
  • The impact of social support on overall health.
  • Correlating screen time with sleep quality in adolescents.
  • The relationship between mindfulness practices and emotional well-being.
  • Correlation between access to green spaces and physical activity levels.
  • The influence of peer pressure on health-related behaviors.
  • Relationship between music preference and stress reduction.
  • The correlation between pet ownership and mental health.
  • The relationship between outdoor recreation and overall wellness.

Social Sciences

  • Correlation between socioeconomic status and academic achievement.
  • The link between social media usage and self-esteem.
  • The impact of family structure on social behavior.
  • Correlation between political ideology and charitable giving.
  • Relationship between cultural background and communication styles.
  • The influence of peer group on academic motivation.
  • Correlation between media consumption and attitudes towards diversity.
  • Relationship between personality traits and career success.
  • The impact of community involvement on civic engagement.
  • Correlation between volunteering and life satisfaction.

Technology and Society

  • The relationship between smartphone use and attention span.
  • Correlation between video game usage and problem-solving skills.
  • The influence of social media on interpersonal relationships.
  • Relationship between Internet usage and academic performance.
  • Correlation between online shopping habits and financial literacy.
  • The impact of digital literacy on job opportunities.
  • Relationship between virtual reality exposure and empathy levels.
  • Correlation between social networking and political engagement.
  • The relationship between technology use and environmental awareness.
  • Correlation between online activism and real-world action.

Economics and Finance

  • The relationship between household income and savings behavior.
  • Correlation between education level and earning potential.
  • The impact of inflation on consumer spending habits.
  • Relationship between stock market performance and consumer confidence.
  • Correlation between financial literacy and debt management.
  • The influence of advertising on consumer purchasing decisions.
  • Relationship between economic growth and unemployment rates.
  • Correlation between housing prices and neighborhood demographics.
  • The relationship between government spending and economic growth.
  • Correlation between education funding and student outcomes.

Environmental Studies

  • The relationship between air pollution and respiratory health.
  • Correlation between waste management practices and environmental sustainability.
  • The impact of deforestation on biodiversity.
  • Relationship between climate change awareness and pro-environmental behaviors.
  • Correlation between water quality and public health.
  • The influence of renewable energy adoption on greenhouse gas emissions.
  • Relationship between urbanization and wildlife habitat loss.
  • Correlation between environmental regulations and industry practices.
  • The relationship between sustainable agriculture and food security.
  • Correlation between green infrastructure and urban heat island effect.
  • The link between childhood trauma and adult mental health.
  • Correlation between personality type and career choice.
  • The effects of early attachment types on romantic relationships.
  • Relationship between parental discipline strategies and child behavior.
  • Correlation between introversion/extroversion and social networking.
  • The effect of peer pressure on risk-taking behavior.
  • The link between body image and social media use.
  • Correlation between anxiety levels and academic performance.
  • The relationship between self-esteem and relationship satisfaction.
  • Correlation between happiness levels and gratitude practices.

Criminal Justice

  • The association between childhood trauma and adult mental health.
  • Correlation between access to education and recidivism rates.
  • The impact of community policing on crime prevention.
  • Relationship between substance abuse and criminal behavior.
  • Correlation between gun control laws and violent crime rates.
  • The influence of media portrayal on perceptions of crime.
  • Relationship between juvenile delinquency and family dynamics.
  • Correlation between sentencing disparities and race.
  • The relationship between policing tactics and public trust.
  • Correlation between restorative justice programs and rehabilitation rates.

Business and Management

  • The relationship between employee satisfaction and productivity.
  • Correlation between leadership style and team performance.
  • The impact of workplace diversity on organizational success.
  • The link between staff training programs and work happiness.
  • Correlation between customer satisfaction and repeat business.
  • The impact of company culture on employee turnover.
  • Relationship between ethical business practices and consumer trust.
  • Correlation between innovation and market competitiveness.
  • The relationship between employee engagement and company profitability.
  • Correlation between marketing strategies and brand loyalty.

Media and Communication

  • The link between media consumption and political polarization.
  • Correlation between advertising exposure and consumer behavior.
  • The influence of media depiction on body image.
  • Relationship between news consumption and knowledge of current events.
  • Correlation between social media usage and interpersonal communication skills.
  • The influence of celebrity endorsements on brand perception.
  • Relationship between media violence exposure and aggression levels.
  • Correlation between news bias and public opinion.
  • The link between media literacy and critical thinking abilities.
  • Correlation between reality television consumption and social attitudes.

Culture and Society

  • The relationship between cultural diversity and creativity.
  • Correlation between cultural heritage preservation and community identity.
  • The impact of globalization on cultural values.
  • Relationship between language diversity and social cohesion.
  • Correlation between cultural norms and attitudes towards gender roles.
  • Communication styles are influenced by cultural background.
  • Relationship between cultural assimilation and mental health.
  • Correlation between cultural festivals and community bonding.
  • The relationship between cultural stereotypes and prejudice.
  • Correlation between cultural adaptation and immigrant integration.

Sports and Recreation

  • The relationship between sports participation and academic achievement.
  • Correlation between exercise frequency and stress reduction.
  • The impact of sports team success on school spirit.
  • Relationship between youth sports involvement and leadership skills.
  • Correlation between sports fandom and social connections.
  • The influence of sports participation on self-esteem.
  • Relationship between sportsmanship and moral development.
  • Correlation between coaching style and athlete motivation.
  • The relationship between sports injuries and long-term health outcomes.
  • Correlation between sports specialization and athletic performance.

Science and Technology

  • The relationship between science education and technological innovation.
  • Correlation between technology use and environmental impact.
  • The impact of science literacy on public policy attitudes.
  • Relationship between STEM education and career opportunities.
  • Correlation between scientific research funding and breakthrough discoveries.
  • The influence of technology on scientific research methodologies.
  • Relationship between science communication and public understanding.
  • Correlation between technological advancements and quality of life.
  • The relationship between science engagement and environmental conservation efforts.
  • Correlation between technology adoption and societal changes.

Language and Linguistics

  • The relationship between bilingualism and cognitive development.
  • Correlation between language proficiency and academic success.
  • The impact of language diversity on social integration.
  • Relationship between language acquisition and brain development.
  • Correlation between language use and cultural preservation.
  • The influence of language barriers on access to healthcare.
  • Relationship between language learning strategies and proficiency levels.
  • Correlation between language policies and educational outcomes.
  • The relationship between language evolution and societal change.
  • Correlation between language dialects and regional identities.

Travel and Tourism

  • The relationship between travel experiences and cultural awareness.
  • Correlation between tourism development and economic growth.
  • The impact of travel restrictions on tourism industries.
  • Relationship between destination marketing and tourist arrivals.
  • Correlation between travel preferences and personality traits.
  • The influence of travel experiences on personal growth.
  • Relationship between travel safety perceptions and tourist behavior.
  • Correlation between travel motivations and destination choices.
  • The relationship between travel blogging and destination popularity.
  • Correlation between travel trends and environmental sustainability.
  • The relationship between public transportation accessibility and urban development .

These topics offer students various possibilities for conducting correlational research across various domains, allowing them to explore meaningful relationships between different variables and contribute to existing knowledge.

Tips for Conducting Correlational Research

Conducting correlational research requires careful planning, attention to detail, and adherence to established research methodologies . Here are some tips to help students conduct correlational research effectively:

1. Clearly define variables

Identify the variables you want to study and ensure they are measurable and relevant to your research question.

2. Choose appropriate measures

Select reliable and valid measures for each variable to capture the data accurately.

3. Collect sufficient data

Ensure your sample size is large enough to detect meaningful correlations and consider diverse populations if applicable.

4. Use appropriate statistical analysis

Employ statistical techniques like the Pearson correlation coefficient to analyze the relationship between variables.

5. Consider potential confounding variables

Be aware of other factors that may influence the correlation and control for them if possible.

6. Interpret results cautiously

Remember that correlation does not imply causation; consider alternative explanations for observed relationships.

7. Communicate findings effectively

Present your results clearly and accurately, including any limitations or caveats in your interpretations.

Correlational research topics offer invaluable insights into the intricate relationships between variables across diverse fields. 

Researchers can uncover patterns, make predictions, and deepen our understanding of complex phenomena by exploring correlations. While correlational studies do not establish causation, they provide a foundational framework for further investigation and practical applications.

Through meticulous analysis and interpretation, correlational research contributes to advancements in education, health, social sciences, and beyond. 

As we continue to explore the interconnectedness of variables, correlational research remains a powerful tool for unraveling the mysteries of the world around us and driving progress in various fields.

What is the difference between correlational research and experimental research?

Correlational research examines the relationship between variables without manipulating them, while experimental research involves manipulating variables to determine cause-and-effect relationships. Experimental research allows for stronger causal inferences compared to correlational research.

What are some strengths and weaknesses of correlational research? 

Strengths include being relatively inexpensive and efficient and avoiding manipulation, which might be unethical. Weaknesses include not establishing causality and being susceptible to confounding variables.

Can correlational research establish causation between variables?

No, correlational research cannot establish causation between variables. While it can identify relationships and associations, it does not manipulate variables to determine cause-and-effect, making it unable to establish causal relationships definitively.

What are some common pitfalls to avoid when conducting correlational research?

Common pitfalls in correlational research include mistaking correlation for causation, failing to control for confounding variables, relying on small or biased samples, and neglecting to consider the directionality or third-variable explanations for observed correlations.

Related Posts

8 easiest programming language to learn for beginners.

There are so many programming languages you can learn. But if you’re looking to start with something easier. We bring to you a list of…

10 Online Tutoring Help Benefits

Do you need a computer science assignment help? Get the best quality assignment help from computer science tutors at affordable prices. They always presented to help…

ct-logo

150+ Correlational Research Topics: Best Ideas For Students

Welcome to our blog, Correlational Research Topics! Research about connections is important for understanding how changes in one thing can relate to changes in another. But it does not mean one thing causes the other. This blog will cover the basics of research on connections. 

This includes what connections mean and different types of connections. We’ll also discuss what impacts connections and why carefully picking research topics matters. Plus, we’ll give examples of connection research topics in different fields. We’ll show why they’re important and could make a difference.

Whether you’re a student looking for research ideas or want to know about connections in the real world, this blog aims to give helpful ideas and motivation for your journey into connection research. Let’s dive in to learn correlational research topics!

What is Correlational Research?

Table of Contents

Correlation research studies how changes in one thing relate to changes in another. It looks at how two things are connected and if they change together. For example, studying whether people’s income and their level of education are correlated. 

Correlation research does not prove cause and effect. It shows relationships between things but not why they are related. More studies are needed to determine if one thing causes the other. Correlation research helps reveal trends and patterns between variables.

How to Select Correlational Research Topics

Here are some simple tips for choosing a good topic for correlational research:

  • Pick two things you think are related, like age and memory or exercise and mood.
  • Ensure you can measure these things with numbers, like hours exercised per week or the number of words remembered.
  • Don’t try to prove one thing causes another; just look at how they are related.
  • Pick timely topics that matter right now.
  • Look at past research to get ideas and find gaps to fill.
  • Think about questions you have about how certain things are connected.
  • Look through research databases to find studies on relationships you’re curious about.
  • Choose things that naturally connect in the real world, not random things.

The main goal is to pick two things you can measure that somehow seem to relate to each other. Spend time thinking of ideas before settling on a topic.

150+ Correlational Research Topics For Students

Here are over 150 correlational research topics categorized into different fields for students:

  • The correlation between self-esteem and educational achievement among high school students.
  • Relationship between self-esteem and social media usage in college students.
  • Correlation between personality traits and career success.
  • Impact of parental attachment styles on romantic relationships in young adults.
  • Relationship between stress levels and sleep quality among university students.
  • Correlation between emotional intelligence and leadership effectiveness.
  • The connection between involvement of parents and academic performance in elementary school children.
  • Correlation between anxiety levels and academic performance in college students.
  • Relationship between attachment styles and childhood trauma in adulthood.
  • Correlation between mindfulness practices and stress reduction among college students.
  • The correlation between teacher-student rapport and student engagement in the classroom.
  • Relationship between homework completion rates and academic achievement.
  • Correlation between classroom environment and student motivation.
  • Impact of involvement of parents in education on student performance.
  • Relationship between school climate and student behavior.
  • Correlation between extracurricular activities and academic success.
  • The relationship between teacher feedback and pupil learning outcomes.
  • Correlation between technology usage and academic performance.
  • Relationship between school resources and student achievement.
  • Correlation between bullying experiences and academic performance.
  • The correlation between the status of socioeconomic and access to healthcare.
  • Relationship between family structure and juvenile delinquency rates.
  • Correlation between media representation and cultural perceptions.
  • Impact of community involvement on crime rates.
  • Relationship between religion and political affiliation.
  • Correlation between social support networks and mental health outcomes.
  • Relationship between gender roles and career choices.
  • Correlation between immigration rates and cultural assimilation.
  • Relationship between income inequality and social mobility.
  • Correlation between social media usage and social interaction patterns.
  • The correlation between growth of GDP and unemployment rates.
  • Relationship between inflation rates and consumer spending.
  • Correlation between government spending and economic growth.
  • Impact of trade policies on economic development.
  • Relationship between interest rates and investment behavior.
  • Correlation between income inequality and economic stability.
  • Relationship between education levels and income disparity.
  • Correlation between taxation policies and income distribution.
  • Impact of globalization on income inequality.
  • Relationship between poverty rates and access to healthcare.

Health and Medicine

  • The correlation between exercise frequency and mental health outcomes.
  • Relationship between diet quality and cardiovascular health.
  • Correlation between habits of smoking and lung cancer rates.
  • Impact of sleep duration on physical health.
  • Relationship between anxiety levels and immune system function.
  • Relationship between vaccination rates and disease prevalence.
  • Correlation between air pollution and respiratory diseases.
  • Impact of social support networks on recovery from illness.
  • Relationship between alcohol consumption and liver health.

Environmental Science

  • The correlation between deforestation and biodiversity loss.
  • Relationship between greenhouse gas emissions and world temperatures.
  • Correlation between water pollution levels and aquatic biodiversity.
  • Impact of urbanization on air quality.
  • Relationship between waste management practices and environmental sustainability.
  • Correlation between agricultural practices and soil erosion rates.
  • Relationship between renewable energy usage and carbon emissions.
  • Correlation between climate change and natural disasters.
  • Impact of plastic pollution on marine ecosystems.
  • Relationship between population growth and resource depletion.

Business and Management

  • The correlation between employee satisfaction and productivity.
  • Relationship between leadership styles and team performance.
  • Correlation between employee training programs and job satisfaction.
  • Impact of organizational culture on employee turnover rates.
  • Relationship between customer satisfaction and business profitability.
  • Correlation between marketing strategies and customer retention.
  • Relationship between the corporate social responsibility and brand reputation.
  • Correlation between employee diversity and innovation.
  • Impact of supply chain management practices on company performance.
  • Relationship between economic indicators and stock market fluctuations.

Technology and Society

  • The correlation between social media usage and loneliness feelings.
  • Relationship between screen time and attention span in children.
  • Correlation between video game usage and aggression levels.
  • Impact of smartphone usage on sleep quality.
  • Relationship between the online concerns of privacy and social media usage.
  • Correlation between digital literacy skills and academic performance.
  • Relationship between technology adoption rates and generational differences.
  • Correlation between Internet access and economic development.
  • Relationship between online shopping habits and environmental sustainability.
  • Correlation between technology usage and mental health outcomes.

Sports and Exercise Science

  • The correlation between physical activity levels and cardiovascular health.
  • Relationship between nutrition habits and athletic performance.
  • Correlation between training intensity and muscle growth.
  • Impact of sleep quality on athletic recovery.
  • Relationship between exercise frequency and mental well-being.
  • Correlation between sports participation and academic performance.
  • Relationship between injuries in sports and long-term health outcomes.
  • Correlation between coaching styles and athlete motivation.
  • Impact of sports specialization on injury risk.
  • Relationship between exercise adherence and weight management.

Media and Communication

  • The correlation between media consumption habits and political beliefs.
  • Relationship between advertising exposure and consumer behavior.
  • Correlation between news coverage and public opinion.
  • Influence of social media influencers on buying decisions.
  • The connection between critical thinking skills and media literacy.
  • Correlation between television viewing habits and body image issues.
  • Relationship between media representation and societal norms.
  • Correlation between online communication and interpersonal relationships.
  • Relationship between media exposure and aggression in children.
  • Correlation between streaming services usage and traditional media consumption.

Arts and Culture

  • The correlation between education in arts and academic achievement.
  • Relationship between cultural experiences and empathy levels.
  • Correlation between music preferences and personality traits.
  • Impact of cultural diversity on creative industries.
  • Relationship between art participation and mental health outcomes.
  • Correlation between museum attendance and community engagement.
  • Relationship between literature consumption and empathy development.
  • Correlation between cultural events attendance and social cohesion.
  • Impact of arts funding on community development.
  • Relationship between artistic expression and emotional well-being.

Political Science

  • The correlation between voter turnout and socioeconomic status.
  • Relationship between political ideology and environmental policies.
  • Correlation between campaign spending and election outcomes.
  • Impact of political polarization on civic engagement.
  • Relationship between media bias and public perception of political issues.
  • Correlation between government transparency and public trust.
  • Relationship between political party cooperation and attitudes towards immigration.
  • Correlation between political rhetoric and hate crime rates.
  • Relationship between political knowledge and participation in democratic processes.
  • Correlation between lobbying efforts and policy outcomes.

Law and Justice

  • The correlation between socioeconomic status and incarceration rates.
  • Relationship between sentencing disparities and racial identity.
  • Correlation between police presence and crime rates in urban areas.
  • Impact of therapeutic programs of justices on recidivism rates.
  • Relationship between access to legal representation and court outcomes.
  • Correlation between mandatory sentencing laws and prison overcrowding.
  • Relationship between drug policy enforcement and addiction rates.
  • Correlation between control laws on guns and firearm-related deaths.
  • Relationship between immigration policies and crime rates.
  • Correlation between juvenile justice interventions and rehabilitation outcomes.

History and Anthropology

  • The correlation between archaeological findings and historical narratives.
  • Relationship between language diversity and cultural preservation.
  • Correlation between migration patterns and cultural diffusion.
  • Impact of colonialism on indigenous cultures.
  • Relationship between cultural practices and social hierarchy.
  • Correlation between climate change and human migration.
  • Relationship between trade routes and cultural exchange.
  • Correlation between artistic expressions and societal values.
  • Relationship between religious beliefs and cultural traditions.
  • Correlation between technological advancements and societal change.

Gender Studies

  • The correlation between gender stereotypes and career choices.
  • Relationship between media representation and gender norms.
  • Correlation between gender wage gap and educational attainment.
  • Impact of gender individuality on mental health outcomes.
  • Relationship between gender roles and domestic responsibilities.
  • Correlation between workplace discrimination and gender diversity.
  • Relationship between feminism and political participation.
  • Correlation between LGBTQ+ rights advocacy and social acceptance.
  • Relationship between gender-based violence and cultural attitudes.
  • Correlation between gender equity policies and workplace satisfaction.

Miscellaneous

  • The correlation between pet ownership and mental health.
  • Relationship between travel experiences and cultural awareness.
  • Correlation between volunteering activities and life satisfaction.
  • Impact of hobbies on stress management.
  • Relationship between religious beliefs and charitable giving.
  • Correlation between language proficiency and cognitive abilities.
  • Relationship between parenting styles and child development results.
  • Correlation between financial literacy and money management skills.
  • Correlation between social network size and happiness levels.

These correlational research topics cover a wide range of areas and can inspire students looking to conduct correlational research in various fields.

Challenges and Limitations

Here are some simple challenges with correlational research:

  • It can’t prove one thing causes another, only that things are related.
  • Other factors could affect the relationship you see between the two things you’re studying.
  • Hard to know which thing impacts the other or if they impact each other.
  • Just because two things are correlated does not mean they have a strong relationship. The correlation could be weak.
  • Uses observational data, so there is less control than in experiments.
  • This might not apply to everyone, only the group studied.
  • People may not be honest or accurate if they self-report data like in surveys.

In summary, correlational research can only show two things that relate in some way but can’t prove causation or account for other factors that might affect the relationship. The results may only apply to the sample studied, too. These are good limitations to be aware of.

Best Practices for Correlational Research

Here are some best practices for conducting quality correlational research:

  • Use a large random sample representing the population you want to generalize to. This strengthens the external validity of your findings.
  • Measure variables accurately and reliably using validated instruments. Poor measurement can obscure relationships.
  • Collect data prospectively, if possible, rather than retrospectively. This avoids reliance on recollection.
  • Use multiple data points over time (longitudinal data) rather than a single data collection. This provides more insight into relationships.
  • Examine curvilinear relationships in addition to linear ones. The correlation may only occur at certain levels.
  • Control statistically for potential third variables that may influence the relationship. This provides a clearer assessment of the relationship.
  • Assess directionality and potential interactive or reciprocal relationships using path analysis or longitudinal data. This provides greater understanding.
  • Use multiple regression techniques to model more complex relationships among many variables.
  • Report effect sizes and confidence intervals, not just statistical significance. Effect size indicates practical importance.
  • Cautiously interpret results and do not overstate causality claims. Correlation does not equal causation.
  • Replicate findings using different samples to assess generalizability and consistency.

Following best practices strengthens correlational research’s rigor, analysis, and interpretation. Adhering to these can produce higher-quality studies.

Final Remarks

Studying correlational research topics can help us learn much about how different things are related. Psychology, education, and business students can pick topics to research and find interesting connections. They can learn if certain things appear to go up or down together. This can give useful information to help make decisions or create policies.

When students carefully choose a correlational research topic and study the data, they can add to what we know about real-world relationships. For example, they may find links between sleep and grades, exercise and mood, or class size and learning.

Doing correlational research allows students to spot patterns between things and practice research skills. As they choose their topics, students can find exciting areas to explore. Uncovering correlations teaches us more about the complicated links between things in the world around us. With simple hard work, students can use correlational research to reveal new insights.

Similar Articles

How To Do Homework Fast

How To Do Homework Fast – 11 Tips To Do Homework Fast

Homework is one of the most important parts that have to be done by students. It has been around for…

Write assignment introduction

How to Write an Assignment Introduction – 6 Best Tips

In essence, the writing tasks in academic tenure students are an integral part of any curriculum. Whether in high school,…

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed .

What are your chances of acceptance?

Calculate for all schools, your chance of acceptance.

Duke University

Your chancing factors

Extracurriculars.

correlational research titles examples for highschool students

100 Interesting Research Paper Topics for High Schoolers

What’s covered:, how to pick the right research topic, elements of a strong research paper.

  • Interesting Research Paper Topics

Composing a research paper can be a daunting task for first-time writers. In addition to making sure you’re using concise language and your thoughts are organized clearly, you need to find a topic that draws the reader in.

CollegeVine is here to help you brainstorm creative topics! Below are 100 interesting research paper topics that will help you engage with your project and keep you motivated until you’ve typed the final period. 

A research paper is similar to an academic essay but more lengthy and requires more research. This added length and depth is bittersweet: although a research paper is more work, you can create a more nuanced argument, and learn more about your topic. Research papers are a demonstration of your research ability and your ability to formulate a convincing argument. How well you’re able to engage with the sources and make original contributions will determine the strength of your paper. 

You can’t have a good research paper without a good research paper topic. “Good” is subjective, and different students will find different topics interesting. What’s important is that you find a topic that makes you want to find out more and make a convincing argument. Maybe you’ll be so interested that you’ll want to take it further and investigate some detail in even greater depth!

For example, last year over 4000 students applied for 500 spots in the Lumiere Research Scholar Program , a rigorous research program founded by Harvard researchers. The program pairs high-school students with Ph.D. mentors to work 1-on-1 on an independent research project . The program actually does not require you to have a research topic in mind when you apply, but pro tip: the more specific you can be the more likely you are to get in!

Introduction

The introduction to a research paper serves two critical functions: it conveys the topic of the paper and illustrates how you will address it. A strong introduction will also pique the interest of the reader and make them excited to read more. Selecting a research paper topic that is meaningful, interesting, and fascinates you is an excellent first step toward creating an engaging paper that people will want to read.

Thesis Statement

A thesis statement is technically part of the introduction—generally the last sentence of it—but is so important that it merits a section of its own. The thesis statement is a declarative sentence that tells the reader what the paper is about. A strong thesis statement serves three purposes: present the topic of the paper, deliver a clear opinion on the topic, and summarize the points the paper will cover.

An example of a good thesis statement of diversity in the workforce is:

Diversity in the workplace is not just a moral imperative but also a strategic advantage for businesses, as it fosters innovation, enhances creativity, improves decision-making, and enables companies to better understand and connect with a diverse customer base.

The body is the largest section of a research paper. It’s here where you support your thesis, present your facts and research, and persuade the reader.

Each paragraph in the body of a research paper should have its own idea. The idea is presented, generally in the first sentence of the paragraph, by a topic sentence. The topic sentence acts similarly to the thesis statement, only on a smaller scale, and every sentence in the paragraph with it supports the idea it conveys.

An example of a topic sentence on how diversity in the workplace fosters innovation is:

Diversity in the workplace fosters innovation by bringing together individuals with different backgrounds, perspectives, and experiences, which stimulates creativity, encourages new ideas, and leads to the development of innovative solutions to complex problems.

The body of an engaging research paper flows smoothly from one idea to the next. Create an outline before writing and order your ideas so that each idea logically leads to another.

The conclusion of a research paper should summarize your thesis and reinforce your argument. It’s common to restate the thesis in the conclusion of a research paper.

For example, a conclusion for a paper about diversity in the workforce is:

In conclusion, diversity in the workplace is vital to success in the modern business world. By embracing diversity, companies can tap into the full potential of their workforce, promote creativity and innovation, and better connect with a diverse customer base, ultimately leading to greater success and a more prosperous future for all.

Reference Page

The reference page is normally found at the end of a research paper. It provides proof that you did research using credible sources, properly credits the originators of information, and prevents plagiarism.

There are a number of different formats of reference pages, including APA, MLA, and Chicago. Make sure to format your reference page in your teacher’s preferred style.

  • Analyze the benefits of diversity in education.
  • Are charter schools useful for the national education system?
  • How has modern technology changed teaching?
  • Discuss the pros and cons of standardized testing.
  • What are the benefits of a gap year between high school and college?
  • What funding allocations give the most benefit to students?
  • Does homeschooling set students up for success?
  • Should universities/high schools require students to be vaccinated?
  • What effect does rising college tuition have on high schoolers?
  • Do students perform better in same-sex schools?
  • Discuss and analyze the impacts of a famous musician on pop music.
  • How has pop music evolved over the past decade?
  • How has the portrayal of women in music changed in the media over the past decade?
  • How does a synthesizer work?
  • How has music evolved to feature different instruments/voices?
  • How has sound effect technology changed the music industry?
  • Analyze the benefits of music education in high schools.
  • Are rehabilitation centers more effective than prisons?
  • Are congestion taxes useful?
  • Does affirmative action help minorities?
  • Can a capitalist system effectively reduce inequality?
  • Is a three-branch government system effective?
  • What causes polarization in today’s politics?
  • Is the U.S. government racially unbiased?
  • Choose a historical invention and discuss its impact on society today.
  • Choose a famous historical leader who lost power—what led to their eventual downfall?
  • How has your country evolved over the past century?
  • What historical event has had the largest effect on the U.S.?
  • Has the government’s response to national disasters improved or declined throughout history?
  • Discuss the history of the American occupation of Iraq.
  • Explain the history of the Israel-Palestine conflict.
  • Is literature relevant in modern society?
  • Discuss how fiction can be used for propaganda.
  • How does literature teach and inform about society?
  • Explain the influence of children’s literature on adulthood.
  • How has literature addressed homosexuality?
  • Does the media portray minorities realistically?
  • Does the media reinforce stereotypes?
  • Why have podcasts become so popular?
  • Will streaming end traditional television?
  • What is a patriot?
  • What are the pros and cons of global citizenship?
  • What are the causes and effects of bullying?
  • Why has the divorce rate in the U.S. been declining in recent years?
  • Is it more important to follow social norms or religion?
  • What are the responsible limits on abortion, if any?
  • How does an MRI machine work?
  • Would the U.S. benefit from socialized healthcare?
  • Elderly populations
  • The education system
  • State tax bases
  • How do anti-vaxxers affect the health of the country?
  • Analyze the costs and benefits of diet culture.
  • Should companies allow employees to exercise on company time?
  • What is an adequate amount of exercise for an adult per week/per month/per day?
  • Discuss the effects of the obesity epidemic on American society.
  • Are students smarter since the advent of the internet?
  • What departures has the internet made from its original design?
  • Has digital downloading helped the music industry?
  • Discuss the benefits and costs of stricter internet censorship.
  • Analyze the effects of the internet on the paper news industry.
  • What would happen if the internet went out?
  • How will artificial intelligence (AI) change our lives?
  • What are the pros and cons of cryptocurrency?
  • How has social media affected the way people relate with each other?
  • Should social media have an age restriction?
  • Discuss the importance of source software.
  • What is more relevant in today’s world: mobile apps or websites?
  • How will fully autonomous vehicles change our lives?
  • How is text messaging affecting teen literacy?

Mental Health

  • What are the benefits of daily exercise?
  • How has social media affected people’s mental health?
  • What things contribute to poor mental and physical health?
  • Analyze how mental health is talked about in pop culture.
  • Discuss the pros and cons of more counselors in high schools.
  • How does stress affect the body?
  • How do emotional support animals help people?
  • What are black holes?
  • Discuss the biggest successes and failures of the EPA.
  • How has the Flint water crisis affected life in Michigan?
  • Can science help save endangered species?
  • Is the development of an anti-cancer vaccine possible?

Environment

  • What are the effects of deforestation on climate change?
  • Is climate change reversible?
  • How did the COVID-19 pandemic affect global warming and climate change?
  • Are carbon credits effective for offsetting emissions or just marketing?
  • Is nuclear power a safe alternative to fossil fuels?
  • Are hybrid vehicles helping to control pollution in the atmosphere?
  • How is plastic waste harming the environment?
  • Is entrepreneurism a trait people are born with or something they learn?
  • How much more should CEOs make than their average employee?
  • Can you start a business without money?
  • Should the U.S. raise the minimum wage?
  • Discuss how happy employees benefit businesses.
  • How important is branding for a business?
  • Discuss the ease, or difficulty, of landing a job today.
  • What is the economic impact of sporting events?
  • Are professional athletes overpaid?
  • Should male and female athletes receive equal pay?
  • What is a fair and equitable way for transgender athletes to compete in high school sports?
  • What are the benefits of playing team sports?
  • What is the most corrupt professional sport?

Where to Get More Research Paper Topic Ideas

If you need more help brainstorming topics, especially those that are personalized to your interests, you can use CollegeVine’s free AI tutor, Ivy . Ivy can help you come up with original research topic ideas, and she can also help with the rest of your homework, from math to languages.

Disclaimer: This post includes content sponsored by Lumiere Education.

Related CollegeVine Blog Posts

correlational research titles examples for highschool students

  • Privacy Policy

Research Method

Home » Correlational Research – Methods, Types and Examples

Correlational Research – Methods, Types and Examples

Table of Contents

Correlational Research Design

Correlational Research

Correlational Research is a type of research that examines the statistical relationship between two or more variables without manipulating them. It is a non-experimental research design that seeks to establish the degree of association or correlation between two or more variables.

Types of Correlational Research

There are three types of correlational research:

Positive Correlation

A positive correlation occurs when two variables increase or decrease together. This means that as one variable increases, the other variable also tends to increase. Similarly, as one variable decreases, the other variable also tends to decrease. For example, there is a positive correlation between the amount of time spent studying and academic performance. The more time a student spends studying, the higher their academic performance is likely to be. Similarly, there is a positive correlation between a person’s age and their income level. As a person gets older, they tend to earn more money.

Negative Correlation

A negative correlation occurs when one variable increases while the other decreases. This means that as one variable increases, the other variable tends to decrease. Similarly, as one variable decreases, the other variable tends to increase. For example, there is a negative correlation between the number of hours spent watching TV and physical activity level. The more time a person spends watching TV, the less physically active they are likely to be. Similarly, there is a negative correlation between the amount of stress a person experiences and their overall happiness. As stress levels increase, happiness levels tend to decrease.

Zero Correlation

A zero correlation occurs when there is no relationship between two variables. This means that the variables are unrelated and do not affect each other. For example, there is zero correlation between a person’s shoe size and their IQ score. The size of a person’s feet has no relationship to their level of intelligence. Similarly, there is zero correlation between a person’s height and their favorite color. The two variables are unrelated to each other.

Correlational Research Methods

Correlational research can be conducted using different methods, including:

Surveys are a common method used in correlational research. Researchers collect data by asking participants to complete questionnaires or surveys that measure different variables of interest. Surveys are useful for exploring the relationships between variables such as personality traits, attitudes, and behaviors.

Observational Studies

Observational studies involve observing and recording the behavior of participants in natural settings. Researchers can use observational studies to examine the relationships between variables such as social interactions, group dynamics, and communication patterns.

Archival Data

Archival data involves using existing data sources such as historical records, census data, or medical records to explore the relationships between variables. Archival data is useful for investigating the relationships between variables that cannot be manipulated or controlled.

Experimental Design

While correlational research does not involve manipulating variables, researchers can use experimental design to establish cause-and-effect relationships between variables. Experimental design involves manipulating one variable while holding other variables constant to determine the effect on the dependent variable.

Meta-Analysis

Meta-analysis involves combining and analyzing the results of multiple studies to explore the relationships between variables across different contexts and populations. Meta-analysis is useful for identifying patterns and inconsistencies in the literature and can provide insights into the strength and direction of relationships between variables.

Data Analysis Methods

Correlational research data analysis methods depend on the type of data collected and the research questions being investigated. Here are some common data analysis methods used in correlational research:

Correlation Coefficient

A correlation coefficient is a statistical measure that quantifies the strength and direction of the relationship between two variables. The correlation coefficient ranges from -1 to +1, with -1 indicating a perfect negative correlation, +1 indicating a perfect positive correlation, and 0 indicating no correlation. Researchers use correlation coefficients to determine the degree to which two variables are related.

Scatterplots

A scatterplot is a graphical representation of the relationship between two variables. Each data point on the plot represents a single observation. The x-axis represents one variable, and the y-axis represents the other variable. The pattern of data points on the plot can provide insights into the strength and direction of the relationship between the two variables.

Regression Analysis

Regression analysis is a statistical method used to model the relationship between two or more variables. Researchers use regression analysis to predict the value of one variable based on the value of another variable. Regression analysis can help identify the strength and direction of the relationship between variables, as well as the degree to which one variable can be used to predict the other.

Factor Analysis

Factor analysis is a statistical method used to identify patterns among variables. Researchers use factor analysis to group variables into factors that are related to each other. Factor analysis can help identify underlying factors that influence the relationship between two variables.

Path Analysis

Path analysis is a statistical method used to model the relationship between multiple variables. Researchers use path analysis to test causal models and identify direct and indirect effects between variables.

Applications of Correlational Research

Correlational research has many practical applications in various fields, including:

  • Psychology : Correlational research is commonly used in psychology to explore the relationships between variables such as personality traits, behaviors, and mental health outcomes. For example, researchers may use correlational research to examine the relationship between anxiety and depression, or the relationship between self-esteem and academic achievement.
  • Education : Correlational research is useful in educational research to explore the relationships between variables such as teaching methods, student motivation, and academic performance. For example, researchers may use correlational research to examine the relationship between student engagement and academic success, or the relationship between teacher feedback and student learning outcomes.
  • Business : Correlational research can be used in business to explore the relationships between variables such as consumer behavior, marketing strategies, and sales outcomes. For example, marketers may use correlational research to examine the relationship between advertising spending and sales revenue, or the relationship between customer satisfaction and brand loyalty.
  • Medicine : Correlational research is useful in medical research to explore the relationships between variables such as risk factors, disease outcomes, and treatment effectiveness. For example, researchers may use correlational research to examine the relationship between smoking and lung cancer, or the relationship between exercise and heart health.
  • Social Science : Correlational research is commonly used in social science research to explore the relationships between variables such as socioeconomic status, cultural factors, and social behavior. For example, researchers may use correlational research to examine the relationship between income and voting behavior, or the relationship between cultural values and attitudes towards immigration.

Examples of Correlational Research

  • Psychology : Researchers might be interested in exploring the relationship between two variables, such as parental attachment and anxiety levels in young adults. The study could involve measuring levels of attachment and anxiety using established scales or questionnaires, and then analyzing the data to determine if there is a correlation between the two variables. This information could be useful in identifying potential risk factors for anxiety in young adults, and in developing interventions that could help improve attachment and reduce anxiety.
  • Education : In a correlational study in education, researchers might investigate the relationship between two variables, such as teacher engagement and student motivation in a classroom setting. The study could involve measuring levels of teacher engagement and student motivation using established scales or questionnaires, and then analyzing the data to determine if there is a correlation between the two variables. This information could be useful in identifying strategies that teachers could use to improve student motivation and engagement in the classroom.
  • Business : Researchers might explore the relationship between two variables, such as employee satisfaction and productivity levels in a company. The study could involve measuring levels of employee satisfaction and productivity using established scales or questionnaires, and then analyzing the data to determine if there is a correlation between the two variables. This information could be useful in identifying factors that could help increase productivity and improve job satisfaction among employees.
  • Medicine : Researchers might examine the relationship between two variables, such as smoking and the risk of developing lung cancer. The study could involve collecting data on smoking habits and lung cancer diagnoses, and then analyzing the data to determine if there is a correlation between the two variables. This information could be useful in identifying risk factors for lung cancer and in developing interventions that could help reduce smoking rates.
  • Sociology : Researchers might investigate the relationship between two variables, such as income levels and political attitudes. The study could involve measuring income levels and political attitudes using established scales or questionnaires, and then analyzing the data to determine if there is a correlation between the two variables. This information could be useful in understanding how socioeconomic factors can influence political beliefs and attitudes.

How to Conduct Correlational Research

Here are the general steps to conduct correlational research:

  • Identify the Research Question : Start by identifying the research question that you want to explore. It should involve two or more variables that you want to investigate for a correlation.
  • Choose the research method: Decide on the research method that will be most appropriate for your research question. The most common methods for correlational research are surveys, archival research, and naturalistic observation.
  • Choose the Sample: Select the participants or data sources that you will use in your study. Your sample should be representative of the population you want to generalize the results to.
  • Measure the variables: Choose the measures that will be used to assess the variables of interest. Ensure that the measures are reliable and valid.
  • Collect the Data: Collect the data from your sample using the chosen research method. Be sure to maintain ethical standards and obtain informed consent from your participants.
  • Analyze the data: Use statistical software to analyze the data and compute the correlation coefficient. This will help you determine the strength and direction of the correlation between the variables.
  • Interpret the results: Interpret the results and draw conclusions based on the findings. Consider any limitations or alternative explanations for the results.
  • Report the findings: Report the findings of your study in a research report or manuscript. Be sure to include the research question, methods, results, and conclusions.

Purpose of Correlational Research

The purpose of correlational research is to examine the relationship between two or more variables. Correlational research allows researchers to identify whether there is a relationship between variables, and if so, the strength and direction of that relationship. This information can be useful for predicting and explaining behavior, and for identifying potential risk factors or areas for intervention.

Correlational research can be used in a variety of fields, including psychology, education, medicine, business, and sociology. For example, in psychology, correlational research can be used to explore the relationship between personality traits and behavior, or between early life experiences and later mental health outcomes. In education, correlational research can be used to examine the relationship between teaching practices and student achievement. In medicine, correlational research can be used to investigate the relationship between lifestyle factors and disease outcomes.

Overall, the purpose of correlational research is to provide insight into the relationship between variables, which can be used to inform further research, interventions, or policy decisions.

When to use Correlational Research

Here are some situations when correlational research can be particularly useful:

  • When experimental research is not possible or ethical: In some situations, it may not be possible or ethical to manipulate variables in an experimental design. In these cases, correlational research can be used to explore the relationship between variables without manipulating them.
  • When exploring new areas of research: Correlational research can be useful when exploring new areas of research or when researchers are unsure of the direction of the relationship between variables. Correlational research can help identify potential areas for further investigation.
  • When testing theories: Correlational research can be useful for testing theories about the relationship between variables. Researchers can use correlational research to examine the relationship between variables predicted by a theory, and to determine whether the theory is supported by the data.
  • When making predictions: Correlational research can be used to make predictions about future behavior or outcomes. For example, if there is a strong positive correlation between education level and income, one could predict that individuals with higher levels of education will have higher incomes.
  • When identifying risk factors: Correlational research can be useful for identifying potential risk factors for negative outcomes. For example, a study might find a positive correlation between drug use and depression, indicating that drug use could be a risk factor for depression.

Characteristics of Correlational Research

Here are some common characteristics of correlational research:

  • Examines the relationship between two or more variables: Correlational research is designed to examine the relationship between two or more variables. It seeks to determine if there is a relationship between the variables, and if so, the strength and direction of that relationship.
  • Non-experimental design: Correlational research is typically non-experimental in design, meaning that the researcher does not manipulate any variables. Instead, the researcher observes and measures the variables as they naturally occur.
  • Cannot establish causation : Correlational research cannot establish causation, meaning that it cannot determine whether one variable causes changes in another variable. Instead, it only provides information about the relationship between the variables.
  • Uses statistical analysis: Correlational research relies on statistical analysis to determine the strength and direction of the relationship between variables. This may include calculating correlation coefficients, regression analysis, or other statistical tests.
  • Observes real-world phenomena : Correlational research is often used to observe real-world phenomena, such as the relationship between education and income or the relationship between stress and physical health.
  • Can be conducted in a variety of fields : Correlational research can be conducted in a variety of fields, including psychology, sociology, education, and medicine.
  • Can be conducted using different methods: Correlational research can be conducted using a variety of methods, including surveys, observational studies, and archival studies.

Advantages of Correlational Research

There are several advantages of using correlational research in a study:

  • Allows for the exploration of relationships: Correlational research allows researchers to explore the relationships between variables in a natural setting without manipulating any variables. This can help identify possible relationships between variables that may not have been previously considered.
  • Useful for predicting behavior: Correlational research can be useful for predicting future behavior. If a strong correlation is found between two variables, researchers can use this information to predict how changes in one variable may affect the other.
  • Can be conducted in real-world settings: Correlational research can be conducted in real-world settings, which allows for the collection of data that is representative of real-world phenomena.
  • Can be less expensive and time-consuming than experimental research: Correlational research is often less expensive and time-consuming than experimental research, as it does not involve manipulating variables or creating controlled conditions.
  • Useful in identifying risk factors: Correlational research can be used to identify potential risk factors for negative outcomes. By identifying variables that are correlated with negative outcomes, researchers can develop interventions or policies to reduce the risk of negative outcomes.
  • Useful in exploring new areas of research: Correlational research can be useful in exploring new areas of research, particularly when researchers are unsure of the direction of the relationship between variables. By conducting correlational research, researchers can identify potential areas for further investigation.

Limitation of Correlational Research

Correlational research also has several limitations that should be taken into account:

  • Cannot establish causation: Correlational research cannot establish causation, meaning that it cannot determine whether one variable causes changes in another variable. This is because it is not possible to control all possible confounding variables that could affect the relationship between the variables being studied.
  • Directionality problem: The directionality problem refers to the difficulty of determining which variable is influencing the other. For example, a correlation may exist between happiness and social support, but it is not clear whether social support causes happiness, or whether happy people are more likely to have social support.
  • Third variable problem: The third variable problem refers to the possibility that a third variable, not included in the study, is responsible for the observed relationship between the two variables being studied.
  • Limited generalizability: Correlational research is often limited in terms of its generalizability to other populations or settings. This is because the sample studied may not be representative of the larger population, or because the variables studied may behave differently in different contexts.
  • Relies on self-reported data: Correlational research often relies on self-reported data, which can be subject to social desirability bias or other forms of response bias.
  • Limited in explaining complex behaviors: Correlational research is limited in explaining complex behaviors that are influenced by multiple factors, such as personality traits, situational factors, and social context.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Questionnaire

Questionnaire – Definition, Types, and Examples

Case Study Research

Case Study – Methods, Examples and Guide

Observational Research

Observational Research – Methods and Guide

Quantitative Research

Quantitative Research – Methods, Types and...

Qualitative Research Methods

Qualitative Research Methods

Explanatory Research

Explanatory Research – Types, Methods, Guide

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7.2 Correlational Research

Learning objectives.

  • Define correlational research and give several examples.
  • Explain why a researcher might choose to conduct correlational research rather than experimental research or another type of nonexperimental research.

What Is Correlational Research?

Correlational research is a type of nonexperimental research in which the researcher measures two variables and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are essentially two reasons that researchers interested in statistical relationships between variables would choose to conduct a correlational study rather than an experiment. The first is that they do not believe that the statistical relationship is a causal one. For example, a researcher might evaluate the validity of a brief extraversion test by administering it to a large group of participants along with a longer extraversion test that has already been shown to be valid. This researcher might then check to see whether participants’ scores on the brief test are strongly correlated with their scores on the longer one. Neither test score is thought to cause the other, so there is no independent variable to manipulate. In fact, the terms independent variable and dependent variable do not apply to this kind of research.

The other reason that researchers would choose to use a correlational study rather than an experiment is that the statistical relationship of interest is thought to be causal, but the researcher cannot manipulate the independent variable because it is impossible, impractical, or unethical. For example, Allen Kanner and his colleagues thought that the number of “daily hassles” (e.g., rude salespeople, heavy traffic) that people experience affects the number of physical and psychological symptoms they have (Kanner, Coyne, Schaefer, & Lazarus, 1981). But because they could not manipulate the number of daily hassles their participants experienced, they had to settle for measuring the number of daily hassles—along with the number of symptoms—using self-report questionnaires. Although the strong positive relationship they found between these two variables is consistent with their idea that hassles cause symptoms, it is also consistent with the idea that symptoms cause hassles or that some third variable (e.g., neuroticism) causes both.

A common misconception among beginning researchers is that correlational research must involve two quantitative variables, such as scores on two extraversion tests or the number of hassles and number of symptoms people have experienced. However, the defining feature of correlational research is that the two variables are measured—neither one is manipulated—and this is true regardless of whether the variables are quantitative or categorical. Imagine, for example, that a researcher administers the Rosenberg Self-Esteem Scale to 50 American college students and 50 Japanese college students. Although this “feels” like a between-subjects experiment, it is a correlational study because the researcher did not manipulate the students’ nationalities. The same is true of the study by Cacioppo and Petty comparing college faculty and factory workers in terms of their need for cognition. It is a correlational study because the researchers did not manipulate the participants’ occupations.

Figure 7.2 “Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists” shows data from a hypothetical study on the relationship between whether people make a daily list of things to do (a “to-do list”) and stress. Notice that it is unclear whether this is an experiment or a correlational study because it is unclear whether the independent variable was manipulated. If the researcher randomly assigned some participants to make daily to-do lists and others not to, then it is an experiment. If the researcher simply asked participants whether they made daily to-do lists, then it is a correlational study. The distinction is important because if the study was an experiment, then it could be concluded that making the daily to-do lists reduced participants’ stress. But if it was a correlational study, it could only be concluded that these variables are statistically related. Perhaps being stressed has a negative effect on people’s ability to plan ahead (the directionality problem). Or perhaps people who are more conscientious are more likely to make to-do lists and less likely to be stressed (the third-variable problem). The crucial point is that what defines a study as experimental or correlational is not the variables being studied, nor whether the variables are quantitative or categorical, nor the type of graph or statistics used to analyze the data. It is how the study is conducted.

Figure 7.2 Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists

Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists

Data Collection in Correlational Research

Again, the defining feature of correlational research is that neither variable is manipulated. It does not matter how or where the variables are measured. A researcher could have participants come to a laboratory to complete a computerized backward digit span task and a computerized risky decision-making task and then assess the relationship between participants’ scores on the two tasks. Or a researcher could go to a shopping mall to ask people about their attitudes toward the environment and their shopping habits and then assess the relationship between these two variables. Both of these studies would be correlational because no independent variable is manipulated. However, because some approaches to data collection are strongly associated with correlational research, it makes sense to discuss them here. The two we will focus on are naturalistic observation and archival data. A third, survey research, is discussed in its own chapter.

Naturalistic Observation

Naturalistic observation is an approach to data collection that involves observing people’s behavior in the environment in which it typically occurs. Thus naturalistic observation is a type of field research (as opposed to a type of laboratory research). It could involve observing shoppers in a grocery store, children on a school playground, or psychiatric inpatients in their wards. Researchers engaged in naturalistic observation usually make their observations as unobtrusively as possible so that participants are often not aware that they are being studied. Ethically, this is considered to be acceptable if the participants remain anonymous and the behavior occurs in a public setting where people would not normally have an expectation of privacy. Grocery shoppers putting items into their shopping carts, for example, are engaged in public behavior that is easily observable by store employees and other shoppers. For this reason, most researchers would consider it ethically acceptable to observe them for a study. On the other hand, one of the arguments against the ethicality of the naturalistic observation of “bathroom behavior” discussed earlier in the book is that people have a reasonable expectation of privacy even in a public restroom and that this expectation was violated.

Researchers Robert Levine and Ara Norenzayan used naturalistic observation to study differences in the “pace of life” across countries (Levine & Norenzayan, 1999). One of their measures involved observing pedestrians in a large city to see how long it took them to walk 60 feet. They found that people in some countries walked reliably faster than people in other countries. For example, people in the United States and Japan covered 60 feet in about 12 seconds on average, while people in Brazil and Romania took close to 17 seconds.

Because naturalistic observation takes place in the complex and even chaotic “real world,” there are two closely related issues that researchers must deal with before collecting data. The first is sampling. When, where, and under what conditions will the observations be made, and who exactly will be observed? Levine and Norenzayan described their sampling process as follows:

Male and female walking speed over a distance of 60 feet was measured in at least two locations in main downtown areas in each city. Measurements were taken during main business hours on clear summer days. All locations were flat, unobstructed, had broad sidewalks, and were sufficiently uncrowded to allow pedestrians to move at potentially maximum speeds. To control for the effects of socializing, only pedestrians walking alone were used. Children, individuals with obvious physical handicaps, and window-shoppers were not timed. Thirty-five men and 35 women were timed in most cities. (p. 186)

Precise specification of the sampling process in this way makes data collection manageable for the observers, and it also provides some control over important extraneous variables. For example, by making their observations on clear summer days in all countries, Levine and Norenzayan controlled for effects of the weather on people’s walking speeds.

The second issue is measurement. What specific behaviors will be observed? In Levine and Norenzayan’s study, measurement was relatively straightforward. They simply measured out a 60-foot distance along a city sidewalk and then used a stopwatch to time participants as they walked over that distance. Often, however, the behaviors of interest are not so obvious or objective. For example, researchers Robert Kraut and Robert Johnston wanted to study bowlers’ reactions to their shots, both when they were facing the pins and then when they turned toward their companions (Kraut & Johnston, 1979). But what “reactions” should they observe? Based on previous research and their own pilot testing, Kraut and Johnston created a list of reactions that included “closed smile,” “open smile,” “laugh,” “neutral face,” “look down,” “look away,” and “face cover” (covering one’s face with one’s hands). The observers committed this list to memory and then practiced by coding the reactions of bowlers who had been videotaped. During the actual study, the observers spoke into an audio recorder, describing the reactions they observed. Among the most interesting results of this study was that bowlers rarely smiled while they still faced the pins. They were much more likely to smile after they turned toward their companions, suggesting that smiling is not purely an expression of happiness but also a form of social communication.

A woman bowling

Naturalistic observation has revealed that bowlers tend to smile when they turn away from the pins and toward their companions, suggesting that smiling is not purely an expression of happiness but also a form of social communication.

sieneke toering – bowling big lebowski style – CC BY-NC-ND 2.0.

When the observations require a judgment on the part of the observers—as in Kraut and Johnston’s study—this process is often described as coding . Coding generally requires clearly defining a set of target behaviors. The observers then categorize participants individually in terms of which behavior they have engaged in and the number of times they engaged in each behavior. The observers might even record the duration of each behavior. The target behaviors must be defined in such a way that different observers code them in the same way. This is the issue of interrater reliability. Researchers are expected to demonstrate the interrater reliability of their coding procedure by having multiple raters code the same behaviors independently and then showing that the different observers are in close agreement. Kraut and Johnston, for example, video recorded a subset of their participants’ reactions and had two observers independently code them. The two observers showed that they agreed on the reactions that were exhibited 97% of the time, indicating good interrater reliability.

Archival Data

Another approach to correlational research is the use of archival data , which are data that have already been collected for some other purpose. An example is a study by Brett Pelham and his colleagues on “implicit egotism”—the tendency for people to prefer people, places, and things that are similar to themselves (Pelham, Carvallo, & Jones, 2005). In one study, they examined Social Security records to show that women with the names Virginia, Georgia, Louise, and Florence were especially likely to have moved to the states of Virginia, Georgia, Louisiana, and Florida, respectively.

As with naturalistic observation, measurement can be more or less straightforward when working with archival data. For example, counting the number of people named Virginia who live in various states based on Social Security records is relatively straightforward. But consider a study by Christopher Peterson and his colleagues on the relationship between optimism and health using data that had been collected many years before for a study on adult development (Peterson, Seligman, & Vaillant, 1988). In the 1940s, healthy male college students had completed an open-ended questionnaire about difficult wartime experiences. In the late 1980s, Peterson and his colleagues reviewed the men’s questionnaire responses to obtain a measure of explanatory style—their habitual ways of explaining bad events that happen to them. More pessimistic people tend to blame themselves and expect long-term negative consequences that affect many aspects of their lives, while more optimistic people tend to blame outside forces and expect limited negative consequences. To obtain a measure of explanatory style for each participant, the researchers used a procedure in which all negative events mentioned in the questionnaire responses, and any causal explanations for them, were identified and written on index cards. These were given to a separate group of raters who rated each explanation in terms of three separate dimensions of optimism-pessimism. These ratings were then averaged to produce an explanatory style score for each participant. The researchers then assessed the statistical relationship between the men’s explanatory style as college students and archival measures of their health at approximately 60 years of age. The primary result was that the more optimistic the men were as college students, the healthier they were as older men. Pearson’s r was +.25.

This is an example of content analysis —a family of systematic approaches to measurement using complex archival data. Just as naturalistic observation requires specifying the behaviors of interest and then noting them as they occur, content analysis requires specifying keywords, phrases, or ideas and then finding all occurrences of them in the data. These occurrences can then be counted, timed (e.g., the amount of time devoted to entertainment topics on the nightly news show), or analyzed in a variety of other ways.

Key Takeaways

  • Correlational research involves measuring two variables and assessing the relationship between them, with no manipulation of an independent variable.
  • Correlational research is not defined by where or how the data are collected. However, some approaches to data collection are strongly associated with correlational research. These include naturalistic observation (in which researchers observe people’s behavior in the context in which it normally occurs) and the use of archival data that were already collected for some other purpose.

Discussion: For each of the following, decide whether it is most likely that the study described is experimental or correlational and explain why.

  • An educational researcher compares the academic performance of students from the “rich” side of town with that of students from the “poor” side of town.
  • A cognitive psychologist compares the ability of people to recall words that they were instructed to “read” with their ability to recall words that they were instructed to “imagine.”
  • A manager studies the correlation between new employees’ college grade point averages and their first-year performance reports.
  • An automotive engineer installs different stick shifts in a new car prototype, each time asking several people to rate how comfortable the stick shift feels.
  • A food scientist studies the relationship between the temperature inside people’s refrigerators and the amount of bacteria on their food.
  • A social psychologist tells some research participants that they need to hurry over to the next building to complete a study. She tells others that they can take their time. Then she observes whether they stop to help a research assistant who is pretending to be hurt.

Kanner, A. D., Coyne, J. C., Schaefer, C., & Lazarus, R. S. (1981). Comparison of two modes of stress measurement: Daily hassles and uplifts versus major life events. Journal of Behavioral Medicine, 4 , 1–39.

Kraut, R. E., & Johnston, R. E. (1979). Social and emotional messages of smiling: An ethological approach. Journal of Personality and Social Psychology, 37 , 1539–1553.

Levine, R. V., & Norenzayan, A. (1999). The pace of life in 31 countries. Journal of Cross-Cultural Psychology, 30 , 178–205.

Pelham, B. W., Carvallo, M., & Jones, J. T. (2005). Implicit egotism. Current Directions in Psychological Science, 14 , 106–110.

Peterson, C., Seligman, M. E. P., & Vaillant, G. E. (1988). Pessimistic explanatory style is a risk factor for physical illness: A thirty-five year longitudinal study. Journal of Personality and Social Psychology, 55 , 23–27.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

5.10: Correlational Research

  • Last updated
  • Save as PDF
  • Page ID 59850

Learning Objectives

  • Explain what a correlation coefficient tells us about the relationship between variables
  • Describe why correlation does not mean causation

Did you know that as sales in ice cream increase, so does the overall rate of crime? Is it possible that indulging in your favorite flavor of ice cream could send you on a crime spree? Or, after committing crime do you think you might decide to treat yourself to a cone? There is no question that a relationship exists between ice cream and crime (e.g., Harper, 2013), but it would be pretty foolish to decide that one thing actually caused the other to occur.

It is much more likely that both ice cream sales and crime rates are related to the temperature outside. When the temperature is warm, there are lots of people out of their houses, interacting with each other, getting annoyed with one another, and sometimes committing crimes. Also, when it is warm outside, we are more likely to seek a cool treat like ice cream. How do we determine if there is indeed a relationship between two things? And when there is a relationship, how can we discern whether it is attributable to coincidence or causation?

Correlational Research

Correlation means that there is a relationship between two or more variables (such as ice cream consumption and crime), but this relationship does not necessarily imply cause and effect. When two variables are correlated, it simply means that as one variable changes, so does the other. We can measure correlation by calculating a statistic known as a correlation coefficient. A correlation coefficient is a number from -1 to +1 that indicates the strength and direction of the relationship between variables. The correlation coefficient is usually represented by the letter r .

The number portion of the correlation coefficient indicates the strength of the relationship. The closer the number is to 1 (be it negative or positive), the more strongly related the variables are, and the more predictable changes in one variable will be as the other variable changes. The closer the number is to zero, the weaker the relationship, and the less predictable the relationships between the variables becomes. For instance, a correlation coefficient of 0.9 indicates a far stronger relationship than a correlation coefficient of 0.3. If the variables are not related to one another at all, the correlation coefficient is 0. The example above about ice cream and crime is an example of two variables that we might expect to have no relationship to each other.

The sign—positive or negative—of the correlation coefficient indicates the direction of the relationship (Figure 1). A positive correlation means that the variables move in the same direction. Put another way, it means that as one variable increases so does the other, and conversely, when one variable decreases so does the other. A negative correlation means that the variables move in opposite directions. If two variables are negatively correlated, a decrease in one variable is associated with an increase in the other and vice versa.

The example of ice cream and crime rates is a positive correlation because both variables increase when temperatures are warmer. Other examples of positive correlations are the relationship between an individual’s height and weight or the relationship between a person’s age and number of wrinkles. One might expect a negative correlation to exist between someone’s tiredness during the day and the number of hours they slept the previous night: the amount of sleep decreases as the feelings of tiredness increase. In a real-world example of negative correlation, student researchers at the University of Minnesota found a weak negative correlation ( r = -0.29) between the average number of days per week that students got fewer than 5 hours of sleep and their GPA (Lowry, Dean, & Manders, 2010). Keep in mind that a negative correlation is not the same as no correlation. For example, we would probably find no correlation between hours of sleep and shoe size.

As mentioned earlier, correlations have predictive value. Imagine that you are on the admissions committee of a major university. You are faced with a huge number of applications, but you are able to accommodate only a small percentage of the applicant pool. How might you decide who should be admitted? You might try to correlate your current students’ college GPA with their scores on standardized tests like the SAT or ACT. By observing which correlations were strongest for your current students, you could use this information to predict relative success of those students who have applied for admission into the university.

Three scatterplots are shown. Scatterplot (a) is labeled “positive correlation” and shows scattered dots forming a rough line from the bottom left to the top right; the x-axis is labeled “weight” and the y-axis is labeled “height.” Scatterplot (b) is labeled “negative correlation” and shows scattered dots forming a rough line from the top left to the bottom right; the x-axis is labeled “tiredness” and the y-axis is labeled “hours of sleep.” Scatterplot (c) is labeled “no correlation” and shows scattered dots having no pattern; the x-axis is labeled “shoe size” and the y-axis is labeled “hours of sleep.”

Query \(\PageIndex{1}\)

Query \(\PageIndex{2}\)

Query \(\PageIndex{3}\)

Query \(\PageIndex{4}\)

Query \(\PageIndex{5}\)

Query \(\PageIndex{6}\)

Query \(\PageIndex{7}\)

Correlation Does Not Indicate Causation

Correlational research is useful because it allows us to discover the strength and direction of relationships that exist between two variables. However, correlation is limited because establishing the existence of a relationship tells us little about cause and effect . While variables are sometimes correlated because one does cause the other, it could also be that some other factor, a confounding variable , is actually causing the systematic movement in our variables of interest. In the ice cream/crime rate example mentioned earlier, temperature is a confounding variable that could account for the relationship between the two variables.

Even when we cannot point to clear confounding variables, we should not assume that a correlation between two variables implies that one variable causes changes in another. This can be frustrating when a cause-and-effect relationship seems clear and intuitive. Think back to our discussion of the research done by the American Cancer Society and how their research projects were some of the first demonstrations of the link between smoking and cancer. It seems reasonable to assume that smoking causes cancer, but if we were limited to correlational research , we would be overstepping our bounds by making this assumption.

Unfortunately, people mistakenly make claims of causation as a function of correlations all the time. Such claims are especially common in advertisements and news stories. For example, recent research found that people who eat cereal on a regular basis achieve healthier weights than those who rarely eat cereal (Frantzen, Treviño, Echon, Garcia-Dominic, & DiMarco, 2013; Barton et al., 2005). Guess how the cereal companies report this finding. Does eating cereal really cause an individual to maintain a healthy weight, or are there other possible explanations, such as, someone at a healthy weight is more likely to regularly eat a healthy breakfast than someone who is obese or someone who avoids meals in an attempt to diet (Figure 2)? While correlational research is invaluable in identifying relationships among variables, a major limitation is the inability to establish causality. Psychologists want to make statements about cause and effect, but the only way to do that is to conduct an experiment to answer a research question. The next section describes how scientific experiments incorporate methods that eliminate, or control for, alternative explanations, which allow researchers to explore how changes in one variable cause changes in another variable.

Query \(\PageIndex{8}\)

Watch this clip from Freakonomics for an example of how correlation does  not  indicate causation.

You can view the transcript for “Correlation vs. Causality: Freakonomics Movie” here (opens in new window) .

A photograph shows a bowl of cereal.

Illusory Correlations

The temptation to make erroneous cause-and-effect statements based on correlational research is not the only way we tend to misinterpret data. We also tend to make the mistake of illusory correlations, especially with unsystematic observations. Illusory correlations , or false correlations, occur when people believe that relationships exist between two things when no such relationship exists. One well-known illusory correlation is the supposed effect that the moon’s phases have on human behavior. Many people passionately assert that human behavior is affected by the phase of the moon, and specifically, that people act strangely when the moon is full (Figure 3).

A photograph shows the moon.

There is no denying that the moon exerts a powerful influence on our planet. The ebb and flow of the ocean’s tides are tightly tied to the gravitational forces of the moon. Many people believe, therefore, that it is logical that we are affected by the moon as well. After all, our bodies are largely made up of water. A meta-analysis of nearly 40 studies consistently demonstrated, however, that the relationship between the moon and our behavior does not exist (Rotton & Kelly, 1985). While we may pay more attention to odd behavior during the full phase of the moon, the rates of odd behavior remain constant throughout the lunar cycle.

Why are we so apt to believe in illusory correlations like this? Often we read or hear about them and simply accept the information as valid. Or, we have a hunch about how something works and then look for evidence to support that hunch, ignoring evidence that would tell us our hunch is false; this is known as confirmation bias . Other times, we find illusory correlations based on the information that comes most easily to mind, even if that information is severely limited. And while we may feel confident that we can use these relationships to better understand and predict the world around us, illusory correlations can have significant drawbacks. For example, research suggests that illusory correlations—in which certain behaviors are inaccurately attributed to certain groups—are involved in the formation of prejudicial attitudes that can ultimately lead to discriminatory behavior (Fiedler, 2004).

Query \(\PageIndex{9}\)

Query \(\PageIndex{10}\)

Query \(\PageIndex{11}\)

Query \(\PageIndex{12}\)

Think It Over

We all have a tendency to make illusory correlations from time to time. Try to think of an illusory correlation that is held by you, a family member, or a close friend. How do you think this illusory correlation came about and what can be done in the future to combat them?

cause-and-effect relationship:  changes in one variable cause the changes in the other variable; can be determined only through an experimental research design

confirmation bias:  tendency to ignore evidence that disproves ideas or beliefs

confounding variable:  unanticipated outside factor that affects both variables of interest, often giving the false impression that changes in one variable causes changes in the other variable, when, in actuality, the outside factor causes changes in both variables

correlation:  relationship between two or more variables; when two variables are correlated, one variable changes as the other does

correlation coefficient:  number from -1 to +1, indicating the strength and direction of the relationship between variables, and usually represented by r

illusory correlation:  seeing relationships between two things when in reality no such relationship exists

negative correlation:  two variables change in different directions, with one becoming larger as the other becomes smaller; a negative correlation is not the same thing as no correlation

positive correlation:  two variables change in the same direction, both becoming either larger or smaller

Licenses and Attributions

CC licensed content, Shared previously

  • Analyzing Findings. Authored by : OpenStax College. Located at : http://cnx.org/contents/[email protected]:mfArybye@7/Analyzing-Findings . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/contents/[email protected]
  • Correlation vs. Causality: Freakonomics Movie. Located at : https://www.youtube.com/watch?v=lbODqslc4Tg . License : Other . License Terms : Standard YouTube License
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

correlational research titles examples for highschool students

Home Market Research

Correlational Research: What it is with Examples

Use correlational research method to conduct a correlational study and measure the statistical relationship between two variables. Learn more.

Our minds can do some brilliant things. For example, it can memorize the jingle of a pizza truck. The louder the jingle, the closer the pizza truck is to us. Who taught us that? Nobody! We relied on our understanding and came to a conclusion. We don’t stop there, do we? If there are multiple pizza trucks in the area and each one has a different jingle, we would memorize it all and relate the jingle to its pizza truck.

This is what correlational research precisely is, establishing a relationship between two variables, “jingle” and “distance of the truck” in this particular example. The correlational study looks for variables that seem to interact with each other. When you see one variable changing, you have a fair idea of how the other variable will change.

What is Correlational research?

Correlational research is a type of non-experimental research method in which a researcher measures two variables and understands and assesses the statistical relationship between them with no influence from any extraneous variable. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities.

Correlational Research Example

The correlation coefficient shows the correlation between two variables (A correlation coefficient is a statistical measure that calculates the strength of the relationship between two variables), a value measured between -1 and +1. When the correlation coefficient is close to +1, there is a positive correlation between the two variables. If the value is relative to -1, there is a negative correlation between the two variables. When the value is close to zero, then there is no relationship between the two variables.

Let us take an example to understand correlational research.

Consider hypothetically, a researcher is studying a correlation between cancer and marriage. In this study, there are two variables: disease and marriage. Let us say marriage has a negative association with cancer. This means that married people are less likely to develop cancer.

However, this doesn’t necessarily mean that marriage directly avoids cancer. In correlational research, it is not possible to establish the fact, what causes what. It is a misconception that a correlational study involves two quantitative variables. However, the reality is two variables are measured, but neither is changed. This is true independent of whether the variables are quantitative or categorical.

Types of correlational research

Mainly three types of correlational research have been identified:

1. Positive correlation: A positive relationship between two variables is when an increase in one variable leads to a rise in the other variable. A decrease in one variable will see a reduction in the other variable. For example, the amount of money a person has might positively correlate with the number of cars the person owns.

2. Negative correlation: A negative correlation is quite literally the opposite of a positive relationship. If there is an increase in one variable, the second variable will show a decrease, and vice versa.

For example, being educated might negatively correlate with the crime rate when an increase in one variable leads to a decrease in another and vice versa. If a country’s education level is improved, it can lower crime rates. Please note that this doesn’t mean that lack of education leads to crimes. It only means that a lack of education and crime is believed to have a common reason – poverty.

3. No correlation: There is no correlation between the two variables in this third type . A change in one variable may not necessarily see a difference in the other variable. For example, being a millionaire and happiness are not correlated. An increase in money doesn’t lead to happiness.

Characteristics of correlational research

Correlational research has three main characteristics. They are: 

  • Non-experimental : The correlational study is non-experimental. It means that researchers need not manipulate variables with a scientific methodology to either agree or disagree with a hypothesis. The researcher only measures and observes the relationship between the variables without altering them or subjecting them to external conditioning.
  • Backward-looking : Correlational research only looks back at historical data and observes events in the past. Researchers use it to measure and spot historical patterns between two variables. A correlational study may show a positive relationship between two variables, but this can change in the future.
  • Dynamic : The patterns between two variables from correlational research are never constant and are always changing. Two variables having negative correlation research in the past can have a positive correlation relationship in the future due to various factors.

Data collection

The distinctive feature of correlational research is that the researcher can’t manipulate either of the variables involved. It doesn’t matter how or where the variables are measured. A researcher could observe participants in a closed environment or a public setting.

Correlational Research

Researchers use two data collection methods to collect information in correlational research.

01. Naturalistic observation

Naturalistic observation is a way of data collection in which people’s behavioral targeting is observed in their natural environment, in which they typically exist. This method is a type of field research. It could mean a researcher might be observing people in a grocery store, at the cinema, playground, or in similar places.

Researchers who are usually involved in this type of data collection make observations as unobtrusively as possible so that the participants involved in the study are not aware that they are being observed else they might deviate from being their natural self.

Ethically this method is acceptable if the participants remain anonymous, and if the study is conducted in a public setting, a place where people would not normally expect complete privacy. As mentioned previously, taking an example of the grocery store where people can be observed while collecting an item from the aisle and putting in the shopping bags. This is ethically acceptable, which is why most researchers choose public settings for recording their observations. This data collection method could be both qualitative and quantitative . If you need to know more about qualitative data, you can explore our newly published blog, “ Examples of Qualitative Data in Education .”

02. Archival data

Another approach to correlational data is the use of archival data. Archival information is the data that has been previously collected by doing similar kinds of research . Archival data is usually made available through primary research .

In contrast to naturalistic observation, the information collected through archived data can be pretty straightforward. For example, counting the number of people named Richard in the various states of America based on social security records is relatively short.

Use the correlational research method to conduct a correlational study and measure the statistical relationship between two variables. Uncover the insights that matter the most. Use QuestionPro’s research platform to uncover complex insights that can propel your business to the forefront of your industry.

Research to make better decisions. Start a free trial today. No credit card required.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

email survey tool

The Best Email Survey Tool to Boost Your Feedback Game

May 7, 2024

Employee Engagement Survey Tools

Top 10 Employee Engagement Survey Tools

employee engagement software

Top 20 Employee Engagement Software Solutions

May 3, 2024

customer experience software

15 Best Customer Experience Software of 2024

May 2, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

StatAnalytica

200+ Experimental Quantitative Research Topics For STEM Students In 2023

Experimental Quantitative Research Topics For Stem Students

STEM means Science, Technology, Engineering, and Math, which is not the only stuff we learn in school. It is like a treasure chest of skills that help students become great problem solvers, ready to tackle the real world’s challenges.

In this blog, we are here to explore the world of Research Topics for STEM Students. We will break down what STEM really means and why it is so important for students. In addition, we will give you the lowdown on how to pick a fascinating research topic. We will explain a list of 200+ Experimental Quantitative Research Topics For STEM Students.

And when it comes to writing a research title, we will guide you step by step. So, stay with us as we unlock the exciting world of STEM research – it is not just about grades; it is about growing smarter, more confident, and happier along the way.

What Is STEM?

Table of Contents

STEM is Science, Technology, Engineering, and Mathematics. It is a way of talking about things like learning, jobs, and activities related to these four important subjects. Science is about understanding the world around us, technology is about using tools and machines to solve problems, engineering is about designing and building things, and mathematics is about numbers and solving problems with them. STEM helps us explore, discover, and create cool stuff that makes our world better and more exciting.

Why STEM Research Is Important?

STEM research is important because it helps us learn new things about the world and solve problems. When scientists, engineers, and mathematicians study these subjects, they can discover cures for diseases, create new technology that makes life easier, and build things that help us live better. It is like a big puzzle where we put together pieces of knowledge to make our world safer, healthier, and more fun.

  • STEM research leads to new discoveries and solutions.
  • It helps find cures for diseases.
  • STEM technology makes life easier.
  • Engineers build things that improve our lives.
  • Mathematics helps us understand and solve complex problems.

How to Choose a Topic for STEM Research Paper

Here are some steps to choose a topic for STEM Research Paper:

Step 1: Identify Your Interests

Think about what you like and what excites you in science, technology, engineering, or math. It could be something you learned in school, saw in the news, or experienced in your daily life. Choosing a topic you’re passionate about makes the research process more enjoyable.

Step 2: Research Existing Topics

Look up different STEM research areas online, in books, or at your library. See what scientists and experts are studying. This can give you ideas and help you understand what’s already known in your chosen field.

Step 3: Consider Real-World Problems

Think about the problems you see around you. Are there issues in your community or the world that STEM can help solve? Choosing a topic that addresses a real-world problem can make your research impactful.

Step 4: Talk to Teachers and Mentors

Discuss your interests with your teachers, professors, or mentors. They can offer guidance and suggest topics that align with your skills and goals. They may also provide resources and support for your research.

Step 5: Narrow Down Your Topic

Once you have some ideas, narrow them down to a specific research question or project. Make sure it’s not too broad or too narrow. You want a topic that you can explore in depth within the scope of your research paper.

Here we will discuss 200+ Experimental Quantitative Research Topics For STEM Students: 

Qualitative Research Topics for STEM Students:

Qualitative research focuses on exploring and understanding phenomena through non-numerical data and subjective experiences. Here are 10 qualitative research topics for STEM students:

  • Exploring the experiences of female STEM students in overcoming gender bias in academia.
  • Understanding the perceptions of teachers regarding the integration of technology in STEM education.
  • Investigating the motivations and challenges of STEM educators in underprivileged schools.
  • Exploring the attitudes and beliefs of parents towards STEM education for their children.
  • Analyzing the impact of collaborative learning on student engagement in STEM subjects.
  • Investigating the experiences of STEM professionals in bridging the gap between academia and industry.
  • Understanding the cultural factors influencing STEM career choices among minority students.
  • Exploring the role of mentorship in the career development of STEM graduates.
  • Analyzing the perceptions of students towards the ethics of emerging STEM technologies like AI and CRISPR.
  • Investigating the emotional well-being and stress levels of STEM students during their academic journey.

Easy Experimental Research Topics for STEM Students:

These experimental research topics are relatively straightforward and suitable for STEM students who are new to research:

  •  Measuring the effect of different light wavelengths on plant growth.
  •  Investigating the relationship between exercise and heart rate in various age groups.
  •  Testing the effectiveness of different insulating materials in conserving heat.
  •  Examining the impact of pH levels on the rate of chemical reactions.
  •  Studying the behavior of magnets in different temperature conditions.
  •  Investigating the effect of different concentrations of a substance on bacterial growth.
  •  Testing the efficiency of various sunscreen brands in blocking UV radiation.
  •  Measuring the impact of music genres on concentration and productivity.
  •  Examining the correlation between the angle of a ramp and the speed of a rolling object.
  •  Investigating the relationship between the number of blades on a wind turbine and energy output.

Research Topics for STEM Students in the Philippines:

These research topics are tailored for STEM students in the Philippines:

  •  Assessing the impact of climate change on the biodiversity of coral reefs in the Philippines.
  •  Studying the potential of indigenous plants in the Philippines for medicinal purposes.
  •  Investigating the feasibility of harnessing renewable energy sources like solar and wind in rural Filipino communities.
  •  Analyzing the water quality and pollution levels in major rivers and lakes in the Philippines.
  •  Exploring sustainable agricultural practices for small-scale farmers in the Philippines.
  •  Assessing the prevalence and impact of dengue fever outbreaks in urban areas of the Philippines.
  •  Investigating the challenges and opportunities of STEM education in remote Filipino islands.
  •  Studying the impact of typhoons and natural disasters on infrastructure resilience in the Philippines.
  •  Analyzing the genetic diversity of endemic species in the Philippine rainforests.
  •  Assessing the effectiveness of disaster preparedness programs in Philippine communities.

Read More 

  • Frontend Project Ideas
  • Business Intelligence Projects For Beginners

Good Research Topics for STEM Students:

These research topics are considered good because they offer interesting avenues for investigation and learning:

  •  Developing a low-cost and efficient water purification system for rural communities.
  •  Investigating the potential use of CRISPR-Cas9 for gene therapy in genetic disorders.
  •  Studying the applications of blockchain technology in securing medical records.
  •  Analyzing the impact of 3D printing on customized prosthetics for amputees.
  •  Exploring the use of artificial intelligence in predicting and preventing forest fires.
  •  Investigating the effects of microplastic pollution on aquatic ecosystems.
  •  Analyzing the use of drones in monitoring and managing agricultural crops.
  •  Studying the potential of quantum computing in solving complex optimization problems.
  •  Investigating the development of biodegradable materials for sustainable packaging.
  •  Exploring the ethical implications of gene editing in humans.

Unique Research Topics for STEM Students:

Unique research topics can provide STEM students with the opportunity to explore unconventional and innovative ideas. Here are 10 unique research topics for STEM students:

  •  Investigating the use of bioluminescent organisms for sustainable lighting solutions.
  •  Studying the potential of using spider silk proteins for advanced materials in engineering.
  •  Exploring the application of quantum entanglement for secure communication in the field of cryptography.
  •  Analyzing the feasibility of harnessing geothermal energy from underwater volcanoes.
  •  Investigating the use of CRISPR-Cas12 for rapid and cost-effective disease diagnostics.
  •  Studying the interaction between artificial intelligence and human creativity in art and music generation.
  •  Exploring the development of edible packaging materials to reduce plastic waste.
  •  Investigating the impact of microgravity on cellular behavior and tissue regeneration in space.
  •  Analyzing the potential of using sound waves to detect and combat invasive species in aquatic ecosystems.
  •  Studying the use of biotechnology in reviving extinct species, such as the woolly mammoth.

Experimental Research Topics for STEM Students in the Philippines

Research topics for STEM students in the Philippines can address specific regional challenges and opportunities. Here are 10 experimental research topics for STEM students in the Philippines:

  •  Assessing the effectiveness of locally sourced materials for disaster-resilient housing construction in typhoon-prone areas.
  •  Investigating the utilization of indigenous plants for natural remedies in Filipino traditional medicine.
  •  Studying the impact of volcanic soil on crop growth and agriculture in volcanic regions of the Philippines.
  •  Analyzing the water quality and purification methods in remote island communities.
  •  Exploring the feasibility of using bamboo as a sustainable construction material in the Philippines.
  •  Investigating the potential of using solar stills for freshwater production in water-scarce regions.
  •  Studying the effects of climate change on the migration patterns of bird species in the Philippines.
  •  Analyzing the growth and sustainability of coral reefs in marine protected areas.
  •  Investigating the utilization of coconut waste for biofuel production.
  •  Studying the biodiversity and conservation efforts in the Tubbataha Reefs Natural Park.

Capstone Research Topics for STEM Students in the Philippines:

Capstone research projects are often more comprehensive and can address real-world issues. Here are 10 capstone research topics for STEM students in the Philippines:

  •  Designing a low-cost and sustainable sanitation system for informal settlements in urban Manila.
  •  Developing a mobile app for monitoring and reporting natural disasters in the Philippines.
  •  Assessing the impact of climate change on the availability and quality of drinking water in Philippine cities.
  •  Designing an efficient traffic management system to address congestion in major Filipino cities.
  •  Analyzing the health implications of air pollution in densely populated urban areas of the Philippines.
  •  Developing a renewable energy microgrid for off-grid communities in the archipelago.
  •  Assessing the feasibility of using unmanned aerial vehicles (drones) for agricultural monitoring in rural Philippines.
  •  Designing a low-cost and sustainable aquaponics system for urban agriculture.
  •  Investigating the potential of vertical farming to address food security in densely populated urban areas.
  •  Developing a disaster-resilient housing prototype suitable for typhoon-prone regions.

Experimental Quantitative Research Topics for STEM Students:

Experimental quantitative research involves the collection and analysis of numerical data to conclude. Here are 10 Experimental Quantitative Research Topics For STEM Students interested in experimental quantitative research:

  •  Examining the impact of different fertilizers on crop yield in agriculture.
  •  Investigating the relationship between exercise and heart rate among different age groups.
  •  Analyzing the effect of varying light intensities on photosynthesis in plants.
  •  Studying the efficiency of various insulation materials in reducing building heat loss.
  •  Investigating the relationship between pH levels and the rate of corrosion in metals.
  •  Analyzing the impact of different concentrations of pollutants on aquatic ecosystems.
  •  Examining the effectiveness of different antibiotics on bacterial growth.
  •  Trying to figure out how temperature affects how thick liquids are.
  •  Finding out if there is a link between the amount of pollution in the air and lung illnesses in cities.
  •  Analyzing the efficiency of solar panels in converting sunlight into electricity under varying conditions.

Descriptive Research Topics for STEM Students

Descriptive research aims to provide a detailed account or description of a phenomenon. Here are 10 topics for STEM students interested in descriptive research:

  •  Describing the physical characteristics and behavior of a newly discovered species of marine life.
  •  Documenting the geological features and formations of a particular region.
  •  Creating a detailed inventory of plant species in a specific ecosystem.
  •  Describing the properties and behavior of a new synthetic polymer.
  •  Documenting the daily weather patterns and climate trends in a particular area.
  •  Providing a comprehensive analysis of the energy consumption patterns in a city.
  •  Describing the structural components and functions of a newly developed medical device.
  •  Documenting the characteristics and usage of traditional construction materials in a region.
  •  Providing a detailed account of the microbiome in a specific environmental niche.
  •  Describing the life cycle and behavior of a rare insect species.

Research Topics for STEM Students in the Pandemic:

The COVID-19 pandemic has raised many research opportunities for STEM students. Here are 10 research topics related to pandemics:

  •  Analyzing the effectiveness of various personal protective equipment (PPE) in preventing the spread of respiratory viruses.
  •  Studying the impact of lockdown measures on air quality and pollution levels in urban areas.
  •  Investigating the psychological effects of quarantine and social isolation on mental health.
  •  Analyzing the genomic variation of the SARS-CoV-2 virus and its implications for vaccine development.
  •  Studying the efficacy of different disinfection methods on various surfaces.
  •  Investigating the role of contact tracing apps in tracking & controlling the spread of infectious diseases.
  •  Analyzing the economic impact of the pandemic on different industries and sectors.
  •  Studying the effectiveness of remote learning in STEM education during lockdowns.
  •  Investigating the social disparities in healthcare access during a pandemic.
  • Analyzing the ethical considerations surrounding vaccine distribution and prioritization.

Research Topics for STEM Students Middle School

Research topics for middle school STEM students should be engaging and suitable for their age group. Here are 10 research topics:

  • Investigating the growth patterns of different types of mold on various food items.
  • Studying the negative effects of music on plant growth and development.
  • Analyzing the relationship between the shape of a paper airplane and its flight distance.
  • Investigating the properties of different materials in making effective insulators for hot and cold beverages.
  • Studying the effect of salt on the buoyancy of different objects in water.
  • Analyzing the behavior of magnets when exposed to different temperatures.
  • Investigating the factors that affect the rate of ice melting in different environments.
  • Studying the impact of color on the absorption of heat by various surfaces.
  • Analyzing the growth of crystals in different types of solutions.
  • Investigating the effectiveness of different natural repellents against common pests like mosquitoes.

Technology Research Topics for STEM Students

Technology is at the forefront of STEM fields. Here are 10 research topics for STEM students interested in technology:

  • Developing and optimizing algorithms for autonomous drone navigation in complex environments.
  • Exploring the use of blockchain technology for enhancing the security and transparency of supply chains.
  • Investigating the applications of virtual reality (VR) and augmented reality (AR) in medical training and surgery simulations.
  • Studying the potential of 3D printing for creating personalized prosthetics and orthopedic implants.
  • Analyzing the ethical and privacy implications of facial recognition technology in public spaces.
  • Investigating the development of quantum computing algorithms for solving complex optimization problems.
  • Explaining the use of machine learning and AI in predicting and mitigating the impact of natural disasters.
  • Studying the advancement of brain-computer interfaces for assisting individuals with
  • disabilities.
  • Analyzing the role of wearable technology in monitoring and improving personal health and wellness.
  • Investigating the use of robotics in disaster response and search and rescue operations.

Scientific Research Topics for STEM Students

Scientific research encompasses a wide range of topics. Here are 10 research topics for STEM students focusing on scientific exploration:

  • Investigating the behavior of subatomic particles in high-energy particle accelerators.
  • Studying the ecological impact of invasive species on native ecosystems.
  • Analyzing the genetics of antibiotic resistance in bacteria and its implications for healthcare.
  • Exploring the physics of gravitational waves and their detection through advanced interferometry.
  • Investigating the neurobiology of memory formation and retention in the human brain.
  • Studying the biodiversity and adaptation of extremophiles in harsh environments.
  • Analyzing the chemistry of deep-sea hydrothermal vents and their potential for life beyond Earth.
  • Exploring the properties of superconductors and their applications in technology.
  • Investigating the mechanisms of stem cell differentiation for regenerative medicine.
  • Studying the dynamics of climate change and its impact on global ecosystems.

Interesting Research Topics for STEM Students:

Engaging and intriguing research topics can foster a passion for STEM. Here are 10 interesting research topics for STEM students:

  • Exploring the science behind the formation of auroras and their cultural significance.
  • Investigating the mysteries of dark matter and dark energy in the universe.
  • Studying the psychology of decision-making in high-pressure situations, such as sports or
  • emergencies.
  • Analyzing the impact of social media on interpersonal relationships and mental health.
  • Exploring the potential for using genetic modification to create disease-resistant crops.
  • Investigating the cognitive processes involved in solving complex puzzles and riddles.
  • Studying the history and evolution of cryptography and encryption methods.
  • Analyzing the physics of time travel and its theoretical possibilities.
  • Exploring the role of Artificial Intelligence  in creating art and music.
  • Investigating the science of happiness and well-being, including factors contributing to life satisfaction.

Practical Research Topics for STEM Students

Practical research often leads to real-world solutions. Here are 10 practical research topics for STEM students:

  • Developing an affordable and sustainable water purification system for rural communities.
  • Designing a low-cost, energy-efficient home heating and cooling system.
  • Investigating strategies for reducing food waste in the supply chain and households.
  • Studying the effectiveness of eco-friendly pest control methods in agriculture.
  • Analyzing the impact of renewable energy integration on the stability of power grids.
  • Developing a smartphone app for early detection of common medical conditions.
  • Investigating the feasibility of vertical farming for urban food production.
  • Designing a system for recycling and upcycling electronic waste.
  • Studying the environmental benefits of green roofs and their potential for urban heat island mitigation.
  • Analyzing the efficiency of alternative transportation methods in reducing carbon emissions.

Experimental Research Topics for STEM Students About Plants

Plants offer a rich field for experimental research. Here are 10 experimental research topics about plants for STEM students:

  • Investigating the effect of different light wavelengths on plant growth and photosynthesis.
  • Studying the impact of various fertilizers and nutrient solutions on crop yield.
  • Analyzing the response of plants to different types and concentrations of plant hormones.
  • Investigating the role of mycorrhizal in enhancing nutrient uptake in plants.
  • Studying the effects of drought stress and water scarcity on plant physiology and adaptation mechanisms.
  • Analyzing the influence of soil pH on plant nutrient availability and growth.
  • Investigating the chemical signaling and defense mechanisms of plants against herbivores.
  • Studying the impact of environmental pollutants on plant health and genetic diversity.
  • Analyzing the role of plant secondary metabolites in pharmaceutical and agricultural applications.
  • Investigating the interactions between plants and beneficial microorganisms in the rhizosphere.

Qualitative Research Topics for STEM Students in the Philippines

Qualitative research in the Philippines can address local issues and cultural contexts. Here are 10 qualitative research topics for STEM students in the Philippines:

  • Exploring indigenous knowledge and practices in sustainable agriculture in Filipino communities.
  • Studying the perceptions and experiences of Filipino fishermen in coping with climate change impacts.
  • Analyzing the cultural significance and traditional uses of medicinal plants in indigenous Filipino communities.
  • Investigating the barriers and facilitators of STEM education access in remote Philippine islands.
  • Exploring the role of traditional Filipino architecture in natural disaster resilience.
  • Studying the impact of indigenous farming methods on soil conservation and fertility.
  • Analyzing the cultural and environmental significance of mangroves in coastal Filipino regions.
  • Investigating the knowledge and practices of Filipino healers in treating common ailments.
  • Exploring the cultural heritage and conservation efforts of the Ifugao rice terraces.
  • Studying the perceptions and practices of Filipino communities in preserving marine biodiversity.

Science Research Topics for STEM Students

Science offers a diverse range of research avenues. Here are 10 science research topics for STEM students:

  • Investigating the potential of gene editing techniques like CRISPR-Cas9 in curing genetic diseases.
  • Studying the ecological impacts of species reintroduction programs on local ecosystems.
  • Analyzing the effects of microplastic pollution on aquatic food webs and ecosystems.
  • Investigating the link between air pollution and respiratory health in urban populations.
  • Studying the role of epigenetics in the inheritance of acquired traits in organisms.
  • Analyzing the physiology and adaptations of extremophiles in extreme environments on Earth.
  • Investigating the genetics of longevity and factors influencing human lifespan.
  • Studying the behavioral ecology and communication strategies of social insects.
  • Analyzing the effects of deforestation on global climate patterns and biodiversity loss.
  • Investigating the potential of synthetic biology in creating bioengineered organisms for beneficial applications.

Correlational Research Topics for STEM Students

Correlational research focuses on relationships between variables. Here are 10 correlational research topics for STEM students:

  • Analyzing the correlation between dietary habits and the incidence of chronic diseases.
  • Studying the relationship between exercise frequency and mental health outcomes.
  • Investigating the correlation between socioeconomic status and access to quality healthcare.
  • Analyzing the link between social media usage and self-esteem in adolescents.
  • Studying the correlation between academic performance and sleep duration among students.
  • Investigating the relationship between environmental factors and the prevalence of allergies.
  • Analyzing the correlation between technology use and attention span in children.
  • Studying how environmental factors are related to the frequency of allergies.
  • Investigating the link between parental involvement in education and student achievement.
  • Analyzing the correlation between temperature fluctuations and wildlife migration patterns.

Quantitative Research Topics for STEM Students in the Philippines

Quantitative research in the Philippines can address specific regional issues. Here are 10 quantitative research topics for STEM students in the Philippines

  • Analyzing the impact of typhoons on coastal erosion rates in the Philippines.
  • Studying the quantitative effects of land use change on watershed hydrology in Filipino regions.
  • Investigating the quantitative relationship between deforestation and habitat loss for endangered species.
  • Analyzing the quantitative patterns of marine biodiversity in Philippine coral reef ecosystems.
  • Studying the quantitative assessment of water quality in major Philippine rivers and lakes.
  • Investigating the quantitative analysis of renewable energy potential in specific Philippine provinces.
  • Analyzing the quantitative impacts of agricultural practices on soil health and fertility.
  • Studying the quantitative effectiveness of mangrove restoration in coastal protection in the Philippines.
  • Investigating the quantitative evaluation of indigenous agricultural practices for sustainability.
  • Analyzing the quantitative patterns of air pollution and its health impacts in urban Filipino areas.

Things That Must Keep In Mind While Writing Quantitative Research Title 

Here are few things that must be keep in mind while writing quantitative research tile:

1. Be Clear and Precise

Make sure your research title is clear and says exactly what your study is about. People should easily understand the topic and goals of your research by reading the title.

2. Use Important Words

Include words that are crucial to your research, like the main subjects, who you’re studying, and how you’re doing your research. This helps others find your work and understand what it’s about.

3. Avoid Confusing Words

Stay away from words that might confuse people. Your title should be easy to grasp, even if someone isn’t an expert in your field.

4. Show Your Research Approach

Tell readers what kind of research you did, like experiments or surveys. This gives them a hint about how you conducted your study.

5. Match Your Title with Your Research Questions

Make sure your title matches the questions you’re trying to answer in your research. It should give a sneak peek into what your study is all about and keep you on the right track as you work on it.

STEM students, addressing what STEM is and why research matters in this field. It offered an extensive list of research topics , including experimental, qualitative, and regional options, catering to various academic levels and interests. Whether you’re a middle school student or pursuing advanced studies, these topics offer a wealth of ideas. The key takeaway is to choose a topic that resonates with your passion and aligns with your goals, ensuring a successful journey in STEM research. Choose the best Experimental Quantitative Research Topics For Stem Students today!

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

  • Correlational Research Designs: Types, Examples & Methods

busayo.longe

A human mind is a powerful tool that allows you to sift through seemingly unrelated variables and establish a connection with regards to a specific subject at hand. This skill is what comes to play when we talk about correlational research.

Correlational research is something that we do every day; think about how you establish a connection between the doorbell ringing at a particular time and the milkman’s arrival. As such, it is expedient to understand the different types of correlational research that are available and more importantly, how to go about it. 

What is Correlational Research?

Correlational research is a type of research method that involves observing two variables in order to establish a statistically corresponding relationship between them. The aim of correlational research is to identify variables that have some sort of relationship do the extent that a change in one creates some change in the other. 

This type of research is descriptive, unlike experimental research that relies entirely on scientific methodology and hypothesis. For example, correlational research may reveal the statistical relationship between high-income earners and relocation; that is, the more people earn, the more likely they are to relocate or not. 

What are the Types of Correlational Research?

Essentially, there are 3 types of correlational research which are positive correlational research, negative correlational research, and no correlational research. Each of these types is defined by peculiar characteristics. 

  • Positive Correlational Research

Positive correlational research is a research method involving 2 variables that are statistically corresponding where an increase or decrease in 1 variable creates a like change in the other. An example is when an increase in workers’ remuneration results in an increase in the prices of goods and services and vice versa.  

  • Negative Correlational Research

Negative correlational research is a research method involving 2 variables that are statistically opposite where an increase in one of the variables creates an alternate effect or decrease in the other variable. An example of a negative correlation is if the rise in goods and services causes a decrease in demand and vice versa. 

  • Zero Correlational Research

Zero correlational research is a type of correlational research that involves 2 variables that are not necessarily statistically connected. In this case, a change in one of the variables may not trigger a corresponding or alternate change in the other variable.

Zero correlational research caters for variables with vague statistical relationships. For example, wealth and patience can be variables under zero correlational research because they are statistically independent. 

Sporadic change patterns that occur in variables with zero correlational are usually by chance and not as a result of corresponding or alternate mutual inclusiveness. 

Correlational research can also be classified based on data collection methods. Based on these, there are 3 types of correlational research: Naturalistic observation research, survey research and archival research. 

What are the Data Collection Methods in Correlational research? 

Data collection methods in correlational research are the research methodologies adopted by persons carrying out correlational research in order to determine the linear statistical relationship between 2 variables. These data collection methods are used to gather information in correlational research. 

The 3 methods of data collection in correlational research are naturalistic observation method, archival data method, and the survey method. All of these would be clearly explained in the subsequent paragraphs. 

  • Naturalistic Observation

Naturalistic observation is a correlational research methodology that involves observing people’s behaviors as shown in the natural environment where they exist, over a period of time. It is a type of research-field method that involves the researcher paying closing attention to natural behavior patterns of the subjects under consideration.

This method is extremely demanding as the researcher must take extra care to ensure that the subjects do not suspect that they are being observed else they deviate from their natural behavior patterns. It is best for all subjects under observation to remain anonymous in order to avoid a breach of privacy. 

The major advantages of the naturalistic observation method are that it allows the researcher to fully observe the subjects (variables) in their natural state. However, it is a very expensive and time-consuming process plus the subjects can become aware of this act at any time and may act contrary. 

  • Archival Data

Archival data is a type of correlational research method that involves making use of already gathered information about the variables in correlational research. Since this method involves using data that is already gathered and analyzed, it is usually straight to the point. 

For this method of correlational research, the research makes use of earlier studies conducted by other researchers or the historical records of the variables being analyzed. This method helps a researcher to track already determined statistical patterns of the variables or subjects. 

This method is less expensive, saves time and provides the researcher with more disposable data to work with. However, it has the problem of data accuracy as important information may be missing from previous research since the researcher has no control over the data collection process. 

  • Survey Method

The survey method is the most common method of correlational research; especially in fields like psychology. It involves random sampling of the variables or the subjects in the research in which the participants fill a questionnaire centered on the subjects of interest. 

This method is very flexible as researchers can gather large amounts of data in very little time. However, it is subject to survey response bias and can also be affected by biased survey questions or under-representation of survey respondents or participants. 

These would be properly explained under data collection methods in correlational research. 

Examples of Correlational Research

Correlational research examples are numerous and highlight several instances where a correlational study may be carried out in order to determine the statistical behavioral trend with regards to the variables under consideration. Here are 3 case examples of correlational research. 

  • You want to know if wealthy people are less likely to be patient. From your experience, you believe that wealthy people are impatient. However, you want to establish a statistical pattern that proves or disproves your belief. In this case, you can carry out correlational research to identify a trend that links both variables. 
  • You want to know if there’s a correlation between how much people earn and the number of children that they have. You do not believe that people with more spending power have more children than people with less spending power. 

You think that how much people earn hardly determines the number of children that they have. Yet, carrying out correlational research on both variables could reveal any correlational relationship that exists between them. 

  • You believe that domestic violence causes a brain hemorrhage. You cannot carry out an experiment as it would be unethical to deliberately subject people to domestic violence. 

However, you can carry out correlational research to find out if victims of domestic violence suffer brain hemorrhage more than non-victims. 

What are the Characteristics of Correlational Research? 

  • Correlational Research is non-experimental

Correlational research is non-experimental as it does not involve manipulating variables using a scientific methodology in order to agree or disagree with a hypothesis. In correlational research, the researcher simply observes and measures the natural relationship between 2 variables; without subjecting either of the variables to external conditioning. 

  • Correlational Research is Backward-looking

Correlational research doesn’t take the future into consideration as it only observes and measures the recent historical relationship that exists between 2 variables. In this sense, the statistical pattern resulting from correlational research is backward-looking and can seize to exist at any point, going forward. 

Correlational research observes and measures historical patterns between 2 variables such as the relationship between high-income earners and tax payment. Correlational research may reveal a positive relationship between the aforementioned variables but this may change at any point in the future. 

  • Correlational Research is Dynamic

Statistical patterns between 2 variables that result from correlational research are ever-changing. The correlation between 2 variables changes on a daily basis and such, it cannot be used as a fixed data for further research. 

For example, the 2 variables can have a negative correlational relationship for a period of time, maybe 5 years. After this time, the correlational relationship between them can become positive; as observed in the relationship between bonds and stocks. 

  • Data resulting from correlational research are not constant and cannot be used as a standard variable for further research. 

What is the Correlation Coefficient? 

A correlation coefficient is an important value in correlational research that indicates whether the inter-relationship between 2 variables is positive, negative or non-existent. It is usually represented with the sign [r] and is part of a range of possible correlation coefficients from -1.0 to +1.0. 

The strength of a correlation between quantitative variables is typically measured using a statistic called Pearson’s Correlation Coefficient (or Pearson’s r) . A positive correlation is indicated by a value of 1.0, a perfect negative correlation is indicated by a value of -1.0 while zero correlation is indicated by a value of 0.0. 

It is important to note that a correlation coefficient only reflects the linear relationship between 2 variables; it does not capture non-linear relationships and cannot separate dependent and independent variables. The correlation coefficient helps you to determine the degree of statistical relationship that exists between variables. 

What are the Advantages of Correlational Research?

  • In cases where carrying out experimental research is unethical, correlational research  can be used to determine the relationship between 2 variables. For example, when studying humans, carrying out an experiment can be seen as unsafe or unethical; hence, choosing correlational research would be the best option. 
  • Through correlational research, you can easily determine the statistical relationship between 2 variables.
  • Carrying out correlational research is less time-consuming and less expensive than experimental research. This becomes a strong advantage when working with a minimum of researchers and funding or when keeping the number of variables in a study very low. 
  • Correlational research allows the researcher to carry out shallow data gathering using different methods such as a short survey. A short survey does not require the researcher to personally administer it so this allows the researcher to work with a few people. 

What are the Disadvantages of Correlational Research? 

  • Correlational research is limiting in nature as it can only be used to determine the statistical relationship between 2 variables. It cannot be used to establish a relationship between more than 2 variables. 
  • It does not account for cause and effect between 2 variables as it doesn’t highlight which of the 2 variables is responsible for the statistical pattern that is observed. For example, finding that education correlates positively with vegetarianism doesn’t explain whether being educated leads to becoming a vegetarian or whether vegetarianism leads to more education.
  • Reasons for either can be assumed, but until more research is done, causation can’t be determined. Also, a third, unknown variable might be causing both. For instance, living in the state of Detroit can lead to both education and vegetarianism.
  • Correlational research depends on past statistical patterns to determine the relationship between variables. As such, its data cannot be fully depended on for further research. 
  • In correlational research, the researcher has no control over the variables. Unlike experimental research, correlational research only allows the researcher to observe the variables for connecting statistical patterns without introducing a catalyst. 
  • The information received from correlational research is limited. Correlational research only shows the relationship between variables and does not equate to causation. 

What are the Differences between Correlational and Experimental Research?  

  • Methodology

The major difference between correlational research and experimental research is methodology. In correlational research, the researcher looks for a statistical pattern linking 2 naturally-occurring variables while in experimental research, the researcher introduces a catalyst and monitors its effects on the variables. 

  • Observation

In correlational research, the researcher passively observes the phenomena and measures whatever relationship that occurs between them. However, in experimental research, the researcher actively observes phenomena after triggering a change in the behavior of the variables. 

In experimental research, the researcher introduces a catalyst and monitors its effects on the variables, that is, cause and effect. In correlational research, the researcher is not interested in cause and effect as it applies; rather, he or she identifies recurring statistical patterns connecting the variables in research. 

  • Number of Variables

research caters to an unlimited number of variables. Correlational research, on the other hand, caters to only 2 variables. 

  • Experimental research is causative while correlational research is relational.
  • Correlational research is preliminary and almost always precedes experimental research. 
  • Unlike correlational research, experimental research allows the researcher to control the variables.

How to Use Online Forms for Correlational Research

One of the most popular methods of conducting correlational research is by carrying out a survey which can be made easier with the use of an online form. Surveys for correlational research involve generating different questions that revolve around the variables under observation and, allowing respondents to provide answers to these questions. 

Using an online form for your correlational research survey would help the researcher to gather more data in minimum time. In addition, the researcher would be able to reach out to more survey respondents than is plausible with printed correlational research survey forms . 

In addition, the researcher would be able to swiftly process and analyze all responses in order to objectively establish the statistical pattern that links the variables in the research. Using an online form for correlational research also helps the researcher to minimize the cost incurred during the research period. 

To use an online form for a correlational research survey, you would need to sign up on a data-gathering platform like Formplus . Formplus allows you to create custom forms for correlational research surveys using the Formplus builder. 

You can customize your correlational research survey form by adding background images, new color themes or your company logo to make it appear even more professional. In addition, Formplus also has a survey form template that you can edit for a correlational research study. 

You can create different types of survey questions including open-ended questions , rating questions, close-ended questions and multiple answers questions in your survey in the Formplus builder. After creating your correlational research survey, you can share the personalized link with respondents via email or social media.

Formplus also enables you to collect offline responses in your form.

Conclusion 

Correlational research enables researchers to establish the statistical pattern between 2 seemingly interconnected variables; as such, it is the starting point of any type of research. It allows you to link 2 variables by observing their behaviors in the most natural state. 

Unlike experimental research, correlational research does not emphasize the causative factor affecting 2 variables and this makes the data that results from correlational research subject to constant change. However, it is quicker, easier, less expensive and more convenient than experimental research. 

It is important to always keep the aim of your research at the back of your mind when choosing the best type of research to adopt. If you simply need to observe how the variables react to change then, experimental research is the best type to subscribe for. 

It is best to conduct correlational research using an online correlational research survey form as this makes the data-gathering process, more convenient. Formplus is a great online data-gathering platform that you can use to create custom survey forms for correlational research. 

Logo

Connect to Formplus, Get Started Now - It's Free!

  • characteristics of correlational research
  • types of correlational research
  • what is correlational research
  • busayo.longe

Formplus

You may also like:

Exploratory Research: What are its Method & Examples?

Overview on exploratory research, examples and methodology. Shows guides on how to conduct exploratory research with online surveys

correlational research titles examples for highschool students

What is Pure or Basic Research? + [Examples & Method]

Simple guide on pure or basic research, its methods, characteristics, advantages, and examples in science, medicine, education and psychology

Recall Bias: Definition, Types, Examples & Mitigation

This article will discuss the impact of recall bias in studies and the best ways to avoid them during research.

Extrapolation in Statistical Research: Definition, Examples, Types, Applications

In this article we’ll look at the different types and characteristics of extrapolation, plus how it contrasts to interpolation.

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

  • Search Menu
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Urban Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Archaeology
  • Greek and Roman Papyrology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Agriculture
  • History of Education
  • History of Emotions
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Acquisition
  • Language Variation
  • Language Families
  • Language Evolution
  • Language Reference
  • Lexicography
  • Linguistic Theories
  • Linguistic Typology
  • Linguistic Anthropology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Modernism)
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Religion
  • Music and Culture
  • Music and Media
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Science
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Lifestyle, Home, and Garden
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Oncology
  • Medical Toxicology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Clinical Neuroscience
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Medical Ethics
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Neuroscience
  • Cognitive Psychology
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Strategy
  • Business History
  • Business Ethics
  • Business and Government
  • Business and Technology
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic Systems
  • Economic Methodology
  • Economic History
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Theory
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Politics and Law
  • Public Administration
  • Public Policy
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Developmental and Physical Disabilities Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

Violent Video Game Effects on Children and Adolescents: Theory, Research, and Public Policy

  • < Previous chapter
  • Next chapter >

5 5 Study 2: Correlational Study With High School Students

  • Published: January 2007
  • Cite Icon Cite
  • Permissions Icon Permissions

This chapter presents Study 2, which examined the correlations between measures of video game violence exposure and aggressive behaviors among high school students, and included several important control variables. As expected, adolescents who play a greater amount of violent video games hold more pro-violent attitudes, have more hostile personalities, are less forgiving, believe violence to be more typical, and behave more aggressively in their everyday lives. Even after statistically controlling for sex, total screen time, aggressive beliefs, and attitudes, playing violent video games was still a significant predictor of heightened physically aggressive behavior and violent behavior. These effects occurred for both boys and girls. Furthermore, the more time high-school students spend playing video games, the poorer their school performance.

Signed in as

Institutional accounts.

  • Google Scholar Indexing
  • GoogleCrawler [DO NOT DELETE]

Personal account

  • Sign in with email/username & password
  • Get email alerts
  • Save searches
  • Purchase content
  • Activate your purchase/trial code

Institutional access

  • Sign in with a library card Sign in with username/password Recommend to your librarian
  • Institutional account management
  • Get help with access

Access to content on Oxford Academic is often provided through institutional subscriptions and purchases. If you are a member of an institution with an active account, you may be able to access content in one of the following ways:

IP based access

Typically, access is provided across an institutional network to a range of IP addresses. This authentication occurs automatically, and it is not possible to sign out of an IP authenticated account.

Sign in through your institution

Choose this option to get remote access when outside your institution. Shibboleth/Open Athens technology is used to provide single sign-on between your institution’s website and Oxford Academic.

  • Click Sign in through your institution.
  • Select your institution from the list provided, which will take you to your institution's website to sign in.
  • When on the institution site, please use the credentials provided by your institution. Do not use an Oxford Academic personal account.
  • Following successful sign in, you will be returned to Oxford Academic.

If your institution is not listed or you cannot sign in to your institution’s website, please contact your librarian or administrator.

Sign in with a library card

Enter your library card number to sign in. If you cannot sign in, please contact your librarian.

Society Members

Society member access to a journal is achieved in one of the following ways:

Sign in through society site

Many societies offer single sign-on between the society website and Oxford Academic. If you see ‘Sign in through society site’ in the sign in pane within a journal:

  • Click Sign in through society site.
  • When on the society site, please use the credentials provided by that society. Do not use an Oxford Academic personal account.

If you do not have a society account or have forgotten your username or password, please contact your society.

Sign in using a personal account

Some societies use Oxford Academic personal accounts to provide access to their members. See below.

A personal account can be used to get email alerts, save searches, purchase content, and activate subscriptions.

Some societies use Oxford Academic personal accounts to provide access to their members.

Viewing your signed in accounts

Click the account icon in the top right to:

  • View your signed in personal account and access account management features.
  • View the institutional accounts that are providing access.

Signed in but can't access content

Oxford Academic is home to a wide variety of products. The institutional subscription may not cover the content that you are trying to access. If you believe you should have access to that content, please contact your librarian.

For librarians and administrators, your personal account also provides access to institutional account management. Here you will find options to view and activate subscriptions, manage institutional settings and access options, access usage statistics, and more.

Our books are available by subscription or purchase to libraries and institutions.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Rights and permissions
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Grad Coach

Research Topics & Ideas: Education

170+ Research Ideas To Fast-Track Your Project

Topic Kickstarter: Research topics in education

If you’re just starting out exploring education-related topics for your dissertation, thesis or research project, you’ve come to the right place. In this post, we’ll help kickstart your research topic ideation process by providing a hearty list of research topics and ideas , including examples from actual dissertations and theses..

PS – This is just the start…

We know it’s exciting to run through a list of research topics, but please keep in mind that this list is just a starting point . To develop a suitable education-related research topic, you’ll need to identify a clear and convincing research gap , and a viable plan of action to fill that gap.

If this sounds foreign to you, check out our free research topic webinar that explores how to find and refine a high-quality research topic, from scratch. Alternatively, if you’d like hands-on help, consider our 1-on-1 coaching service .

Overview: Education Research Topics

  • How to find a research topic (video)
  • List of 50+ education-related research topics/ideas
  • List of 120+ level-specific research topics 
  • Examples of actual dissertation topics in education
  • Tips to fast-track your topic ideation (video)
  • Free Webinar : Topic Ideation 101
  • Where to get extra help

Education-Related Research Topics & Ideas

Below you’ll find a list of education-related research topics and idea kickstarters. These are fairly broad and flexible to various contexts, so keep in mind that you will need to refine them a little. Nevertheless, they should inspire some ideas for your project.

  • The impact of school funding on student achievement
  • The effects of social and emotional learning on student well-being
  • The effects of parental involvement on student behaviour
  • The impact of teacher training on student learning
  • The impact of classroom design on student learning
  • The impact of poverty on education
  • The use of student data to inform instruction
  • The role of parental involvement in education
  • The effects of mindfulness practices in the classroom
  • The use of technology in the classroom
  • The role of critical thinking in education
  • The use of formative and summative assessments in the classroom
  • The use of differentiated instruction in the classroom
  • The use of gamification in education
  • The effects of teacher burnout on student learning
  • The impact of school leadership on student achievement
  • The effects of teacher diversity on student outcomes
  • The role of teacher collaboration in improving student outcomes
  • The implementation of blended and online learning
  • The effects of teacher accountability on student achievement
  • The effects of standardized testing on student learning
  • The effects of classroom management on student behaviour
  • The effects of school culture on student achievement
  • The use of student-centred learning in the classroom
  • The impact of teacher-student relationships on student outcomes
  • The achievement gap in minority and low-income students
  • The use of culturally responsive teaching in the classroom
  • The impact of teacher professional development on student learning
  • The use of project-based learning in the classroom
  • The effects of teacher expectations on student achievement
  • The use of adaptive learning technology in the classroom
  • The impact of teacher turnover on student learning
  • The effects of teacher recruitment and retention on student learning
  • The impact of early childhood education on later academic success
  • The impact of parental involvement on student engagement
  • The use of positive reinforcement in education
  • The impact of school climate on student engagement
  • The role of STEM education in preparing students for the workforce
  • The effects of school choice on student achievement
  • The use of technology in the form of online tutoring

Level-Specific Research Topics

Looking for research topics for a specific level of education? We’ve got you covered. Below you can find research topic ideas for primary, secondary and tertiary-level education contexts. Click the relevant level to view the respective list.

Research Topics: Pick An Education Level

Primary education.

  • Investigating the effects of peer tutoring on academic achievement in primary school
  • Exploring the benefits of mindfulness practices in primary school classrooms
  • Examining the effects of different teaching strategies on primary school students’ problem-solving skills
  • The use of storytelling as a teaching strategy in primary school literacy instruction
  • The role of cultural diversity in promoting tolerance and understanding in primary schools
  • The impact of character education programs on moral development in primary school students
  • Investigating the use of technology in enhancing primary school mathematics education
  • The impact of inclusive curriculum on promoting equity and diversity in primary schools
  • The impact of outdoor education programs on environmental awareness in primary school students
  • The influence of school climate on student motivation and engagement in primary schools
  • Investigating the effects of early literacy interventions on reading comprehension in primary school students
  • The impact of parental involvement in school decision-making processes on student achievement in primary schools
  • Exploring the benefits of inclusive education for students with special needs in primary schools
  • Investigating the effects of teacher-student feedback on academic motivation in primary schools
  • The role of technology in developing digital literacy skills in primary school students
  • Effective strategies for fostering a growth mindset in primary school students
  • Investigating the role of parental support in reducing academic stress in primary school children
  • The role of arts education in fostering creativity and self-expression in primary school students
  • Examining the effects of early childhood education programs on primary school readiness
  • Examining the effects of homework on primary school students’ academic performance
  • The role of formative assessment in improving learning outcomes in primary school classrooms
  • The impact of teacher-student relationships on academic outcomes in primary school
  • Investigating the effects of classroom environment on student behavior and learning outcomes in primary schools
  • Investigating the role of creativity and imagination in primary school curriculum
  • The impact of nutrition and healthy eating programs on academic performance in primary schools
  • The impact of social-emotional learning programs on primary school students’ well-being and academic performance
  • The role of parental involvement in academic achievement of primary school children
  • Examining the effects of classroom management strategies on student behavior in primary school
  • The role of school leadership in creating a positive school climate Exploring the benefits of bilingual education in primary schools
  • The effectiveness of project-based learning in developing critical thinking skills in primary school students
  • The role of inquiry-based learning in fostering curiosity and critical thinking in primary school students
  • The effects of class size on student engagement and achievement in primary schools
  • Investigating the effects of recess and physical activity breaks on attention and learning in primary school
  • Exploring the benefits of outdoor play in developing gross motor skills in primary school children
  • The effects of educational field trips on knowledge retention in primary school students
  • Examining the effects of inclusive classroom practices on students’ attitudes towards diversity in primary schools
  • The impact of parental involvement in homework on primary school students’ academic achievement
  • Investigating the effectiveness of different assessment methods in primary school classrooms
  • The influence of physical activity and exercise on cognitive development in primary school children
  • Exploring the benefits of cooperative learning in promoting social skills in primary school students

Secondary Education

  • Investigating the effects of school discipline policies on student behavior and academic success in secondary education
  • The role of social media in enhancing communication and collaboration among secondary school students
  • The impact of school leadership on teacher effectiveness and student outcomes in secondary schools
  • Investigating the effects of technology integration on teaching and learning in secondary education
  • Exploring the benefits of interdisciplinary instruction in promoting critical thinking skills in secondary schools
  • The impact of arts education on creativity and self-expression in secondary school students
  • The effectiveness of flipped classrooms in promoting student learning in secondary education
  • The role of career guidance programs in preparing secondary school students for future employment
  • Investigating the effects of student-centered learning approaches on student autonomy and academic success in secondary schools
  • The impact of socio-economic factors on educational attainment in secondary education
  • Investigating the impact of project-based learning on student engagement and academic achievement in secondary schools
  • Investigating the effects of multicultural education on cultural understanding and tolerance in secondary schools
  • The influence of standardized testing on teaching practices and student learning in secondary education
  • Investigating the effects of classroom management strategies on student behavior and academic engagement in secondary education
  • The influence of teacher professional development on instructional practices and student outcomes in secondary schools
  • The role of extracurricular activities in promoting holistic development and well-roundedness in secondary school students
  • Investigating the effects of blended learning models on student engagement and achievement in secondary education
  • The role of physical education in promoting physical health and well-being among secondary school students
  • Investigating the effects of gender on academic achievement and career aspirations in secondary education
  • Exploring the benefits of multicultural literature in promoting cultural awareness and empathy among secondary school students
  • The impact of school counseling services on student mental health and well-being in secondary schools
  • Exploring the benefits of vocational education and training in preparing secondary school students for the workforce
  • The role of digital literacy in preparing secondary school students for the digital age
  • The influence of parental involvement on academic success and well-being of secondary school students
  • The impact of social-emotional learning programs on secondary school students’ well-being and academic success
  • The role of character education in fostering ethical and responsible behavior in secondary school students
  • Examining the effects of digital citizenship education on responsible and ethical technology use among secondary school students
  • The impact of parental involvement in school decision-making processes on student outcomes in secondary schools
  • The role of educational technology in promoting personalized learning experiences in secondary schools
  • The impact of inclusive education on the social and academic outcomes of students with disabilities in secondary schools
  • The influence of parental support on academic motivation and achievement in secondary education
  • The role of school climate in promoting positive behavior and well-being among secondary school students
  • Examining the effects of peer mentoring programs on academic achievement and social-emotional development in secondary schools
  • Examining the effects of teacher-student relationships on student motivation and achievement in secondary schools
  • Exploring the benefits of service-learning programs in promoting civic engagement among secondary school students
  • The impact of educational policies on educational equity and access in secondary education
  • Examining the effects of homework on academic achievement and student well-being in secondary education
  • Investigating the effects of different assessment methods on student performance in secondary schools
  • Examining the effects of single-sex education on academic performance and gender stereotypes in secondary schools
  • The role of mentoring programs in supporting the transition from secondary to post-secondary education

Tertiary Education

  • The role of student support services in promoting academic success and well-being in higher education
  • The impact of internationalization initiatives on students’ intercultural competence and global perspectives in tertiary education
  • Investigating the effects of active learning classrooms and learning spaces on student engagement and learning outcomes in tertiary education
  • Exploring the benefits of service-learning experiences in fostering civic engagement and social responsibility in higher education
  • The influence of learning communities and collaborative learning environments on student academic and social integration in higher education
  • Exploring the benefits of undergraduate research experiences in fostering critical thinking and scientific inquiry skills
  • Investigating the effects of academic advising and mentoring on student retention and degree completion in higher education
  • The role of student engagement and involvement in co-curricular activities on holistic student development in higher education
  • The impact of multicultural education on fostering cultural competence and diversity appreciation in higher education
  • The role of internships and work-integrated learning experiences in enhancing students’ employability and career outcomes
  • Examining the effects of assessment and feedback practices on student learning and academic achievement in tertiary education
  • The influence of faculty professional development on instructional practices and student outcomes in tertiary education
  • The influence of faculty-student relationships on student success and well-being in tertiary education
  • The impact of college transition programs on students’ academic and social adjustment to higher education
  • The impact of online learning platforms on student learning outcomes in higher education
  • The impact of financial aid and scholarships on access and persistence in higher education
  • The influence of student leadership and involvement in extracurricular activities on personal development and campus engagement
  • Exploring the benefits of competency-based education in developing job-specific skills in tertiary students
  • Examining the effects of flipped classroom models on student learning and retention in higher education
  • Exploring the benefits of online collaboration and virtual team projects in developing teamwork skills in tertiary students
  • Investigating the effects of diversity and inclusion initiatives on campus climate and student experiences in tertiary education
  • The influence of study abroad programs on intercultural competence and global perspectives of college students
  • Investigating the effects of peer mentoring and tutoring programs on student retention and academic performance in tertiary education
  • Investigating the effectiveness of active learning strategies in promoting student engagement and achievement in tertiary education
  • Investigating the effects of blended learning models and hybrid courses on student learning and satisfaction in higher education
  • The role of digital literacy and information literacy skills in supporting student success in the digital age
  • Investigating the effects of experiential learning opportunities on career readiness and employability of college students
  • The impact of e-portfolios on student reflection, self-assessment, and showcasing of learning in higher education
  • The role of technology in enhancing collaborative learning experiences in tertiary classrooms
  • The impact of research opportunities on undergraduate student engagement and pursuit of advanced degrees
  • Examining the effects of competency-based assessment on measuring student learning and achievement in tertiary education
  • Examining the effects of interdisciplinary programs and courses on critical thinking and problem-solving skills in college students
  • The role of inclusive education and accessibility in promoting equitable learning experiences for diverse student populations
  • The role of career counseling and guidance in supporting students’ career decision-making in tertiary education
  • The influence of faculty diversity and representation on student success and inclusive learning environments in higher education

Research topic idea mega list

Education-Related Dissertations & Theses

While the ideas we’ve presented above are a decent starting point for finding a research topic in education, they are fairly generic and non-specific. So, it helps to look at actual dissertations and theses in the education space to see how this all comes together in practice.

Below, we’ve included a selection of education-related research projects to help refine your thinking. These are actual dissertations and theses, written as part of Master’s and PhD-level programs, so they can provide some useful insight as to what a research topic looks like in practice.

  • From Rural to Urban: Education Conditions of Migrant Children in China (Wang, 2019)
  • Energy Renovation While Learning English: A Guidebook for Elementary ESL Teachers (Yang, 2019)
  • A Reanalyses of Intercorrelational Matrices of Visual and Verbal Learners’ Abilities, Cognitive Styles, and Learning Preferences (Fox, 2020)
  • A study of the elementary math program utilized by a mid-Missouri school district (Barabas, 2020)
  • Instructor formative assessment practices in virtual learning environments : a posthumanist sociomaterial perspective (Burcks, 2019)
  • Higher education students services: a qualitative study of two mid-size universities’ direct exchange programs (Kinde, 2020)
  • Exploring editorial leadership : a qualitative study of scholastic journalism advisers teaching leadership in Missouri secondary schools (Lewis, 2020)
  • Selling the virtual university: a multimodal discourse analysis of marketing for online learning (Ludwig, 2020)
  • Advocacy and accountability in school counselling: assessing the use of data as related to professional self-efficacy (Matthews, 2020)
  • The use of an application screening assessment as a predictor of teaching retention at a midwestern, K-12, public school district (Scarbrough, 2020)
  • Core values driving sustained elite performance cultures (Beiner, 2020)
  • Educative features of upper elementary Eureka math curriculum (Dwiggins, 2020)
  • How female principals nurture adult learning opportunities in successful high schools with challenging student demographics (Woodward, 2020)
  • The disproportionality of Black Males in Special Education: A Case Study Analysis of Educator Perceptions in a Southeastern Urban High School (McCrae, 2021)

As you can see, these research topics are a lot more focused than the generic topic ideas we presented earlier. So, in order for you to develop a high-quality research topic, you’ll need to get specific and laser-focused on a specific context with specific variables of interest.  In the video below, we explore some other important things you’ll need to consider when crafting your research topic.

Get 1-On-1 Help

If you’re still unsure about how to find a quality research topic within education, check out our Research Topic Kickstarter service, which is the perfect starting point for developing a unique, well-justified research topic.

Research Topic Kickstarter - Need Help Finding A Research Topic?

You Might Also Like:

Research topics and ideas in psychology

63 Comments

Watson Kabwe

This is an helpful tool 🙏

Musarrat Parveen

Special education

Akbar khan

Really appreciated by this . It is the best platform for research related items

Trishna Roy

Research title related to school of students

Oyebanji Khadijat Anike

I think this platform is actually good enough.

Angel taña

Research title related to students

My field is research measurement and evaluation. Need dissertation topics in the field

Saira Murtaza

Assalam o Alaikum I’m a student Bs educational Resarch and evaluation I’m confused to choose My thesis title please help me in choose the thesis title

Ngirumuvugizi Jaccques

Good idea I’m going to teach my colleagues

Anangnerisia@gmail.com

You can find our list of nursing-related research topic ideas here: https://gradcoach.com/research-topics-nursing/

FOSU DORIS

Write on action research topic, using guidance and counseling to address unwanted teenage pregnancy in school

Samson ochuodho

Thanks a lot

Johaima

I learned a lot from this site, thank you so much!

Rhod Tuyan

Thank you for the information.. I would like to request a topic based on school major in social studies

Mercedes Bunsie

parental involvement and students academic performance

Abshir Mustafe Cali

Science education topics?

alina

plz tell me if you got some good topics, im here for finding research topic for masters degree

Karen Joy Andrade

How about School management and supervision pls.?

JOHANNES SERAME MONYATSI

Hi i am an Deputy Principal in a primary school. My wish is to srudy foe Master’s degree in Education.Please advice me on which topic can be relevant for me. Thanks.

NKWAIN Chia Charles

Every topic proposed above on primary education is a starting point for me. I appreciate immensely the team that has sat down to make a detail of these selected topics just for beginners like us. Be blessed.

Nkwain Chia Charles

Kindly help me with the research questions on the topic” Effects of workplace conflict on the employees’ job performance”. The effects can be applicable in every institution,enterprise or organisation.

Kelvin Kells Grant

Greetings, I am a student majoring in Sociology and minoring in Public Administration. I’m considering any recommended research topic in the field of Sociology.

Sulemana Alhassan

I’m a student pursuing Mphil in Basic education and I’m considering any recommended research proposal topic in my field of study

Kupoluyi Regina

Kindly help me with a research topic in educational psychology. Ph.D level. Thank you.

Project-based learning is a teaching/learning type,if well applied in a classroom setting will yield serious positive impact. What can a teacher do to implement this in a disadvantaged zone like “North West Region of Cameroon ( hinterland) where war has brought about prolonged and untold sufferings on the indegins?

Damaris Nzoka

I wish to get help on topics of research on educational administration

I wish to get help on topics of research on educational administration PhD level

Sadaf

I am also looking for such type of title

Afriyie Saviour

I am a student of undergraduate, doing research on how to use guidance and counseling to address unwanted teenage pregnancy in school

wysax

the topics are very good regarding research & education .

William AU Mill

Can i request your suggestion topic for my Thesis about Teachers as an OFW. thanx you

ChRISTINE

Would like to request for suggestions on a topic in Economics of education,PhD level

Aza Hans

Would like to request for suggestions on a topic in Economics of education

George

Hi 👋 I request that you help me with a written research proposal about education the format

Cynthia abuabire

Am offering degree in education senior high School Accounting. I want a topic for my project work

Sarah Moyambo

l would like to request suggestions on a topic in managing teaching and learning, PhD level (educational leadership and management)

request suggestions on a topic in managing teaching and learning, PhD level (educational leadership and management)

Ernest Gyabaah

I would to inquire on research topics on Educational psychology, Masters degree

Aron kirui

I am PhD student, I am searching my Research topic, It should be innovative,my area of interest is online education,use of technology in education

revathy a/p letchumanan

request suggestion on topic in masters in medical education .

D.Newlands PhD.

Look at British Library as they keep a copy of all PhDs in the UK Core.ac.uk to access Open University and 6 other university e-archives, pdf downloads mostly available, all free.

Monica

May I also ask for a topic based on mathematics education for college teaching, please?

Aman

Please I am a masters student of the department of Teacher Education, Faculty of Education Please I am in need of proposed project topics to help with my final year thesis

Ellyjoy

Am a PhD student in Educational Foundations would like a sociological topic. Thank

muhammad sani

please i need a proposed thesis project regardging computer science

also916

Greetings and Regards I am a doctoral student in the field of philosophy of education. I am looking for a new topic for my thesis. Because of my work in the elementary school, I am looking for a topic that is from the field of elementary education and is related to the philosophy of education.

shantel orox

Masters student in the field of curriculum, any ideas of a research topic on low achiever students

Rey

In the field of curriculum any ideas of a research topic on deconalization in contextualization of digital teaching and learning through in higher education

Omada Victoria Enyojo

Amazing guidelines

JAMES MALUKI MUTIA

I am a graduate with two masters. 1) Master of arts in religious studies and 2) Master in education in foundations of education. I intend to do a Ph.D. on my second master’s, however, I need to bring both masters together through my Ph.D. research. can I do something like, ” The contribution of Philosophy of education for a quality religion education in Kenya”? kindly, assist and be free to suggest a similar topic that will bring together the two masters. thanks in advance

betiel

Hi, I am an Early childhood trainer as well as a researcher, I need more support on this topic: The impact of early childhood education on later academic success.

TURIKUMWE JEAN BOSCO

I’m a student in upper level secondary school and I need your support in this research topics: “Impact of incorporating project -based learning in teaching English language skills in secondary schools”.

Fitsum Ayele

Although research activities and topics should stem from reflection on one’s practice, I found this site valuable as it effectively addressed many issues we have been experiencing as practitioners.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

TheHighSchooler

100 Qualitative Research Titles For High School Students

Are you brainstorming for excellent qualitative research titles for your high school curriculum? If yes, then this blog is for you! Academic life throws a lot of thesis and qualitative research papers and essays at you. Although thesis and essays may not be much of a hassle. However, when it comes to your research paper title, you must ensure that it is qualitative, and not quantitative. 

Qualitative research is primarily focused on obtaining data through case studies, artifacts, interviews, documentaries, and other first-hand observations. It focuses more on these natural settings rather than statistics and numbers. If you are finding it difficult to find a topic, then worry not because the high schooler has this blog post curated for you with 100 qualitative research titles that can help you get started!

Qualitative research prompts for high schoolers

Qualitative research papers are written by gathering and analyzing non-numerical data. Generally, teachers allot a list of topics that you can choose from. However, if you aren’t given the list, you need to search for a topic for yourself.

Qualitative research topics mostly deal with the happenings in society and nature. There are endless topics that you can choose from. We have curated a list of 100 qualitative research titles for you to choose from. Read on and pick the one that best aligns with your interests!

  • Why is there a pressing need for wildlife conservation?
  • Discuss the impacts of climate change on future generations. 
  • Discuss the impact of overpopulation on sustainable resources.
  • Discuss the factors considered while establishing the first 10 engineering universities in the world.
  • What is the contribution of AI to emotional intelligence? Explain. 
  • List out the effective methods to reduce the occurrences of fraud through cybercrimes.
  • With case studies, discuss some of the greatest movements in history leading to independence. 
  • Discuss real-life scenarios of gender-based discrimination. 
  • Discuss disparities in income and opportunities in developing nations. 
  • How to deal with those dealing with ADHD?
  • Describe how life was before the invention of the air conditioner. 
  • Explain the increasing applications of clinical psychology. 
  • What is psychology? Explain the career opportunities it brings forth for youngsters.
  • Covid lockdown: Is homeschooling the new way to school children?
  • What is the role of army dogs? How are they trained for the role?
  • What is feminism to you? Mention a feminist and his/her contributions to making the world a better place for women.  
  • What is true leadership quality according to you? Explain with a case study of a famous personality you admire for their leadership skills. 
  • Is wearing a mask effective in preventing covid-19? Explain the other practices that can help one prevent covid-19. 
  • Explain how teachers play an important role in helping students with disabilities improve their learning.
  • Is ‘E business’ taking over traditional methods of carrying out business?
  • What are the implications of allowing high schoolers to use smartphones in classes?
  • Does stress have an effect on human behavior?
  • Explain the link between poverty and education. 
  • With case studies, explain the political instability in developing nations.
  • Are ‘reality television shows’ scripted or do they showcase reality?
  • Online vs Offline teaching: which method is more effective and how?
  • Does there exist an underlying correlation between education and success? Explain with case studies.
  • Explain the social stigma associated with menstruation. 
  • Are OTT entertainment platforms like Netflix and Amazon Prime beneficial in any other way?
  • Does being physically active help reverse type 2 diabetes?
  • Does pop culture influence today’s youth and their behavior?
  • ‘A friend in need is a friend in deed.’ Explain with case studies of famous personalities. 
  • Do books have greater importance in the lives of children from weaker economic backgrounds? Explain in detail.
  • Give an overview of the rise of spoken arts. 
  • Explain the problem of food insecurity in developing nations.
  • How related are Windows and Apple products?
  • Explore the methods used in schools to promote cultural diversity. 
  • Has social media replaced the physical social engagement of children in society?
  • Give an overview of allopathic medicine in treating mental disorders. 
  • Explain if and how willpower plays a role in overcoming difficulties in life. 
  • Are third-world countries seeing a decline in academic pursuit? Explain with real-life scenarios. 
  • Can animals predict earthquakes in advance? Explain which animals have this ability and how they do it. 
  • Discuss if the education system in America needs to improve. If yes, list out how this can be achieved.
  • Discuss democracy as a government of the people, by the people, and for the people.’
  • Discuss the increasing rate of attention deficit disorder among children.
  • Explain fun games that can help boost the morale of kids with dyslexia. 
  • Explain the causes of youth unemployment.
  • Explain some of the ways you think might help in making differently-abled students feel inclusive in the mainstream.
  • Explain in detail the challenges faced by students with special needs to feel included when it comes to accessibility to education.
  • Discuss the inefficiency of the healthcare system brought about by the covid-19 pandemic. 
  • Does living in hostels instill better life skills among students than those who are brought up at home? Explain in detail. 
  • What is Advanced Traffic Management? Explain the success cases of countries that have deployed it.  
  • Elaborate on the ethnic and socioeconomic reasons leading to poor school attendance in third-world nations.
  • Do preschoolers benefit from being read to by their parents? Discuss in detail.
  • What is the significance of oral learning in classrooms?
  • Does computer literacy promise a brighter future? Analyze. 
  • What people skills are enhanced in a high school classroom?
  • Discuss in detail the education system in place of a developing nation. Highlight the measures you think are impressive and those that you think need a change. 
  • Apart from the drawbacks of UV rays on the human body, explain how it has proven to be beneficial in treating diseases.  
  • Discuss why or why not wearing school uniforms can make students feel included in the school environment. 
  • What are the effective ways that have been proven to mitigate child labor in society? 
  • Explain the contributions of arts and literature to the evolving world. 
  • How do healthcare organizations cope with patients living with transmissive medical conditions?
  • Why do people with special abilities still face hardships when it comes to accessibility to healthcare and education?
  • What are the prevailing signs of depression in small children?
  • How to identify the occurrences and onset of autism in kids below three years of age?
  • Explain how SWOT and PESTLE analysis is important for a business.
  • Why is it necessary to include mental health education in the school curriculum?
  • What is adult learning and does it have any proven benefits?
  • What is the importance of having access to libraries in high school?
  • Discuss the need for including research writing in school curriculums. 
  • Explain some of the greatest non-violent movements of ancient history. 
  • Explain the reasons why some of the species of wildlife are critically endangered today. 
  • How is the growing emission of co2 bringing an unprecedented change in the environment?
  • What are the consequences of an increasing population in developing nations like India? Discuss in detail. 
  • Are remote tests as effective as in-class tests? 
  • Explain how sports play a vital role in schools. 
  • What do you understand about social activities in academic institutions? Explain how they pose as a necessity for students. 
  • Are there countries providing free healthcare? How are they faring in terms of their economy? Discuss in detail. 
  • State case studies of human lives lost due to racist laws present in society.
  • Discuss the effect of COVID-19 vaccines in curbing the novel coronavirus.
  • State what according to you is more effective: e-learning or classroom-based educational systems.
  • What changes were brought into the e-commerce industry by the COVID-19 pandemic?
  • Name a personality regarded as a youth icon. Explain his or her contributions in detail.
  • Discuss why more and more people are relying on freelancing as a prospective career. 
  • Does virtual learning imply lesser opportunities? What is your take?
  • Curbing obesity through exercise: Analyze.
  • Discuss the need and importance of health outreach programs.
  • Discuss in detail how the upcoming generation of youngsters can do its bit and contribute to afforestation.
  • Discuss the 2020 budget allocation of the United States. 
  • Discuss some of the historic ‘rags to riches’ stories.
  • What according to you is the role of nurses in the healthcare industry?
  • Will AI actually replace humans and eat up their jobs? Discuss your view and also explain the sector that will benefit the most from AI replacing humans. 
  • Is digital media taking over print media? Explain with case studies. 
  • Why is there an increasing number of senior citizens in the elderly homes? 
  • Are health insurances really beneficial? 
  • How important are soft skills? What role do they play in recruitment? 
  • Has the keto diet been effective in weight loss? Explain the merits and demerits. 
  • Is swimming a good physical activity to curb obesity? 
  • Is work from home as effective as work from office? Explain your take. 

Qualitative research titles for high school students

Tips to write excellent qualitative research papers

Now that you have scrolled through this section, we trust that you have picked up a topic for yourself from our list of 100 brilliant qualitative research titles for high school students. Deciding on a topic is the very first step. The next step is to figure out ways how you can ensure that your qualitative research paper can help you grab top scores. 

Once you have decided on the title, you are halfway there. However, deciding on a topic signals the next step, which is the process of writing your qualitative paper. This poses a real challenge! 

To help you with it, here are a few tips that will help you accumulate data irrespective of the topic you have chosen. Follow these four simple steps and you will be able to do justice to the topic you have chosen!

  • Create an outline based on the topic. Jot down the sub-topics you would like to include. 
  • Refer to as many sources as you can – documentaries, books, news articles, case studies, interviews, etc. Make a note of the facts and phrases you would like to include in your research paper. 
  • Write the body. Start adding qualitative data. 
  • Re-read and revise your paper. Make it comprehensible. Check for plagiarism, and proofread your research paper. Try your best and leave no scope for mistakes. 

Wrapping it up!

To wrap up, writing a qualitative research paper is almost the same as writing other research papers such as argumentative research papers , English research papers , Biology research papers , and more. Writing a paper on qualitative research titles promotes analytical and critical thinking skills among students. Moreover,  it also helps improve data interpretation and writing ability, which are essential for students going ahead.

correlational research titles examples for highschool students

Having a 10+ years of experience in teaching little budding learners, I am now working as a soft skills and IELTS trainers. Having spent my share of time with high schoolers, I understand their fears about the future. At the same time, my experience has helped me foster plenty of strategies that can make their 4 years of high school blissful. Furthermore, I have worked intensely on helping these young adults bloom into successful adults by training them for their dream colleges. Through my blogs, I intend to help parents, educators and students in making these years joyful and prosperous.

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

45+ Experimental Research Topics And Examples For School & College Students

correlational research titles examples for highschool students

Sourav Mahahjan

correlational research titles examples for highschool students

Whether it is school or college, identifying a good and quality research topic can take time for students. Experimental research, also known as methodological or analytical research, uses two or more variables and arguments for a particular scenario. In this type of argument, the influence of the independent variable on the dependent variable is considered when conducting an experimental exploration. To make a particular decision in empirical research, it is important to provide a large number of evidence. The evidence collected in practical research helps identify the consequences and reasons related to different quantities of the variables. Experimental research design is an important part of the academic cycle of any student, and often, the student needs help in preparing experimental research designs. Different types of experimental research are available for the students, such as pre-experimental research, accurate experimental research, and quasi-experimental research.

What are the different types of experimental research?

Different subjects and topics required different types of experimental research. Some commonly used experimental research are quasi-experimental research, true experiment research, and pre-experimental research.

What are the different elements of experimental research?

Any experimental research consists of three essential elements. The first element is the independent variable, which the researcher manipulates. The second variable is the dependent variable, which changes according to the first variable's manipulation. The third element is the controlled variable, which is kept constant to prevent any kind of impact on the effects created by the independent variable after the manipulation by the researcher.

What are the advantages and disadvantages of experimental research?

The use of experimental research by the researcher helps provide strong evidence regarding the different types of cause-and-impact relationships in different scenarios. The experimental research service allows the researcher to maintain control of various elements of the experimental environment. On the other hand, one of the significant disadvantages of experimental research is that it is a very time-consuming process, and sometimes, the results obtained may be disconnected from the ordinary world. 

Examples of experimental research titles:

Creating an experimental research design is very frustrating, and selecting the appropriate title becomes essential as it forms the basis of experimental research. Before choosing a topic, it becomes necessary for the students to find out literature providing disparity and research provision. This results in investing significant time and effort to search for an appropriate experimental research title. This makes the students lose patience and select the wrong research topic, impacting the overall quality of experimental research.  Examples of experimental research design are

Experimental research titles on natural science for school students:

  • Impact of Light  on the Plant Growth
  • Role of Different Salt Concentrations over the Freezing Point of Water
  • Comparing Battery Life among Different Brands
  • Analysis of  pH on Enzyme Activity
  • Impact of Magnet Strength on a Paperclip over a long distance

Experimental research design on behavioural science for school students:

  • Role of music in affecting Concentration
  • Individual Study vs Group Study on Academic Performance
  • Part of Reward Systems on Increasing Student Motivation
  • Impact of Various Colors on Mood
  • How Sleep Patterns Effect Academic Performance

Experimental Research title on Social Science for college students:

  • Part of  Socioeconomic Status over the Mental Health
  • How Media Representation influences the body image of an individual 
  • Bilingual Education and their Role in Academic Success
  • importance of Social Media during Political Campaigns
  • How Gender Stereotypes Influence the Career Choices in the society

Experimental Research title on natural Science for college students:

  • What is the role of Genetics in causing Obesity? 
  • How Climate Change Affects the Marine Life
  • Role of Pesticides in declining Bee Populations
  • Increasing Pollution and Its Impact on Urban Wildlife
  • What is the role of microplastics in the destruction of Freshwater Ecosystems

Experimental Research title on applied Science for college students:

  • How Machine Learning Algorithms are helping in predicting Stock Prices? 
  • How is data Encryption improving Data Security?
  • How does Aerodynamics influence the vehicle Fuel Efficiency? 
  • Bridge Stability and its dependency on the material properties.
  • How do different Angles of solar panel impacts their efficiency?

Experimental research titles in health science for college students:

  • How does Exercise help in managing Type 2 Diabetes? 
  • Cognitive Performance under the influence of caffeine
  • How do Plant-Based Diets improve our heart health?
  • How do Different Forms of Physical therapy help speed the process of Knee Rehabilitation?
  • Mindfulness Meditation and their Impact on Stress Reduction

Experimental titles on environmental studies for college students:

  • How does deforestation affect the  Local Climate?
  • What are the Different types of Oil Spill Cleanup methods, and how effective are they? 
  • Does Organic Farming help in improving Crop Yield?
  • What is the role of noise Pollution on the growth of  Urban Wildlife?
  • Impacts of increasing E-Waste on Soil Quality

Experimental research topics for computer studies in colleges:

  • What are the  different Sorting Algorithms
  • Analysing the security efficiency of various types of  password Policies
  • How User Experience depends on the user interface
  • Artificial Intelligence  and Its Importance in Image Recognition
  • Energy Efficiency analysis between different types of  computer processors

Experimental research topics for college students on economics:

  • How do economic policies impact the Inflation growth in the economy?
  • How does microfinance can help in reducing poverty in the society? 
  • Globalisation and its Impact on Small Businesses
  • Why do exchange rates are essential for the export market?
  • Role of Large Scale Unemployment Rates in increasing crime Rates

Tips for selecting suitable experimental research title:

Establishing the appropriate research title is very helpful in completing a practical research assignment . Some of the recommendations for the students are 

  • Interest:  The research tile should be based on the student's interest. This helps in improving the quality of the research.
  • Relevance:  The selected title should be relevant to the subject of the student.  It should fulfil the objectives of the course. 
  • Feasibility:  The selected topic should be practical and have adequate resources required for the study. 

Conclusion 

Experimental research is essential in conducting scientific inquiry during an academic study. Experimental research helps students use their knowledge to improve their problem-solving and critical-thinking abilities in their academic cycle.

Editor's Choice

200 best 5 minute speech topic ideas, 200+ transition words for essays, 50+ best research topics on humanities & social sciences, 15+ most useful websites for college students in 2023, most difficult topics in mathematics, 50+ educational research topics & ideas for students, how to make a cover page for the assignment.

We are here to help you!

Explore Topics

Related articles.

correlational research titles examples for highschool students

International Business Dissertation Topics Ideas

Selecting an international dissertation topic is very complex for students facin...

correlational research titles examples for highschool students

15+ Best Commemorative Speech Topics In 2024

What is a commemorative speech?The commemorative speech is generally made to rem...

correlational research titles examples for highschool students

6 Most Important Elements of a Movie Review?

What is a movie review?A  movie refers to informing the patients about the...

IMAGES

  1. Qualitative Research Title Examples For Abm Students

    correlational research titles examples for highschool students

  2. Correlational research methods Essay Example

    correlational research titles examples for highschool students

  3. Descriptive and Correlational Research Strategies

    correlational research titles examples for highschool students

  4. 130+ Correlational Research Topics: That You Need To Know

    correlational research titles examples for highschool students

  5. 100 Qualitative Research Titles For High School Students

    correlational research titles examples for highschool students

  6. Correlation Research Methods Paper Example

    correlational research titles examples for highschool students

VIDEO

  1. Correlational Research Titles (Quantitative Research)

  2. Why Returning Alumni are a Key to Success #alumni #network #relationship

  3. Examples & Solution of Ex

  4. Correlational Research in Urdu

  5. Correlational Research and Its Sample Research Titles

  6. These are the four tips on how to write a good research title

COMMENTS

  1. 120+ Great Correlational Research Topics For Students [2024]

    Most Recent Correlation Research Topics for STEM Students. Exploring the connection between food and drug efficacy. Investigating the correlation between exercise and sleep. Understanding sleep patterns and heart rate. Examining the link between weather seasons and body immunity.

  2. 130+ Correlational Research Topics: That You Need To Know

    Correlation Topic Examples for STEM Students. These research topics for STEM students are game-changers. However, try any of the titles below regarding correlation in research. The connection between: Food and drug efficacy. Exercise and sleep. Sleep patterns and heart rate. Weather seasons and body immunity.

  3. 150+ Correlational Research Topics For Students [2024]

    Here are several benefits of correlational research topics for students: Enhances critical thinking skills. Engaging in correlational research encourages students to analyze data, draw conclusions, and evaluate the relationships between variables, fostering critical thinking abilities. Provides real-world application.

  4. 150+ Correlational Research Topics: Best Ideas For Students

    The correlation between exercise frequency and mental health outcomes. Relationship between diet quality and cardiovascular health. Correlation between habits of smoking and lung cancer rates. Impact of sleep duration on physical health. Relationship between anxiety levels and immune system function.

  5. 100 Interesting Research Paper Topics for High Schoolers

    For example, last year over 4000 students applied for 500 spots in the Lumiere Research Scholar Program, a rigorous research program founded by Harvard researchers. The program pairs high-school students with Ph.D. mentors to work 1-on-1 on an independent research project. The program actually does not require you to have a research topic in ...

  6. Correlational Research

    Correlational research is a type of study that explores how variables are related to each other. It can help you identify patterns, trends, and predictions in your data. In this guide, you will learn when and how to use correlational research, and what its advantages and limitations are. You will also find examples of correlational research questions and designs. If you want to know the ...

  7. Correlational Research

    It should involve two or more variables that you want to investigate for a correlation. Choose the research method: Decide on the research method that will be most appropriate for your research question. The most common methods for correlational research are surveys, archival research, and naturalistic observation.

  8. 7.2 Correlational Research

    Correlational research is a type of nonexperimental research in which the researcher measures two variables and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are essentially two reasons that researchers interested in statistical relationships between ...

  9. 5.10: Correlational Research

    In a real-world example of negative correlation, student researchers at the University of Minnesota found a weak negative correlation (r = -0.29) between the average number of days per week that students got fewer than 5 hours of sleep and their GPA (Lowry, Dean, & Manders, 2010). Keep in mind that a negative correlation is not the same as no ...

  10. Correlational Research: What it is with Examples

    Mainly three types of correlational research have been identified: 1. Positive correlation:A positive relationship between two variables is when an increase in one variable leads to a rise in the other variable. A decrease in one variable will see a reduction in the other variable. For example, the amount of money a person has might positively ...

  11. 200+ Experimental Quantitative Research Topics For Stem Students

    Here are 10 practical research topics for STEM students: Developing an affordable and sustainable water purification system for rural communities. Designing a low-cost, energy-efficient home heating and cooling system. Investigating strategies for reducing food waste in the supply chain and households.

  12. A correlational study of the relationship between academic performance

    The present study proposes to examine the relationship between parental age and the. academic success of their children. The study will examine children of parents from. different age groups, and through a variety of different measures examine if there is a link. between older parents and higher academic achievement.

  13. 100 Research Topic Ideas for High School Students

    Here are five specific high school sociology research topics and how you can approach them: 61. Investigate the impact of social media algorithms on echo chambers and polarization in online communities. Social media shapes public discourse.

  14. Correlational Research Designs: Types, Examples & Methods

    Positive correlational research is a research method involving 2 variables that are statistically corresponding where an increase or decrease in 1 variable creates a like change in the other. An example is when an increase in workers' remuneration results in an increase in the prices of goods and services and vice versa.

  15. 5 Study 2: Correlational Study With High School Students

    Abstract. This chapter presents Study 2, which examined the correlations between measures of video game violence exposure and aggressive behaviors among high school students, and included several important control variables.

  16. PDF Journal of Research in Education Volume 25 No 2

    Journal of Research in Education Volume 25 No 2 28 Social media use, loneliness, and academic achievement: A correlational study with urban high school students *Roque Neto. Davenport University . Nancy Golz . Merced College . Meaghan Polega . Davenport University * Correspondence concerning this article should be directed to Dr. Roque Neto ...

  17. quantitative correlational study: Topics by Science.gov

    2010-01-01. The purpose of this quantitative correlational study was to identify the relationship between the type of teacher preparation program and student performance on the seventh and eighth grade mathematics state assessments in rural school settings. The study included a survey of a convenience sample of 36 teachers from Colorado and ...

  18. (PDF) A Correlational Study on Students' Reading Interest and Their

    (PDF) A Correlational Study on Students' Reading Interest and Their ...

  19. Ten Examples of Research Title For Senior Highschool

    Ten Examples of Research Title for Senior Highschool - Free download as Word Doc (.doc / .docx), PDF File (.pdf), Text File (.txt) or read online for free.

  20. 170+ Research Topics In Education (+ Free Webinar)

    The impact of poverty on education. The use of student data to inform instruction. The role of parental involvement in education. The effects of mindfulness practices in the classroom. The use of technology in the classroom. The role of critical thinking in education.

  21. Level of Critical Thinking Skills Among Senior High School Students of

    This quantitative research study investigates the relationship between critical thinking skill and academic performance among senior high school students enrolled in the Humanities and Social ...

  22. 100 Qualitative Research Titles For High School Students

    Qualitative research papers are written by gathering and analyzing non-numerical data. Generally, teachers allot a list of topics that you can choose from. However, if you aren't given the list, you need to search for a topic for yourself. Qualitative research topics mostly deal with the happenings in society and nature.

  23. 45+ Experimental Research Topics And Examples For School & College Students

    Experimental research titles on natural science for school students: Impact of Light on the Plant Growth. Role of Different Salt Concentrations over the Freezing Point of Water. Comparing Battery Life among Different Brands. Analysis of pH on Enzyme Activity. Impact of Magnet Strength on a Paperclip over a long distance.