7.3 Problem-Solving

Learning objectives.

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving

   People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

The study of human and animal problem solving processes has provided much insight toward the understanding of our conscious experience and led to advancements in computer science and artificial intelligence. Essentially much of cognitive science today represents studies of how we consciously and unconsciously make decisions and solve problems. For instance, when encountered with a large amount of information, how do we go about making decisions about the most efficient way of sorting and analyzing all the information in order to find what you are looking for as in visual search paradigms in cognitive psychology. Or in a situation where a piece of machinery is not working properly, how do we go about organizing how to address the issue and understand what the cause of the problem might be. How do we sort the procedures that will be needed and focus attention on what is important in order to solve problems efficiently. Within this section we will discuss some of these issues and examine processes related to human, animal and computer problem solving.

PROBLEM-SOLVING STRATEGIES

   When people are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

Problems themselves can be classified into two different categories known as ill-defined and well-defined problems (Schacter, 2009). Ill-defined problems represent issues that do not have clear goals, solution paths, or expected solutions whereas well-defined problems have specific goals, clearly defined solutions, and clear expected solutions. Problem solving often incorporates pragmatics (logical reasoning) and semantics (interpretation of meanings behind the problem), and also in many cases require abstract thinking and creativity in order to find novel solutions. Within psychology, problem solving refers to a motivational drive for reading a definite “goal” from a present situation or condition that is either not moving toward that goal, is distant from it, or requires more complex logical analysis for finding a missing description of conditions or steps toward that goal. Processes relating to problem solving include problem finding also known as problem analysis, problem shaping where the organization of the problem occurs, generating alternative strategies, implementation of attempted solutions, and verification of the selected solution. Various methods of studying problem solving exist within the field of psychology including introspection, behavior analysis and behaviorism, simulation, computer modeling, and experimentation.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them (table below). For example, a well-known strategy is trial and error. The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

   Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Further problem solving strategies have been identified (listed below) that incorporate flexible and creative thinking in order to reach solutions efficiently.

Additional Problem Solving Strategies :

  • Abstraction – refers to solving the problem within a model of the situation before applying it to reality.
  • Analogy – is using a solution that solves a similar problem.
  • Brainstorming – refers to collecting an analyzing a large amount of solutions, especially within a group of people, to combine the solutions and developing them until an optimal solution is reached.
  • Divide and conquer – breaking down large complex problems into smaller more manageable problems.
  • Hypothesis testing – method used in experimentation where an assumption about what would happen in response to manipulating an independent variable is made, and analysis of the affects of the manipulation are made and compared to the original hypothesis.
  • Lateral thinking – approaching problems indirectly and creatively by viewing the problem in a new and unusual light.
  • Means-ends analysis – choosing and analyzing an action at a series of smaller steps to move closer to the goal.
  • Method of focal objects – putting seemingly non-matching characteristics of different procedures together to make something new that will get you closer to the goal.
  • Morphological analysis – analyzing the outputs of and interactions of many pieces that together make up a whole system.
  • Proof – trying to prove that a problem cannot be solved. Where the proof fails becomes the starting point or solving the problem.
  • Reduction – adapting the problem to be as similar problems where a solution exists.
  • Research – using existing knowledge or solutions to similar problems to solve the problem.
  • Root cause analysis – trying to identify the cause of the problem.

The strategies listed above outline a short summary of methods we use in working toward solutions and also demonstrate how the mind works when being faced with barriers preventing goals to be reached.

One example of means-end analysis can be found by using the Tower of Hanoi paradigm . This paradigm can be modeled as a word problems as demonstrated by the Missionary-Cannibal Problem :

Missionary-Cannibal Problem

Three missionaries and three cannibals are on one side of a river and need to cross to the other side. The only means of crossing is a boat, and the boat can only hold two people at a time. Your goal is to devise a set of moves that will transport all six of the people across the river, being in mind the following constraint: The number of cannibals can never exceed the number of missionaries in any location. Remember that someone will have to also row that boat back across each time.

Hint : At one point in your solution, you will have to send more people back to the original side than you just sent to the destination.

The actual Tower of Hanoi problem consists of three rods sitting vertically on a base with a number of disks of different sizes that can slide onto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top making a conical shape. The objective of the puzzle is to move the entire stack to another rod obeying the following rules:

  • 1. Only one disk can be moved at a time.
  • 2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack or on an empty rod.
  • 3. No disc may be placed on top of a smaller disk.

psychological strategies for problem solving

  Figure 7.02. Steps for solving the Tower of Hanoi in the minimum number of moves when there are 3 disks.

psychological strategies for problem solving

Figure 7.03. Graphical representation of nodes (circles) and moves (lines) of Tower of Hanoi.

The Tower of Hanoi is a frequently used psychological technique to study problem solving and procedure analysis. A variation of the Tower of Hanoi known as the Tower of London has been developed which has been an important tool in the neuropsychological diagnosis of executive function disorders and their treatment.

GESTALT PSYCHOLOGY AND PROBLEM SOLVING

As you may recall from the sensation and perception chapter, Gestalt psychology describes whole patterns, forms and configurations of perception and cognition such as closure, good continuation, and figure-ground. In addition to patterns of perception, Wolfgang Kohler, a German Gestalt psychologist traveled to the Spanish island of Tenerife in order to study animals behavior and problem solving in the anthropoid ape.

As an interesting side note to Kohler’s studies of chimp problem solving, Dr. Ronald Ley, professor of psychology at State University of New York provides evidence in his book A Whisper of Espionage  (1990) suggesting that while collecting data for what would later be his book  The Mentality of Apes (1925) on Tenerife in the Canary Islands between 1914 and 1920, Kohler was additionally an active spy for the German government alerting Germany to ships that were sailing around the Canary Islands. Ley suggests his investigations in England, Germany and elsewhere in Europe confirm that Kohler had served in the German military by building, maintaining and operating a concealed radio that contributed to Germany’s war effort acting as a strategic outpost in the Canary Islands that could monitor naval military activity approaching the north African coast.

While trapped on the island over the course of World War 1, Kohler applied Gestalt principles to animal perception in order to understand how they solve problems. He recognized that the apes on the islands also perceive relations between stimuli and the environment in Gestalt patterns and understand these patterns as wholes as opposed to pieces that make up a whole. Kohler based his theories of animal intelligence on the ability to understand relations between stimuli, and spent much of his time while trapped on the island investigation what he described as  insight , the sudden perception of useful or proper relations. In order to study insight in animals, Kohler would present problems to chimpanzee’s by hanging some banana’s or some kind of food so it was suspended higher than the apes could reach. Within the room, Kohler would arrange a variety of boxes, sticks or other tools the chimpanzees could use by combining in patterns or organizing in a way that would allow them to obtain the food (Kohler & Winter, 1925).

While viewing the chimpanzee’s, Kohler noticed one chimp that was more efficient at solving problems than some of the others. The chimp, named Sultan, was able to use long poles to reach through bars and organize objects in specific patterns to obtain food or other desirables that were originally out of reach. In order to study insight within these chimps, Kohler would remove objects from the room to systematically make the food more difficult to obtain. As the story goes, after removing many of the objects Sultan was used to using to obtain the food, he sat down ad sulked for a while, and then suddenly got up going over to two poles lying on the ground. Without hesitation Sultan put one pole inside the end of the other creating a longer pole that he could use to obtain the food demonstrating an ideal example of what Kohler described as insight. In another situation, Sultan discovered how to stand on a box to reach a banana that was suspended from the rafters illustrating Sultan’s perception of relations and the importance of insight in problem solving.

Grande (another chimp in the group studied by Kohler) builds a three-box structure to reach the bananas, while Sultan watches from the ground.  Insight , sometimes referred to as an “Ah-ha” experience, was the term Kohler used for the sudden perception of useful relations among objects during problem solving (Kohler, 1927; Radvansky & Ashcraft, 2013).

Solving puzzles.

   Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (see figure) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

How long did it take you to solve this sudoku puzzle? (You can see the answer at the end of this section.)

   Here is another popular type of puzzle (figure below) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

Did you figure it out? (The answer is at the end of this section.) Once you understand how to crack this puzzle, you won’t forget.

   Take a look at the “Puzzling Scales” logic puzzle below (figure below). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

What steps did you take to solve this puzzle? You can read the solution at the end of this section.

Pitfalls to problem solving.

   Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

   Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in the table below.

Were you able to determine how many marbles are needed to balance the scales in the figure below? You need nine. Were you able to solve the problems in the figures above? Here are the answers.

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

   Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.

References:

Openstax Psychology text by Kathryn Dumper, William Jenkins, Arlene Lacombe, Marilyn Lovett and Marion Perlmutter licensed under CC BY v4.0. https://openstax.org/details/books/psychology

Review Questions:

1. A specific formula for solving a problem is called ________.

a. an algorithm

b. a heuristic

c. a mental set

d. trial and error

2. Solving the Tower of Hanoi problem tends to utilize a  ________ strategy of problem solving.

a. divide and conquer

b. means-end analysis

d. experiment

3. A mental shortcut in the form of a general problem-solving framework is called ________.

4. Which type of bias involves becoming fixated on a single trait of a problem?

a. anchoring bias

b. confirmation bias

c. representative bias

d. availability bias

5. Which type of bias involves relying on a false stereotype to make a decision?

6. Wolfgang Kohler analyzed behavior of chimpanzees by applying Gestalt principles to describe ________.

a. social adjustment

b. student load payment options

c. emotional learning

d. insight learning

7. ________ is a type of mental set where you cannot perceive an object being used for something other than what it was designed for.

a. functional fixedness

c. working memory

Critical Thinking Questions:

1. What is functional fixedness and how can overcoming it help you solve problems?

2. How does an algorithm save you time and energy when solving a problem?

Personal Application Question:

1. Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?

anchoring bias

availability heuristic

confirmation bias

functional fixedness

hindsight bias

problem-solving strategy

representative bias

trial and error

working backwards

Answers to Exercises

algorithm:  problem-solving strategy characterized by a specific set of instructions

anchoring bias:  faulty heuristic in which you fixate on a single aspect of a problem to find a solution

availability heuristic:  faulty heuristic in which you make a decision based on information readily available to you

confirmation bias:  faulty heuristic in which you focus on information that confirms your beliefs

functional fixedness:  inability to see an object as useful for any other use other than the one for which it was intended

heuristic:  mental shortcut that saves time when solving a problem

hindsight bias:  belief that the event just experienced was predictable, even though it really wasn’t

mental set:  continually using an old solution to a problem without results

problem-solving strategy:  method for solving problems

representative bias:  faulty heuristic in which you stereotype someone or something without a valid basis for your judgment

trial and error:  problem-solving strategy in which multiple solutions are attempted until the correct one is found

working backwards:  heuristic in which you begin to solve a problem by focusing on the end result

Creative Commons License

Share This Book

  • Increase Font Size

Explore Psychology

8 Effective Problem-Solving Strategies

Categories Cognition

8 Effective Problem-Solving Strategies

If you need to solve a problem, there are a number of different problem-solving strategies that can help you come up with an accurate decision. Sometimes the best choice is to use a step-by-step approach that leads to the right solution, but other problems may require a trial-and-error approach. 

Some helpful problem-solving strategies include: Brainstorming Step-by-step algorithms Trial-and-error Working backward Heuristics Insight Writing it down Getting some sleep

Why Use Problem-Solving Strategies

While you can always make a wild guess or pick at random, that certainly isn’t the most accurate way to come up with a solution. Using a more structured approach allows you to:

  • Understand the nature of the problem
  • Determine how you will solve it
  • Research different options
  • Take steps to solve the problem and resolve the issue

There are many tools and strategies that can be used to solve problems, and some problems may require more than one of these methods in order to come up with a solution.

Problem-Solving Strategies

The problem-solving strategy that works best depends on the nature of the problem and how much time you have available to make a choice. Here are eight different techniques that can help you solve whatever type of problem you might face.

Brainstorming

Coming up with a lot of potential solutions can be beneficial, particularly early on in the process. You might brainstorm on your own, or enlist the help of others to get input that you might not have otherwise considered.

Step-by-Step

Also known as an algorithm, this approach involves following a predetermined formula that is guaranteed to produce the correct result. While this can be useful in some situations—such as solving a math problem—it is not always practical in every situation.

On the plus side, algorithms can be very accurate and reliable. Unfortunately, they can also be time-consuming.

And in some situations, you cannot follow this approach because you simply don’t have access to all of the information you would need to do so.

Trial-and-Error

This problem-solving strategy involves trying a number of different solutions in order to figure out which one works best. This requires testing steps or more options to solve the problem or pick the right solution. 

For example, if you are trying to perfect a recipe, you might have to experiment with varying amounts of a certain ingredient before you figure out which one you prefer.

On the plus side, trial-and-error can be a great problem-solving strategy in situations that require an individualized solution. However, this approach can be very time-consuming and costly.

Working Backward

This problem-solving strategy involves looking at the end result and working your way back through the chain of events. It can be a useful tool when you are trying to figure out what might have led to a particular outcome.

It can also be a beneficial way to play out how you will complete a task. For example, if you know you need to have a project done by a certain date, working backward can help you figure out the steps you’ll need to complete in order to successfully finish the project.

Heuristics are mental shortcuts that allow you to come up with solutions quite quickly. They are often based on past experiences that are then applied to other situations. They are, essentially, a handy rule of thumb.

For example, imagine a student is trying to pick classes for the next term. While they aren’t sure which classes they’ll enjoy the most, they know that they tend to prefer subjects that involve a lot of creativity. They utilize this heuristic to pick classes that involve art and creative writing.

The benefit of a heuristic is that it is a fast way to make fairly accurate decisions. The trade-off is that you give up some accuracy in order to gain speed and efficiency.

Sometimes, the solution to a problem seems to come out of nowhere. You might suddenly envision a solution after struggling with the problem for a while. Or you might abruptly recognize the correct solution that you hadn’t seen before. 

No matter the source, insight-based problem-solving relies on following your gut instincts. While this may not be as objective or accurate as some other problem-solving strategies, it can be a great way to come up with creative, novel solutions.

Write It Down

Sometimes putting the problem and possible solutions down in paper can be a useful way to visualize solutions. Jot down whatever might help you envision your options. Draw a picture, create a mind map, or just write some notes to clarify your thoughts.

Get Some Sleep

If you’re facing a big problem or trying to make an important decision, try getting a good night’s sleep before making a choice. Sleep plays an essential role in memory consolidation, so getting some rest may help you access the information or insight you need to make the best choice.

Other Considerations

Even with an arsenal of problem-solving strategies at your disposal, coming up with solutions isn’t always easy. Certain challenges can make the process more difficult. A few issues that might emerge include:

  • Mental set : When people form a mental set, they only rely on things that have worked in the last. Sometimes this can be useful, but in other cases, it can severely hinder the problem-solving process.
  • Cognitive biases : Unconscious cognitive biases can make it difficult to see situations clearly and objectively. As a result, you may not consider all of your options or ignore relevant information.
  • Misinformation : Poorly sourced clues and irrelevant details can add more complications. Being able to sort out what’s relevant and what’s not is essential for solving problems accurately.
  • Functional fixedness : Functional fixedness happens when people only think of customary solutions to problems. It can hinder out-of-the-box thinking and prevents insightful, creative solutions.

Important Problem-Solving Skills

Becoming a good problem solver can be useful in a variety of domains, from school to work to interpersonal relationships. Important problem-solving skills encompass being able to identify problems, coming up with effective solutions, and then implementing these solutions.

According to a 2023 survey by the National Association of Colleges and Employers, 61.4% of employers look for problem-solving skills on applicant resumes.

Some essential problem-solving skills include:

  • Research skills
  • Analytical abilities
  • Decision-making skills
  • Critical thinking
  • Communication
  • Time management 
  • Emotional intelligence

Solving a problem is complex and requires the ability to recognize the issue, collect and analyze relevant data, and make decisions about the best course of action. It can also involve asking others for input, communicating goals, and providing direction to others.

How to Become a Better Problem-Solver

If you’re ready to strengthen your problem-solving abilities, here are some steps you can take:

Identify the Problem

Before you can practice your problem-solving skills, you need to be able to recognize that there is a problem. When you spot a potential issue, ask questions about when it started and what caused it.

Do Your Research

Instead of jumping right in to finding solutions, do research to make sure you fully understand the problem and have all the background information you need. This helps ensure you don’t miss important details.

Hone Your Skills

Consider signing up for a class or workshop focused on problem-solving skill development. There are also books that focus on different methods and approaches.

The best way to strengthen problem-solving strategies is to give yourself plenty of opportunities to practice. Look for new challenges that allow you to think critically, analytically, and creatively.

Final Thoughts

If you have a problem to solve, there are plenty of strategies that can help you make the right choice. The key is to pick the right one, but also stay flexible and willing to shift gears.

In many cases, you might find that you need more than one strategy to make the choices that are right for your life.

Brunet, J. F., McNeil, J., Doucet, É., & Forest, G. (2020). The association between REM sleep and decision-making: Supporting evidences. Physiology & Behavior , 225, 113109. https://doi.org/10.1016/j.physbeh.2020.113109

Chrysikou, E. G, Motyka, K., Nigro, C., Yang, S. I. , & Thompson-Schill, S. L. (2016). Functional fixedness in creative thinking tasks depends on stimulus modality. Psychol Aesthet Creat Arts , 10(4):425‐435. https://doi.org/10.1037/aca0000050

Sarathy, V. (2018). Real world problem-solving. Front Hum Neurosci , 12:261. https://doi.org/10.3389/fnhum.2018.00261

APS

The Process of Problem Solving

  • Editor's Choice
  • Experimental Psychology
  • Problem Solving

psychological strategies for problem solving

In a 2013 article published in the Journal of Cognitive Psychology , Ngar Yin Louis Lee (Chinese University of Hong Kong) and APS William James Fellow Philip N. Johnson-Laird (Princeton University) examined the ways people develop strategies to solve related problems. In a series of three experiments, the researchers asked participants to solve series of matchstick problems.

In matchstick problems, participants are presented with an array of joined squares. Each square in the array is comprised of separate pieces. Participants are asked to remove a certain number of pieces from the array while still maintaining a specific number of intact squares. Matchstick problems are considered to be fairly sophisticated, as there is generally more than one solution, several different tactics can be used to complete the task, and the types of tactics that are appropriate can change depending on the configuration of the array.

Louis Lee and Johnson-Laird began by examining what influences the tactics people use when they are first confronted with the matchstick problem. They found that initial problem-solving tactics were constrained by perceptual features of the array, with participants solving symmetrical problems and problems with salient solutions faster. Participants frequently used tactics that involved symmetry and salience even when other solutions that did not involve these features existed.

To examine how problem solving develops over time, the researchers had participants solve a series of matchstick problems while verbalizing their problem-solving thought process. The findings from this second experiment showed that people tend to go through two different stages when solving a series of problems.

People begin their problem-solving process in a generative manner during which they explore various tactics — some successful and some not. Then they use their experience to narrow down their choices of tactics, focusing on those that are the most successful. The point at which people begin to rely on this newfound tactical knowledge to create their strategic moves indicates a shift into a more evaluative stage of problem solving.

In the third and last experiment, participants completed a set of matchstick problems that could be solved using similar tactics and then solved several problems that required the use of novel tactics.  The researchers found that participants often had trouble leaving their set of successful tactics behind and shifting to new strategies.

From the three studies, the researchers concluded that when people tackle a problem, their initial moves may be constrained by perceptual components of the problem. As they try out different tactics, they hone in and settle on the ones that are most efficient; however, this deduced knowledge can in turn come to constrain players’ generation of moves — something that can make it difficult to switch to new tactics when required.

These findings help expand our understanding of the role of reasoning and deduction in problem solving and of the processes involved in the shift from less to more effective problem-solving strategies.

Reference Louis Lee, N. Y., Johnson-Laird, P. N. (2013). Strategic changes in problem solving. Journal of Cognitive Psychology, 25 , 165–173. doi: 10.1080/20445911.2012.719021

' src=

good work for other researcher

APS regularly opens certain online articles for discussion on our website. Effective February 2021, you must be a logged-in APS member to post comments. By posting a comment, you agree to our Community Guidelines and the display of your profile information, including your name and affiliation. Any opinions, findings, conclusions, or recommendations present in article comments are those of the writers and do not necessarily reflect the views of APS or the article’s author. For more information, please see our Community Guidelines .

Please login with your APS account to comment.

psychological strategies for problem solving

Careers Up Close: Joel Anderson on Gender and Sexual Prejudices, the Freedoms of Academic Research, and the Importance of Collaboration

Joel Anderson, a senior research fellow at both Australian Catholic University and La Trobe University, researches group processes, with a specific interest on prejudice, stigma, and stereotypes.

psychological strategies for problem solving

Experimental Methods Are Not Neutral Tools

Ana Sofia Morais and Ralph Hertwig explain how experimental psychologists have painted too negative a picture of human rationality, and how their pessimism is rooted in a seemingly mundane detail: methodological choices. 

APS Fellows Elected to SEP

In addition, an APS Rising Star receives the society’s Early Investigator Award.

Privacy Overview

10 Best Problem-Solving Therapy Worksheets & Activities

Problem solving therapy

Cognitive science tells us that we regularly face not only well-defined problems but, importantly, many that are ill defined (Eysenck & Keane, 2015).

Sometimes, we find ourselves unable to overcome our daily problems or the inevitable (though hopefully infrequent) life traumas we face.

Problem-Solving Therapy aims to reduce the incidence and impact of mental health disorders and improve wellbeing by helping clients face life’s difficulties (Dobson, 2011).

This article introduces Problem-Solving Therapy and offers techniques, activities, and worksheets that mental health professionals can use with clients.

Before you continue, we thought you might like to download our three Positive Psychology Exercises for free . These science-based exercises explore fundamental aspects of positive psychology, including strengths, values, and self-compassion, and will give you the tools to enhance the wellbeing of your clients, students, or employees.

This Article Contains:

What is problem-solving therapy, 14 steps for problem-solving therapy, 3 best interventions and techniques, 7 activities and worksheets for your session, fascinating books on the topic, resources from positivepsychology.com, a take-home message.

Problem-Solving Therapy assumes that mental disorders arise in response to ineffective or maladaptive coping. By adopting a more realistic and optimistic view of coping, individuals can understand the role of emotions and develop actions to reduce distress and maintain mental wellbeing (Nezu & Nezu, 2009).

“Problem-solving therapy (PST) is a psychosocial intervention, generally considered to be under a cognitive-behavioral umbrella” (Nezu, Nezu, & D’Zurilla, 2013, p. ix). It aims to encourage the client to cope better with day-to-day problems and traumatic events and reduce their impact on mental and physical wellbeing.

Clinical research, counseling, and health psychology have shown PST to be highly effective in clients of all ages, ranging from children to the elderly, across multiple clinical settings, including schizophrenia, stress, and anxiety disorders (Dobson, 2011).

Can it help with depression?

PST appears particularly helpful in treating clients with depression. A recent analysis of 30 studies found that PST was an effective treatment with a similar degree of success as other successful therapies targeting depression (Cuijpers, Wit, Kleiboer, Karyotaki, & Ebert, 2020).

Other studies confirm the value of PST and its effectiveness at treating depression in multiple age groups and its capacity to combine with other therapies, including drug treatments (Dobson, 2011).

The major concepts

Effective coping varies depending on the situation, and treatment typically focuses on improving the environment and reducing emotional distress (Dobson, 2011).

PST is based on two overlapping models:

Social problem-solving model

This model focuses on solving the problem “as it occurs in the natural social environment,” combined with a general coping strategy and a method of self-control (Dobson, 2011, p. 198).

The model includes three central concepts:

  • Social problem-solving
  • The problem
  • The solution

The model is a “self-directed cognitive-behavioral process by which an individual, couple, or group attempts to identify or discover effective solutions for specific problems encountered in everyday living” (Dobson, 2011, p. 199).

Relational problem-solving model

The theory of PST is underpinned by a relational problem-solving model, whereby stress is viewed in terms of the relationships between three factors:

  • Stressful life events
  • Emotional distress and wellbeing
  • Problem-solving coping

Therefore, when a significant adverse life event occurs, it may require “sweeping readjustments in a person’s life” (Dobson, 2011, p. 202).

psychological strategies for problem solving

  • Enhance positive problem orientation
  • Decrease negative orientation
  • Foster ability to apply rational problem-solving skills
  • Reduce the tendency to avoid problem-solving
  • Minimize the tendency to be careless and impulsive

D’Zurilla’s and Nezu’s model includes (modified from Dobson, 2011):

  • Initial structuring Establish a positive therapeutic relationship that encourages optimism and explains the PST approach.
  • Assessment Formally and informally assess areas of stress in the client’s life and their problem-solving strengths and weaknesses.
  • Obstacles to effective problem-solving Explore typically human challenges to problem-solving, such as multitasking and the negative impact of stress. Introduce tools that can help, such as making lists, visualization, and breaking complex problems down.
  • Problem orientation – fostering self-efficacy Introduce the importance of a positive problem orientation, adopting tools, such as visualization, to promote self-efficacy.
  • Problem orientation – recognizing problems Help clients recognize issues as they occur and use problem checklists to ‘normalize’ the experience.
  • Problem orientation – seeing problems as challenges Encourage clients to break free of harmful and restricted ways of thinking while learning how to argue from another point of view.
  • Problem orientation – use and control emotions Help clients understand the role of emotions in problem-solving, including using feelings to inform the process and managing disruptive emotions (such as cognitive reframing and relaxation exercises).
  • Problem orientation – stop and think Teach clients how to reduce impulsive and avoidance tendencies (visualizing a stop sign or traffic light).
  • Problem definition and formulation Encourage an understanding of the nature of problems and set realistic goals and objectives.
  • Generation of alternatives Work with clients to help them recognize the wide range of potential solutions to each problem (for example, brainstorming).
  • Decision-making Encourage better decision-making through an improved understanding of the consequences of decisions and the value and likelihood of different outcomes.
  • Solution implementation and verification Foster the client’s ability to carry out a solution plan, monitor its outcome, evaluate its effectiveness, and use self-reinforcement to increase the chance of success.
  • Guided practice Encourage the application of problem-solving skills across multiple domains and future stressful problems.
  • Rapid problem-solving Teach clients how to apply problem-solving questions and guidelines quickly in any given situation.

Success in PST depends on the effectiveness of its implementation; using the right approach is crucial (Dobson, 2011).

Problem-solving therapy – Baycrest

The following interventions and techniques are helpful when implementing more effective problem-solving approaches in client’s lives.

First, it is essential to consider if PST is the best approach for the client, based on the problems they present.

Is PPT appropriate?

It is vital to consider whether PST is appropriate for the client’s situation. Therapists new to the approach may require additional guidance (Nezu et al., 2013).

Therapists should consider the following questions before beginning PST with a client (modified from Nezu et al., 2013):

  • Has PST proven effective in the past for the problem? For example, research has shown success with depression, generalized anxiety, back pain, Alzheimer’s disease, cancer, and supporting caregivers (Nezu et al., 2013).
  • Is PST acceptable to the client?
  • Is the individual experiencing a significant mental or physical health problem?

All affirmative answers suggest that PST would be a helpful technique to apply in this instance.

Five problem-solving steps

The following five steps are valuable when working with clients to help them cope with and manage their environment (modified from Dobson, 2011).

Ask the client to consider the following points (forming the acronym ADAPT) when confronted by a problem:

  • Attitude Aim to adopt a positive, optimistic attitude to the problem and problem-solving process.
  • Define Obtain all required facts and details of potential obstacles to define the problem.
  • Alternatives Identify various alternative solutions and actions to overcome the obstacle and achieve the problem-solving goal.
  • Predict Predict each alternative’s positive and negative outcomes and choose the one most likely to achieve the goal and maximize the benefits.
  • Try out Once selected, try out the solution and monitor its effectiveness while engaging in self-reinforcement.

If the client is not satisfied with their solution, they can return to step ‘A’ and find a more appropriate solution.

3 positive psychology exercises

Download 3 Free Positive Psychology Exercises (PDF)

Enhance wellbeing with these free, science-based exercises that draw on the latest insights from positive psychology.

Download 3 Free Positive Psychology Tools Pack (PDF)

By filling out your name and email address below.

Positive self-statements

When dealing with clients facing negative self-beliefs, it can be helpful for them to use positive self-statements.

Use the following (or add new) self-statements to replace harmful, negative thinking (modified from Dobson, 2011):

  • I can solve this problem; I’ve tackled similar ones before.
  • I can cope with this.
  • I just need to take a breath and relax.
  • Once I start, it will be easier.
  • It’s okay to look out for myself.
  • I can get help if needed.
  • Other people feel the same way I do.
  • I’ll take one piece of the problem at a time.
  • I can keep my fears in check.
  • I don’t need to please everyone.

Worksheets for problem solving therapy

5 Worksheets and workbooks

Problem-solving self-monitoring form.

Answering the questions in the Problem-Solving Self-Monitoring Form provides the therapist with necessary information regarding the client’s overall and specific problem-solving approaches and reactions (Dobson, 2011).

Ask the client to complete the following:

  • Describe the problem you are facing.
  • What is your goal?
  • What have you tried so far to solve the problem?
  • What was the outcome?

Reactions to Stress

It can be helpful for the client to recognize their own experiences of stress. Do they react angrily, withdraw, or give up (Dobson, 2011)?

The Reactions to Stress worksheet can be given to the client as homework to capture stressful events and their reactions. By recording how they felt, behaved, and thought, they can recognize repeating patterns.

What Are Your Unique Triggers?

Helping clients capture triggers for their stressful reactions can encourage emotional regulation.

When clients can identify triggers that may lead to a negative response, they can stop the experience or slow down their emotional reaction (Dobson, 2011).

The What Are Your Unique Triggers ? worksheet helps the client identify their triggers (e.g., conflict, relationships, physical environment, etc.).

Problem-Solving worksheet

Imagining an existing or potential problem and working through how to resolve it can be a powerful exercise for the client.

Use the Problem-Solving worksheet to state a problem and goal and consider the obstacles in the way. Then explore options for achieving the goal, along with their pros and cons, to assess the best action plan.

Getting the Facts

Clients can become better equipped to tackle problems and choose the right course of action by recognizing facts versus assumptions and gathering all the necessary information (Dobson, 2011).

Use the Getting the Facts worksheet to answer the following questions clearly and unambiguously:

  • Who is involved?
  • What did or did not happen, and how did it bother you?
  • Where did it happen?
  • When did it happen?
  • Why did it happen?
  • How did you respond?

2 Helpful Group Activities

While therapists can use the worksheets above in group situations, the following two interventions work particularly well with more than one person.

Generating Alternative Solutions and Better Decision-Making

A group setting can provide an ideal opportunity to share a problem and identify potential solutions arising from multiple perspectives.

Use the Generating Alternative Solutions and Better Decision-Making worksheet and ask the client to explain the situation or problem to the group and the obstacles in the way.

Once the approaches are captured and reviewed, the individual can share their decision-making process with the group if they want further feedback.

Visualization

Visualization can be performed with individuals or in a group setting to help clients solve problems in multiple ways, including (Dobson, 2011):

  • Clarifying the problem by looking at it from multiple perspectives
  • Rehearsing a solution in the mind to improve and get more practice
  • Visualizing a ‘safe place’ for relaxation, slowing down, and stress management

Guided imagery is particularly valuable for encouraging the group to take a ‘mental vacation’ and let go of stress.

Ask the group to begin with slow, deep breathing that fills the entire diaphragm. Then ask them to visualize a favorite scene (real or imagined) that makes them feel relaxed, perhaps beside a gently flowing river, a summer meadow, or at the beach.

The more the senses are engaged, the more real the experience. Ask the group to think about what they can hear, see, touch, smell, and even taste.

Encourage them to experience the situation as fully as possible, immersing themselves and enjoying their place of safety.

Such feelings of relaxation may be able to help clients fall asleep, relieve stress, and become more ready to solve problems.

We have included three of our favorite books on the subject of Problem-Solving Therapy below.

1. Problem-Solving Therapy: A Treatment Manual – Arthur Nezu, Christine Maguth Nezu, and Thomas D’Zurilla

Problem-Solving Therapy

This is an incredibly valuable book for anyone wishing to understand the principles and practice behind PST.

Written by the co-developers of PST, the manual provides powerful toolkits to overcome cognitive overload, emotional dysregulation, and the barriers to practical problem-solving.

Find the book on Amazon .

2. Emotion-Centered Problem-Solving Therapy: Treatment Guidelines – Arthur Nezu and Christine Maguth Nezu

Emotion-Centered Problem-Solving Therapy

Another, more recent, book from the creators of PST, this text includes important advances in neuroscience underpinning the role of emotion in behavioral treatment.

Along with clinical examples, the book also includes crucial toolkits that form part of a stepped model for the application of PST.

3. Handbook of Cognitive-Behavioral Therapies – Keith Dobson and David Dozois

Handbook of Cognitive-Behavioral Therapies

This is the fourth edition of a hugely popular guide to Cognitive-Behavioral Therapies and includes a valuable and insightful section on Problem-Solving Therapy.

This is an important book for students and more experienced therapists wishing to form a high-level and in-depth understanding of the tools and techniques available to Cognitive-Behavioral Therapists.

For even more tools to help strengthen your clients’ problem-solving skills, check out the following free worksheets from our blog.

  • Case Formulation Worksheet This worksheet presents a four-step framework to help therapists and their clients come to a shared understanding of the client’s presenting problem.
  • Understanding Your Default Problem-Solving Approach This worksheet poses a series of questions helping clients reflect on their typical cognitive, emotional, and behavioral responses to problems.
  • Social Problem Solving: Step by Step This worksheet presents a streamlined template to help clients define a problem, generate possible courses of action, and evaluate the effectiveness of an implemented solution.

If you’re looking for more science-based ways to help others enhance their wellbeing, check out this signature collection of 17 validated positive psychology tools for practitioners. Use them to help others flourish and thrive.

psychological strategies for problem solving

17 Top-Rated Positive Psychology Exercises for Practitioners

Expand your arsenal and impact with these 17 Positive Psychology Exercises [PDF] , scientifically designed to promote human flourishing, meaning, and wellbeing.

Created by Experts. 100% Science-based.

While we are born problem-solvers, facing an incredibly diverse set of challenges daily, we sometimes need support.

Problem-Solving Therapy aims to reduce stress and associated mental health disorders and improve wellbeing by improving our ability to cope. PST is valuable in diverse clinical settings, ranging from depression to schizophrenia, with research suggesting it as a highly effective treatment for teaching coping strategies and reducing emotional distress.

Many PST techniques are available to help improve clients’ positive outlook on obstacles while reducing avoidance of problem situations and the tendency to be careless and impulsive.

The PST model typically assesses the client’s strengths, weaknesses, and coping strategies when facing problems before encouraging a healthy experience of and relationship with problem-solving.

Why not use this article to explore the theory behind PST and try out some of our powerful tools and interventions with your clients to help them with their decision-making, coping, and problem-solving?

We hope you enjoyed reading this article. Don’t forget to download our three Positive Psychology Exercises for free .

  • Cuijpers, P., Wit, L., Kleiboer, A., Karyotaki, E., & Ebert, D. (2020). Problem-solving therapy for adult depression: An updated meta-analysis. European P sychiatry ,  48 (1), 27–37.
  • Dobson, K. S. (2011). Handbook of cognitive-behavioral therapies (3rd ed.). Guilford Press.
  • Dobson, K. S., & Dozois, D. J. A. (2021). Handbook of cognitive-behavioral therapies  (4th ed.). Guilford Press.
  • Eysenck, M. W., & Keane, M. T. (2015). Cognitive psychology: A student’s handbook . Psychology Press.
  • Nezu, A. M., & Nezu, C. M. (2009). Problem-solving therapy DVD . Retrieved September 13, 2021, from https://www.apa.org/pubs/videos/4310852
  • Nezu, A. M., & Nezu, C. M. (2018). Emotion-centered problem-solving therapy: Treatment guidelines. Springer.
  • Nezu, A. M., Nezu, C. M., & D’Zurilla, T. J. (2013). Problem-solving therapy: A treatment manual . Springer.

' src=

Share this article:

Article feedback

What our readers think.

Saranya

Thanks for your information given, it was helpful for me something new I learned

Let us know your thoughts Cancel reply

Your email address will not be published.

Save my name, email, and website in this browser for the next time I comment.

Related articles

Variations of the empty chair

The Empty Chair Technique: How It Can Help Your Clients

Resolving ‘unfinished business’ is often an essential part of counseling. If left unresolved, it can contribute to depression, anxiety, and mental ill-health while damaging existing [...]

psychological strategies for problem solving

29 Best Group Therapy Activities for Supporting Adults

As humans, we are social creatures with personal histories based on the various groups that make up our lives. Childhood begins with a family of [...]

Free Therapy Resources

47 Free Therapy Resources to Help Kick-Start Your New Practice

Setting up a private practice in psychotherapy brings several challenges, including a considerable investment of time and money. You can reduce risks early on by [...]

Read other articles by their category

  • Body & Brain (47)
  • Coaching & Application (57)
  • Compassion (26)
  • Counseling (51)
  • Emotional Intelligence (24)
  • Gratitude (18)
  • Grief & Bereavement (21)
  • Happiness & SWB (40)
  • Meaning & Values (26)
  • Meditation (20)
  • Mindfulness (45)
  • Motivation & Goals (45)
  • Optimism & Mindset (34)
  • Positive CBT (27)
  • Positive Communication (20)
  • Positive Education (47)
  • Positive Emotions (32)
  • Positive Leadership (16)
  • Positive Psychology (33)
  • Positive Workplace (36)
  • Productivity (16)
  • Relationships (48)
  • Resilience & Coping (34)
  • Self Awareness (20)
  • Self Esteem (37)
  • Strengths & Virtues (30)
  • Stress & Burnout Prevention (34)
  • Theory & Books (46)
  • Therapy Exercises (37)
  • Types of Therapy (64)

4 Main problem-solving strategies

problem solving

In Psychology, you get to read about a ton of therapies. It’s mind-boggling how different theorists have looked at human nature differently and have come up with different, often somewhat contradictory, theoretical approaches.

Yet, you can’t deny the kernel of truth that’s there in all of them. All therapies, despite being different, have one thing in common- they all aim to solve people’s problems. They all aim to equip people with problem-solving strategies to help them deal with their life problems.

Problem-solving is really at the core of everything we do. Throughout our lives, we’re constantly trying to solve one problem or another. When we can’t, all sorts of psychological problems take hold. Getting good at solving problems is a fundamental life skill.

Problem-solving stages

What problem-solving does is take you from an initial state (A) where a problem exists to a final or goal state (B), where the problem no longer exists.

To move from A to B, you need to perform some actions called operators. Engaging in the right operators moves you from A to B. So, the stages of problem-solving are:

  • Initial state

The problem itself can either be well-defined or ill-defined. A well-defined problem is one where you can clearly see where you are (A), where you want to go (B), and what you need to do to get there (engaging the right operators).

For example, feeling hungry and wanting to eat can be seen as a problem, albeit a simple one for many. Your initial state is hunger (A) and your final state is satisfaction or no hunger (B). Going to the kitchen and finding something to eat is using the right operator.

In contrast, ill-defined or complex problems are those where one or more of the three problem solving stages aren’t clear. For example, if your goal is to bring about world peace, what is it exactly that you want to do?

It’s been rightly said that a problem well-defined is a problem half-solved. Whenever you face an ill-defined problem, the first thing you need to do is get clear about all the three stages.

Often, people will have a decent idea of where they are (A) and where they want to be (B). What they usually get stuck on is finding the right operators.

Initial theory in problem-solving

When people first attempt to solve a problem, i.e. when they first engage their operators, they often have an initial theory of solving the problem. As I mentioned in my article on overcoming challenges for complex problems, this initial theory is often wrong.

But, at the time, it’s usually the result of the best information the individual can gather about the problem. When this initial theory fails, the problem-solver gets more data, and he refines the theory. Eventually, he finds an actual theory i.e. a theory that works. This finally allows him to engage the right operators to move from A to B.

Problem-solving strategies

These are operators that a problem solver tries to move from A to B. There are several problem-solving strategies but the main ones are:

  • Trial and error

1. Algorithms

When you follow a step-by-step procedure to solve a problem or reach a goal, you’re using an algorithm. If you follow the steps exactly, you’re guaranteed to find the solution. The drawback of this strategy is that it can get cumbersome and time-consuming for large problems.

Say I hand you a 200-page book and ask you to read out to me what’s written on page 100. If you start from page 1 and keep turning the pages, you’ll eventually reach page 100. There’s no question about it. But the process is time-consuming. So instead you use what’s called a heuristic.

2. Heuristics

Heuristics are rules of thumb that people use to simplify problems. They’re often based on memories from past experiences. They cut down the number of steps needed to solve a problem, but they don’t always guarantee a solution. Heuristics save us time and effort if they work.

You know that page 100 lies in the middle of the book. Instead of starting from page one, you try to open the book in the middle. Of course, you may not hit page 100, but you can get really close with just a couple of tries.

If you open page 90, for instance, you can then algorithmically move from 90 to 100. Thus, you can use a combination of heuristics and algorithms to solve the problem. In real life, we often solve problems like this.

When police are looking for suspects in an investigation, they try to narrow down the problem similarly. Knowing the suspect is 6 feet tall isn’t enough, as there could be thousands of people out there with that height.

Knowing the suspect is 6 feet tall, male, wears glasses, and has blond hair narrows down the problem significantly.

3. Trial and error

When you have an initial theory to solve a problem, you try it out. If you fail, you refine or change your theory and try again. This is the trial-and-error process of solving problems. Behavioral and cognitive trial and error often go hand in hand, but for many problems, we start with behavioural trial and error until we’re forced to think.

Say you’re in a maze, trying to find your way out. You try one route without giving it much thought and you find it leads to nowhere. Then you try another route and fail again. This is behavioural trial and error because you aren’t putting any thought into your trials. You’re just throwing things at the wall to see what sticks.

This isn’t an ideal strategy but can be useful in situations where it’s impossible to get any information about the problem without doing some trials.

Then, when you have enough information about the problem, you shuffle that information in your mind to find a solution. This is cognitive trial and error or analytical thinking. Behavioral trial and error can take a lot of time, so using cognitive trial and error as much as possible is advisable. You got to sharpen your axe before you cut the tree.

When solving complex problems, people get frustrated after having tried several operators that didn’t work. They abandon their problem and go on with their routine activities. Suddenly, they get a flash of insight that makes them confident they can now solve the problem.

I’ve done an entire article on the underlying mechanics of insight . Long story short, when you take a step back from your problem, it helps you see things in a new light. You make use of associations that were previously unavailable to you.

You get more puzzle pieces to work with and this increases the odds of you finding a path from A to B, i.e. finding operators that work.

Pilot problem-solving

No matter what problem-solving strategy you employ, it’s all about finding out what works. Your actual theory tells you what operators will take you from A to B. Complex problems don’t reveal their actual theories easily solely because they are complex.

Therefore, the first step to solving a complex problem is getting as clear as you can about what you’re trying to accomplish- collecting as much information as you can about the problem.

This gives you enough raw materials to formulate an initial theory. We want our initial theory to be as close to an actual theory as possible. This saves time and resources.

Solving a complex problem can mean investing a lot of resources. Therefore, it is recommended you verify your initial theory if you can. I call this pilot problem-solving.

Before businesses invest in making a product, they sometimes distribute free versions to a small sample of potential customers to ensure their target audience will be receptive to the product.

Before making a series of TV episodes, TV show producers often release pilot episodes to figure out whether the show can take off.

Before conducting a large study, researchers do a pilot study to survey a small sample of the population to determine if the study is worth carrying out.

The same ‘testing the waters’ approach needs to be applied to solving any complex problem you might be facing. Is your problem worth investing a lot of resources in? In management, we’re constantly taught about Return On Investment (ROI). The ROI should justify the investment.

If the answer is yes, go ahead and formulate your initial theory based on extensive research. Find a way to verify your initial theory. You need this reassurance that you’re going in the right direction, especially for complex problems that take a long time to solve.

memories of murder movie scene

Getting your causal thinking right

Problem solving boils down to getting your causal thinking right. Finding solutions is all about finding out what works, i.e. finding operators that take you from A to B. To succeed, you need to be confident in your initial theory (If I do X and Y, they’ll lead me to B). You need to be sure that doing X and Y will lead you to B- doing X and Y will cause B.

All obstacles to problem-solving or goal-accomplishing are rooted in faulty causal thinking leading to not engaging the right operators. When your causal thinking is on point, you’ll have no problem engaging the right operators.

As you can imagine, for complex problems, getting our causal thinking right isn’t easy. That’s why we need to formulate an initial theory and refine it over time.

I like to think of problem-solving as the ability to project the present into the past or into the future. When you’re solving problems, you’re basically looking at your present situation and asking yourself two questions:

“What caused this?” (Projecting present into the past)

“What will this cause?” (Projecting present into the future)

The first question is more relevant to problem-solving and the second to goal-accomplishing.

If you find yourself in a mess , you need to answer the “What caused this?” question correctly. For the operators you’re currently engaging to reach your goal, ask yourself, “What will this cause?” If you think they cannot cause B, it’s time to refine your initial theory.

hanan parvez

Hi, I’m Hanan Parvez (MBA, MA Psychology). My work has been featured in Forbes , Business Insider , Reader’s Digest , and Entrepreneur . When I’m not thinking about human behavior, I… No wait! I’m always thinking about human behavior!

Logo for UH Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Thinking and Intelligence

Problem Solving

OpenStaxCollege

[latexpage]

Learning Objectives

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving

People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

PROBLEM-SOLVING STRATEGIES

When you are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them ( [link] ). For example, a well-known strategy is trial and error . The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below ( [link] ) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

A four column by four row Sudoku puzzle is shown. The top left cell contains the number 3. The top right cell contains the number 2. The bottom right cell contains the number 1. The bottom left cell contains the number 4. The cell at the intersection of the second row and the second column contains the number 4. The cell to the right of that contains the number 1. The cell below the cell containing the number 1 contains the number 2. The cell to the left of the cell containing the number 2 contains the number 3.

Here is another popular type of puzzle ( [link] ) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

A square shaped outline contains three rows and three columns of dots with equal space between them.

Take a look at the “Puzzling Scales” logic puzzle below ( [link] ). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

PITFALLS TO PROBLEM SOLVING

Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

psychological strategies for problem solving

Check out this Apollo 13 scene where the group of NASA engineers are given the task of overcoming functional fixedness.

Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in [link] .

Please visit this site to see a clever music video that a high school teacher made to explain these and other cognitive biases to his AP psychology students.

Were you able to determine how many marbles are needed to balance the scales in [link] ? You need nine. Were you able to solve the problems in [link] and [link] ? Here are the answers ( [link] ).

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1:  blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.

Review Questions

A specific formula for solving a problem is called ________.

  • an algorithm
  • a heuristic
  • a mental set
  • trial and error

A mental shortcut in the form of a general problem-solving framework is called ________.

Which type of bias involves becoming fixated on a single trait of a problem?

  • anchoring bias
  • confirmation bias
  • representative bias
  • availability bias

Which type of bias involves relying on a false stereotype to make a decision?

Critical Thinking Questions

What is functional fixedness and how can overcoming it help you solve problems?

Functional fixedness occurs when you cannot see a use for an object other than the use for which it was intended. For example, if you need something to hold up a tarp in the rain, but only have a pitchfork, you must overcome your expectation that a pitchfork can only be used for garden chores before you realize that you could stick it in the ground and drape the tarp on top of it to hold it up.

How does an algorithm save you time and energy when solving a problem?

An algorithm is a proven formula for achieving a desired outcome. It saves time because if you follow it exactly, you will solve the problem without having to figure out how to solve the problem. It is a bit like not reinventing the wheel.

Personal Application Question

Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?

Problem Solving Copyright © 2014 by OpenStaxCollege is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Psychological Steps Involved in Problem Solving

psychological strategies for problem solving

A mental process or a phenomenon dedicated towards solving problems by discovering and analyzing the problem is referred to as problem-solving. It is a process dedicated to finding not just any solution, but the best solution to resolve any problems. There is no such thing as one best way to solve every kind of problem, since there are unique problems depending upon the situation there are unique solutions too.

Steps involved in problem solving

In psychology, problem solving doesn’t necessarily refer to solving psychological/mental issues of the brain. The process simply refers to solving every kind of problems in life in a proper manner. The idea of including the subject in psychology is because psychology deals with the overall mental process. And, tactfully using our thought process is what leads to the solution of any problems.

There are number of rigid psychological steps involved in problem solving, which is also referred as problem-solving cycle. The steps are in sequential order, and solving any problem requires following them one after another. But, we tend to avoid following this rigid set of steps, which is why it often requires us to go through the same steps over and over again until a satisfactory solution is reached.

Here are the steps involved in problem solving, approved by expert psychologists.

1. Identifying the Problem

Identifying the problem seems like the obvious first stem, but it’s not exactly as simple as it sounds. People might identify the wrong source of a problem, which will render the steps thus carried on useless.

For instance , let’s say you’re having trouble with your studies. identifying the root of your failure is your first priority. The problem here could be that you haven’t been allocating enough time for your studies, or you haven’t tried the right techniques. But, if you make an assumption that the problem here is the subject being too hard, you won’t be able to solve the problem.

2. Defining/Understanding the Problem

Defining the problem

It’s vital to properly define the problem once it’s been identified. Only by defining the problem, further steps can be taken to solve it. While at it, you also need to take into consideration different perspectives to understand any problem; this will also help you look for solutions with different perspectives.

Now, following up with the previous example . Let’s say you have identified the problem as not being able to allocate enough time for your studies. You need to sort out the reason behind it. Have you just been procrastinating? Have you been too busy with work? You need to understand the whole problem and reasons behind it, which is the second step in problem solving.

3. Forming a Strategy

Developing a strategy is the next step to finding a solution. Each different situation will require formulating different strategies, also depending on individual’s unique preferences.

Now, you have identified and studied your problem. You can’t just simply jump into trying to solve it. You can’t just quit work and start studying. You need to draw up a strategy to manage your time properly. Allocate less time for not-so-important works, and add them to your study time. Your strategy should be well thought, so that in theory at least, you are able to manage enough time to study properly and not fail in the exams.

4. Organizing Information

Organizing information when solving a problem

Organizing the available information is another crucial step to the process. You need to consider

  • What do you know about the problem?
  • What do you not know about the problem?

Accuracy of the solution for your problem will depend on the amount of information available.

The hypothetical strategy you formulate isn’t the all of it either. You need to now contemplate on the information available on the subject matter. Use the aforementioned questions to find out more about the problem. Proper organization of the information will force you to revise your strategy and refine it for best results.

5. Allocating Resources

Time, money and other resources aren’t unlimited. Deciding how high the priority is to solve your problem will help you determine the resources you’ll be using in your course to find the solution. If the problem is important, you can allocate more resources to solving it. However, if the problem isn’t as important, it’s not worth the time and money you might spend on it if not for proper planning.

For instance , let’s consider a different scenario where your business deal is stuck, but it’s few thousand miles away. Now, you need to analyze the problem and the resources you can afford to expend to solve the particular problem. If the deal isn’t really in your favor, you could just try solving it over the phone, however, more important deals might require you to fly to the location in order to solve the issue.

6. Monitoring Progress

Monitoring progress of solution of a problem

You need to document your progress as you are finding a solution. Don’t rely on your memory, no matter how good your memory is. Effective problem-solvers have been known to monitor their progress regularly. And, if they’re not making as much progress as they’re supposed to, they will reevaluate their approach or look for new strategies.

Problem solving isn’t an overnight feat. You can’t just have a body like that of Brad Pitt after a single session in the gym. It takes time and patience. Likewise, you need to work towards solving any problem every day until you finally achieve the results. Looking back at the previous example , if everything’s according to plan, you will be allocating more and more time for your studies until finally you are confident that you’re improving. One way to make sure that you’re on a right path to solving a problem is by keeping track of the progress. To solve the problem illustrated in the first example, you can take self-tests every week or two and track your progress.

7. Evaluating the Results

Your job still isn’t done even if you’ve reached a solution. You need to evaluate the solution to find out if it’s the best possible solution to the problem. The evaluation might be immediate or might take a while. For instance , answer to a math problem can be checked then and there, however solution to your yearly tax issue might not be possible to be evaluated right there.

  • Take time to identify the possible sources of the problem. It’s better to spend a substantial amount of time on something right, than on something completely opposite.
  • Ask yourself questions like What, Why, How to figure out the causes of the problem. Only then can you move forward on solving it.
  • Carefully outline the methods to tackle the problem. There might be different solutions to a problem, record them all.
  • Gather all information about the problem and the approaches. More, the merrier.
  • From the outlined methods, choose the ones that are viable to approach. Try discarding the ones that have unseen consequences.
  • Track your progress as you go.
  • Evaluate the outcome of the progress.

What are other people reading?

Insight problem solving strategy

Divergent Thinking

Convergent Thinking

Convergent Thinking

Convergent Vs Divergent Thinking

Convergent Vs Divergent Thinking

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

What Is an Algorithm in Psychology?

Definition, Examples, and Uses

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

psychological strategies for problem solving

 James Lacy, MLS, is a fact-checker and researcher.

psychological strategies for problem solving

How Does an Algorithm Work?

Examples of algorithms.

  • Reasons to Use Algorithms
  • Potential Pitfalls

Algorithms vs. Heuristics

When solving a problem , choosing the right approach is often the key to arriving at the best solution. In psychology, one of these problem-solving approaches is known as an algorithm. While often thought of purely as a mathematical term, the same type of process can be followed in psychology to find the correct answer when solving a problem or making a decision.

An algorithm is a defined set of step-by-step procedures that provides the correct answer to a particular problem. By following the instructions correctly, you are guaranteed to arrive at the right answer.

At a Glance

Algorithms involve following specific steps in order to reach a solution to a problem. They can be a great tool when you need an accurate solution but tend to be more time-consuming than other methods.

This article discusses how algorithms are used as an approach to problem-solving. It also covers how psychologists compare this approach to other problem-solving methods.

An algorithm is often expressed in the form of a graph, where a square represents each step. Arrows then branch off from each step to point to possible directions that you may take to solve the problem.

In some cases, you must follow a particular set of steps to solve the problem. In other instances, you might be able to follow different paths that will all lead to the same solution.

Algorithms are essential step-by-step approaches to solving a problem. Rather than guessing or using trial-and-error, this approach is more likely to guarantee a specific solution. 

Using an algorithm can help you solve day-to-day problems you face, but it can also help mental health professionals find ways to help people cope with mental health problems.

For example, a therapist might use an algorithm to treat a person experiencing something like anxiety. Because the therapist knows that a particular approach is likely to be effective, they would recommend a series of specific, focused steps as part of their intervention.

There are many different examples of how algorithms can be used in daily life. Some common ones include:

  • A recipe for cooking a particular dish
  • The method a search engine uses to find information on the internet
  • Instructions for how to assemble a bicycle
  • Instructions for how to solve a Rubik's cube
  • A process to determine what type of treatment is most appropriate for certain types of mental health conditions

Doctors and mental health professionals often use algorithms to diagnose mental disorders . For example, they may use a step-by-step approach when they evaluate people.

This might involve asking the individual about their symptoms and their medical history. The doctor may also conduct lab tests, physical exams, or psychological assessments.

Using this information, they then utilize the "Diagnostic and Statistical Manual of Mental Disorders" (DSM-5-TR) to make a diagnosis.

Reasons to Use Algorithms in Psychology

The upside of using an algorithm to solve a problem or make a decision is that yields the best possible answer every time. There are situations where using an algorithm can be the best approach:

When Accuracy Is Crucial

Algorithms can be particularly useful in situations when accuracy is critical. They are also a good choice when similar problems need to be frequently solved.

Computer programs can often be designed to speed up this process. Data then needs to be placed in the system so that the algorithm can be executed for the correct solution.

Artificial intelligence may also be a tool for making clinical assessments in healthcare situations.

When Each Decision Needs to Follow the Same Process

Such step-by-step approaches can be useful in situations where each decision must be made following the same process. Because the process follows a prescribed procedure, you can be sure that you will reach the correct answer each time.

Potential Pitfalls When Using Algorithms

The downside of using an algorithm to solve the problem is that this process tends to be very time-consuming.

So if you face a situation where a decision must be made very quickly, you might be better off using a different problem-solving strategy.

For example, an emergency room doctor making a decision about how to treat a patient could use an algorithm approach. However, this would be very time-consuming and treatment needs to be implemented quickly.

In this instance, the doctor would instead rely on their expertise and past experiences to very quickly choose what they feel is the right treatment approach.

Algorithms can sometimes be very complex and may only apply to specific situations. This can limit their use and make them less generalizable when working with larger populations.

Algorithms can be a great problem-solving choice when the answer needs to be 100% accurate or when each decision needs to follow the same process. A different approach might be needed if speed is the primary concern.

In psychology, algorithms are frequently contrasted with heuristics . Both can be useful when problem-solving, but it is important to understand the differences between them.

What Is a Heuristic?

A heuristic is a mental shortcut that allows people to quickly make judgments and solve problems.

These mental shortcuts are typically informed by our past experiences and allow us to act quickly. However, heuristics are really more of a rule-of-thumb; they don't always guarantee a correct solution.

So how do you determine when to use a heuristic and when to use an algorithm? When problem-solving, deciding which method to use depends on the need for either accuracy or speed.

When to Use an Algorithm

If complete accuracy is required, it is best to use an algorithm. By using an algorithm, accuracy is increased and potential mistakes are minimized.

If you are working in a situation where you absolutely need the correct or best possible answer, your best bet is to use an algorithm. When you are solving problems for your math homework, you don't want to risk your grade on a guess.

By following an algorithm, you can ensure that you will arrive at the correct answer to each problem.

When to Use a Heuristic

On the other hand, if time is an issue, then it may be best to use a heuristic. Mistakes may occur, but this approach allows for speedy decisions when time is of the essence.

Heuristics are more commonly used in everyday situations, such as figuring out the best route to get from point A to point B. While you could use an algorithm to map out every possible route and determine which one would be the fastest, that would be a very time-consuming process. Instead, your best option would be to use a route that you know has worked well in the past.

Psychologists who study problem-solving have described two main processes people utilize to reach conclusions: algorithms and heuristics. Knowing which approach to use is important because these two methods can vary in terms of speed and accuracy.

While each situation is unique, you may want to use an algorithm when being accurate is the primary concern. But if time is of the essence, then an algorithm is likely not the best choice.

Lang JM, Ford JD, Fitzgerald MM. An algorithm for determining use of trauma-focused cognitive-behavioral therapy . Psychotherapy (Chic) . 2010;47(4):554-69. doi:10.1037/a0021184

Stein DJ, Shoptaw SJ, Vigo DV, et al. Psychiatric diagnosis and treatment in the 21st century: paradigm shifts versus incremental integration .  World Psychiatry . 2022;21(3):393-414. doi:10.1002/wps.20998

Bobadilla-Suarez S, Love BC. Fast or frugal, but not both: decision heuristics under time pressure . J Exp Psychol Learn Mem Cogn . 2018;44(1):24-33. doi:10.1037/xlm0000419

Giordano C, Brennan M, Mohamed B, Rashidi P, Modave F, Tighe P. Accessing artificial intelligence for clinical decision-making .  Front Digit Health . 2021;3:645232. doi:10.3389/fdgth.2021.645232

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

IResearchNet

Problem Solving

Problem solving, a fundamental cognitive process deeply rooted in psychology, plays a pivotal role in various aspects of human existence, especially within educational contexts. This article delves into the nature of problem solving, exploring its theoretical underpinnings, the cognitive and psychological processes that underlie it, and the application of problem-solving skills within educational settings and the broader real world. With a focus on both theory and practice, this article underscores the significance of cultivating problem-solving abilities as a cornerstone of cognitive development and innovation, shedding light on its applications in fields ranging from education to clinical psychology and beyond, thereby paving the way for future research and intervention in this critical domain of human cognition.

Introduction

Problem solving, a quintessential cognitive process deeply embedded in the domains of psychology and education, serves as a linchpin for human intellectual development and adaptation to the ever-evolving challenges of the world. The fundamental capacity to identify, analyze, and surmount obstacles is intrinsic to human nature and has been a subject of profound interest for psychologists, educators, and researchers alike. This article aims to provide a comprehensive exploration of problem solving, investigating its theoretical foundations, cognitive intricacies, and practical applications in educational contexts. With a clear understanding of its multifaceted nature, we will elucidate the pivotal role that problem solving plays in enhancing learning, fostering creativity, and promoting cognitive growth, setting the stage for a detailed examination of its significance in both psychology and education. In the continuum of psychological research and educational practice, problem solving stands as a cornerstone, enabling individuals to navigate the complexities of their world. This article’s thesis asserts that problem solving is not merely a cognitive skill but a dynamic process with profound implications for intellectual growth and application in diverse real-world contexts.

Academic Writing, Editing, Proofreading, And Problem Solving Services

Get 10% off with 24start discount code, the nature of problem solving.

Problem solving, within the realm of psychology, refers to the cognitive process through which individuals identify, analyze, and resolve challenges or obstacles to achieve a desired goal. It encompasses a range of mental activities, such as perception, memory, reasoning, and decision-making, aimed at devising effective solutions in the face of uncertainty or complexity.

Problem solving as a subject of inquiry has drawn from various theoretical perspectives, each offering unique insights into its nature. Among the seminal theories, Gestalt psychology has highlighted the role of insight and restructuring in problem solving, emphasizing that individuals often reorganize their mental representations to attain solutions. Information processing theories, inspired by computer models, emphasize the systematic and step-by-step nature of problem solving, likening it to information retrieval and manipulation. Furthermore, cognitive psychology has provided a comprehensive framework for understanding problem solving by examining the underlying cognitive processes involved, such as attention, memory, and decision-making. These theoretical foundations collectively offer a richer comprehension of how humans engage in and approach problem-solving tasks.

Problem solving is not a monolithic process but a series of interrelated stages that individuals progress through. These stages are integral to the overall problem-solving process, and they include:

  • Problem Representation: At the outset, individuals must clearly define and represent the problem they face. This involves grasping the nature of the problem, identifying its constraints, and understanding the relationships between various elements.
  • Goal Setting: Setting a clear and attainable goal is essential for effective problem solving. This step involves specifying the desired outcome or solution and establishing criteria for success.
  • Solution Generation: In this stage, individuals generate potential solutions to the problem. This often involves brainstorming, creative thinking, and the exploration of different strategies to overcome the obstacles presented by the problem.
  • Solution Evaluation: After generating potential solutions, individuals must evaluate these alternatives to determine their feasibility and effectiveness. This involves comparing solutions, considering potential consequences, and making choices based on the criteria established in the goal-setting phase.

These components collectively form the roadmap for navigating the terrain of problem solving and provide a structured approach to addressing challenges effectively. Understanding these stages is crucial for both researchers studying problem solving and educators aiming to foster problem-solving skills in learners.

Cognitive and Psychological Aspects of Problem Solving

Problem solving is intricately tied to a range of cognitive processes, each contributing to the effectiveness of the problem-solving endeavor.

  • Perception: Perception serves as the initial gateway in problem solving. It involves the gathering and interpretation of sensory information from the environment. Effective perception allows individuals to identify relevant cues and patterns within a problem, aiding in problem representation and understanding.
  • Memory: Memory is crucial in problem solving as it enables the retrieval of relevant information from past experiences, learned strategies, and knowledge. Working memory, in particular, helps individuals maintain and manipulate information while navigating through the various stages of problem solving.
  • Reasoning: Reasoning encompasses logical and critical thinking processes that guide the generation and evaluation of potential solutions. Deductive and inductive reasoning, as well as analogical reasoning, play vital roles in identifying relationships and formulating hypotheses.

While problem solving is a universal cognitive function, individuals differ in their problem-solving skills due to various factors.

  • Intelligence: Intelligence, as measured by IQ or related assessments, significantly influences problem-solving abilities. Higher levels of intelligence are often associated with better problem-solving performance, as individuals with greater cognitive resources can process information more efficiently and effectively.
  • Creativity: Creativity is a crucial factor in problem solving, especially in situations that require innovative solutions. Creative individuals tend to approach problems with fresh perspectives, making novel connections and generating unconventional solutions.
  • Expertise: Expertise in a specific domain enhances problem-solving abilities within that domain. Experts possess a wealth of knowledge and experience, allowing them to recognize patterns and solutions more readily. However, expertise can sometimes lead to domain-specific biases or difficulties in adapting to new problem types.

Despite the cognitive processes and individual differences that contribute to effective problem solving, individuals often encounter barriers that impede their progress. Recognizing and overcoming these barriers is crucial for successful problem solving.

  • Functional Fixedness: Functional fixedness is a cognitive bias that limits problem solving by causing individuals to perceive objects or concepts only in their traditional or “fixed” roles. Overcoming functional fixedness requires the ability to see alternative uses and functions for objects or ideas.
  • Confirmation Bias: Confirmation bias is the tendency to seek, interpret, and remember information that confirms preexisting beliefs or hypotheses. This bias can hinder objective evaluation of potential solutions, as individuals may favor information that aligns with their initial perspectives.
  • Mental Sets: Mental sets are cognitive frameworks or problem-solving strategies that individuals habitually use. While mental sets can be helpful in certain contexts, they can also limit creativity and flexibility when faced with new problems. Recognizing and breaking out of mental sets is essential for overcoming this barrier.

Understanding these cognitive processes, individual differences, and common obstacles provides valuable insights into the intricacies of problem solving and offers a foundation for improving problem-solving skills and strategies in both educational and practical settings.

Problem Solving in Educational Settings

Problem solving holds a central position in educational psychology, as it is a fundamental skill that empowers students to navigate the complexities of the learning process and prepares them for real-world challenges. It goes beyond rote memorization and standardized testing, allowing students to apply critical thinking, creativity, and analytical skills to authentic problems. Problem-solving tasks in educational settings range from solving mathematical equations to tackling complex issues in subjects like science, history, and literature. These tasks not only bolster subject-specific knowledge but also cultivate transferable skills that extend beyond the classroom.

Problem-solving skills offer numerous advantages to both educators and students. For teachers, integrating problem-solving tasks into the curriculum allows for more engaging and dynamic instruction, fostering a deeper understanding of the subject matter. Additionally, it provides educators with insights into students’ thought processes and areas where additional support may be needed. Students, on the other hand, benefit from the development of critical thinking, analytical reasoning, and creativity. These skills are transferable to various life situations, enhancing students’ abilities to solve complex real-world problems and adapt to a rapidly changing society.

Teaching problem-solving skills is a dynamic process that requires effective pedagogical approaches. In K-12 education, educators often use methods such as the problem-based learning (PBL) approach, where students work on open-ended, real-world problems, fostering self-directed learning and collaboration. Higher education institutions, on the other hand, employ strategies like case-based learning, simulations, and design thinking to promote problem solving within specialized disciplines. Additionally, educators use scaffolding techniques to provide support and guidance as students develop their problem-solving abilities. In both K-12 and higher education, a key component is metacognition, which helps students become aware of their thought processes and adapt their problem-solving strategies as needed.

Assessing problem-solving abilities in educational settings involves a combination of formative and summative assessments. Formative assessments, including classroom discussions, peer evaluations, and self-assessments, provide ongoing feedback and opportunities for improvement. Summative assessments may include standardized tests designed to evaluate problem-solving skills within a particular subject area. Performance-based assessments, such as essays, projects, and presentations, offer a holistic view of students’ problem-solving capabilities. Rubrics and scoring guides are often used to ensure consistency in assessment, allowing educators to measure not only the correctness of answers but also the quality of the problem-solving process. The evolving field of educational technology has also introduced computer-based simulations and adaptive learning platforms, enabling precise measurement and tailored feedback on students’ problem-solving performance.

Understanding the pivotal role of problem solving in educational psychology, the diverse pedagogical strategies for teaching it, and the methods for assessing and measuring problem-solving abilities equips educators and students with the tools necessary to thrive in educational environments and beyond. Problem solving remains a cornerstone of 21st-century education, preparing students to meet the complex challenges of a rapidly changing world.

Applications and Practical Implications

Problem solving is not confined to the classroom; it extends its influence to various real-world contexts, showcasing its relevance and impact. In business, problem solving is the driving force behind product development, process improvement, and conflict resolution. For instance, companies often use problem-solving methodologies like Six Sigma to identify and rectify issues in manufacturing. In healthcare, medical professionals employ problem-solving skills to diagnose complex illnesses and devise treatment plans. Additionally, technology advancements frequently stem from creative problem solving, as engineers and developers tackle challenges in software, hardware, and systems design. Real-world problem solving transcends specific domains, as individuals in diverse fields address multifaceted issues by drawing upon their cognitive abilities and creative problem-solving strategies.

Clinical psychology recognizes the profound therapeutic potential of problem-solving techniques. Problem-solving therapy (PST) is an evidence-based approach that focuses on helping individuals develop effective strategies for coping with emotional and interpersonal challenges. PST equips individuals with the skills to define problems, set realistic goals, generate solutions, and evaluate their effectiveness. This approach has shown efficacy in treating conditions like depression, anxiety, and stress, emphasizing the role of problem-solving abilities in enhancing emotional well-being. Furthermore, cognitive-behavioral therapy (CBT) incorporates problem-solving elements to help individuals challenge and modify dysfunctional thought patterns, reinforcing the importance of cognitive processes in addressing psychological distress.

Problem solving is the bedrock of innovation and creativity in various fields. Innovators and creative thinkers use problem-solving skills to identify unmet needs, devise novel solutions, and overcome obstacles. Design thinking, a problem-solving approach, is instrumental in product design, architecture, and user experience design, fostering innovative solutions grounded in human needs. Moreover, creative industries like art, literature, and music rely on problem-solving abilities to transcend conventional boundaries and produce groundbreaking works. By exploring alternative perspectives, making connections, and persistently seeking solutions, creative individuals harness problem-solving processes to ignite innovation and drive progress in all facets of human endeavor.

Understanding the practical applications of problem solving in business, healthcare, technology, and its therapeutic significance in clinical psychology, as well as its indispensable role in nurturing innovation and creativity, underscores its universal value. Problem solving is not only a cognitive skill but also a dynamic force that shapes and improves the world we inhabit, enhancing the quality of life and promoting progress and discovery.

In summary, problem solving stands as an indispensable cornerstone within the domains of psychology and education. This article has explored the multifaceted nature of problem solving, from its theoretical foundations rooted in Gestalt psychology, information processing theories, and cognitive psychology to its integral components of problem representation, goal setting, solution generation, and solution evaluation. It has delved into the cognitive processes underpinning effective problem solving, including perception, memory, and reasoning, as well as the impact of individual differences such as intelligence, creativity, and expertise. Common barriers to problem solving, including functional fixedness, confirmation bias, and mental sets, have been examined in-depth.

The significance of problem solving in educational settings was elucidated, underscoring its pivotal role in fostering critical thinking, creativity, and adaptability. Pedagogical approaches and assessment methods were discussed, providing educators with insights into effective strategies for teaching and evaluating problem-solving skills in K-12 and higher education.

Furthermore, the practical implications of problem solving were demonstrated in the real world, where it serves as the driving force behind advancements in business, healthcare, and technology. In clinical psychology, problem-solving therapies offer effective interventions for emotional and psychological well-being. The symbiotic relationship between problem solving and innovation and creativity was explored, highlighting the role of this cognitive process in pushing the boundaries of human accomplishment.

As we conclude, it is evident that problem solving is not merely a skill but a dynamic process with profound implications. It enables individuals to navigate the complexities of their environment, fostering intellectual growth, adaptability, and innovation. Future research in the field of problem solving should continue to explore the intricate cognitive processes involved, individual differences that influence problem-solving abilities, and innovative teaching methods in educational settings. In practice, educators and clinicians should continue to incorporate problem-solving strategies to empower individuals with the tools necessary for success in education, personal development, and the ever-evolving challenges of the real world. Problem solving remains a steadfast ally in the pursuit of knowledge, progress, and the enhancement of human potential.

References:

  • Anderson, J. R. (1995). Cognitive psychology and its implications. W. H. Freeman.
  • Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In The psychology of learning and motivation (Vol. 2, pp. 89-195). Academic Press.
  • Duncker, K. (1945). On problem-solving. Psychological Monographs, 58(5), i-113.
  • Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12(3), 306-355.
  • Jonassen, D. H., & Hung, W. (2008). All problems are not equal: Implications for problem-based learning. Interdisciplinary Journal of Problem-Based Learning, 2(2), 6.
  • Kitchener, K. S., & King, P. M. (1981). Reflective judgment: Concepts of justification and their relation to age and education. Journal of Applied Developmental Psychology, 2(2), 89-116.
  • Luchins, A. S. (1942). Mechanization in problem solving: The effect of Einstellung. Psychological Monographs, 54(6), i-95.
  • Mayer, R. E. (1992). Thinking, problem solving, cognition. W. H. Freeman.
  • Newell, A., & Simon, H. A. (1972). Human problem solving (Vol. 104). Prentice-Hall Englewood Cliffs, NJ.
  • Osborn, A. F. (1953). Applied imagination: Principles and procedures of creative problem solving (3rd ed.). Charles Scribner’s Sons.
  • Polya, G. (1945). How to solve it: A new aspect of mathematical method. Princeton University Press.
  • Sternberg, R. J. (2003). Wisdom, intelligence, and creativity synthesized. Cambridge University Press.

Logo for University of Central Florida Pressbooks

Thinking and Intelligence

Solving Problems

Learning objectives.

  • Describe problem solving strategies, including algorithms and heuristics

People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

Problem-Solving Strategies

When you are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them. For example, a well-known strategy is trial and error . The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

What problem-solving method could you use to solve Einstein’s famous riddle?

https://youtube.com/watch?v=1rDVz_Fb6HQ%3Flist%3DPLUmyCeox8XCwB8FrEfDQtQZmCc2qYMS5a

You can view the transcript for “Can you solve “Einstein’s Riddle”? – Dan Van der Vieren” here (opens in new window) .

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Everyday Connections: Solving Puzzles

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (Figure 1) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

A four column by four row Sudoku puzzle is shown. The top left cell contains the number 3. The top right cell contains the number 2. The bottom right cell contains the number 1. The bottom left cell contains the number 4. The cell at the intersection of the second row and the second column contains the number 4. The cell to the right of that contains the number 1. The cell below the cell containing the number 1 contains the number 2. The cell to the left of the cell containing the number 2 contains the number 3.

Here is another popular type of puzzle that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

A square shaped outline contains three rows and three columns of dots with equal space between them.

Take a look at the “Puzzling Scales” logic puzzle below (Figure 3). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

Were you able to determine how many marbles are needed to balance the scales in the Puzzling Scales? You need nine. Were you able to solve the other problems above? Here are the answers:

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

CC licensed content, Original

  • Modification and adaptation. Provided by : Lumen Learning. License : CC BY: Attribution

CC licensed content, Shared previously

  • Problem-Solving. Authored by : OpenStax College. Located at : https://openstax.org/books/psychology-2e/pages/7-3-problem-solving . License : CC BY: Attribution . License Terms : Download for free at https://openstax.org/books/psychology-2e/pages/1-introduction

All rights reserved content

  • Can you solve Einsteinu2019s Riddle? . Authored by : Dan Van der Vieren. Provided by : Ted-Ed. Located at : https://www.youtube.com/watch?v=1rDVz_Fb6HQ&index=3&list=PLUmyCeox8XCwB8FrEfDQtQZmCc2qYMS5a . License : Other . License Terms : Standard YouTube License

method for solving problems

problem-solving strategy in which multiple solutions are attempted until the correct one is found

problem-solving strategy characterized by a specific set of instructions

mental shortcut that saves time when solving a problem

heuristic in which you begin to solve a problem by focusing on the end result

General Psychology Copyright © by OpenStax and Lumen Learning is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

  • Side Hustles
  • Power Players
  • Young Success
  • Save and Invest
  • Become Debt-Free
  • Land the Job
  • Closing the Gap
  • Science of Success
  • Pop Culture and Media
  • Psychology and Relationships
  • Health and Wellness
  • Real Estate
  • Most Popular

Related Stories

  • Psychology and Relationships Psychologist: The No. 1 'gentle   parenting' mistake—and how to avoid it
  • Psychology and Relationships 47% of parents want to be more   consistent with discipline in 2024
  • Raising Successful Kids I've studied over 200 kids—here are 6 things kids   with high emotional intelligence do every day
  • Psychology and Relationships The 'Five R's' of raising resilient kids,   from an Ivy League-trained doctor
  • Health and Wellness A psychologist shares the 5 exercises she   does to 'stop overthinking everything'

The No. 1 parenting technique to help in tough moments with kids of any age, from child psychologists

thumbnail

One of our key jobs as parents is to teach instead of punish, even when our children are pushing back, melting down, or otherwise being "difficult." We know it's hard: We've been there plenty of times as moms ourselves. Still, we're here to guide our children in a compassionate way through difficult moments at all stages of development.

Sometimes, when emotions are high — when we feel like a young child is being impulsive and destructive, for example, or when a teenager turns everything into a battle — we need guidance to steer us in the right direction, so that we can help our kids learn instead of shutting them down.

As child psychologists, we've developed an acronym that can assist us all through this process, regardless of our child's age: H.E.L.P.

Here's how to use it during difficult parenting moments: 

H is for Halt

Let's say your child is hitting their sibling with a toy or has just missed curfew. Whatever their action, before you react, it's smart to stop and ask yourself: Where is their behavior coming from?

We truly believe that no child wants to be "bad." Why would anyone want to fail and disappoint a person who means the world to them?

Children generally want to make us happy, and they want to succeed. But there are biological limitations working against them. An underdeveloped thinking brain, an overactive emotional brain, and a lack of perspective leads to chaos and poor decision-making. An immature brain produces immature behavior.

A child is not their behavior. Though our anxiety can interfere with our ability to see it, their behavior is a form of communication a parent is meant to decode — reflecting a need that's unmet or a skill they've yet to learn.

Children often convey their struggles through "misbehavior" or meltdowns, and deal with discomfort and stress through tantrums and crying. Their "bad" behavior could mean, for example, that they're: 

  • Overstimulated
  • Feeling unwanted, rejected, inadequate, sad, scared, lonely, angry, or ignored
  • Confused about expectations
  • Needing more freedom or time outdoors
  • Needing a limit set
  • Seeking connection
  • Getting sick
  • Stressed about school
  • Getting too much screen time
  • Not getting enough play or movement
  • Not eating a balanced diet
  • Struggling with a transition

It's our job as the adults to see through the behavior to the heart of the issue.

Still, it can be hard not be reactive in the moment and resort to unhealthy scripts we may have learned through our own past experiences. We may have been taught to hide our tears to avoid shame, for example, or to lash out with anger when we felt scared to protect ourselves.

Ask yourself: Is my reaction about my emotional baggage? Meaning, "I can't stand my child's crying because my parents didn't allow me to cry and it overwhelms me"? Or is my reaction a reasonable response to my child's behavior, like if my child yelled "I hate you," and my feelings are hurt? 

Self-awareness can save us from falling into old patterns we adopted from our own family of origin and allow us to act from a place of compassion and intention.

In the case of older children, we have some critical lessons to teach and our own reactivity might get in the way. So we may take an entire day or sleep on it before moving on to E, L, and P.

E is for Empathy

This is all about ensuring our children feel safe, seen, and heard before we get into limit setting, teaching, or problem-solving. Empathy means seeing their world as they see it and believing them when they show you how they feel. 

Let's break it down:

  • Welcome their feelings. Lean in, get on their level, and make eye contact. 
  • Acknowledge and validate their feelings. With a soft tone, say, "I can see you're feeling so …" "You must be feeling so …" or "You're so ____ with me right now."
  • Really listen. Summarize and/or paraphrase (e.g., "So what I'm hearing you say is your friends ignored you all day, and you felt really lonely") and clarify if needed ("So no one talked to you at lunch and you felt really sad, am I understanding you correctly?").
  • Don't judge. Feelings are neither good nor bad. And while behavior may not be acceptable, our children's feelings always are.
  • Don't try to fix it. Allow for the crying, screaming, or verbal unloading. It's about our children being seen and heard, not fixing the behavior or problem.
  • Say less. Talking too much overwhelms kids. This is more about our presence.
  • Regulate your own emotions. Breathe and take a moment, or several, to compose and ground yourself. Ask yourself if your reaction is about you or your child. 

L is for Limits

One Thanksgiving, I had my entire extended family over for the holidays. There were at least 20 people in my home. The night before Thanksgiving, we ordered Chinese food. My son, who is normally relaxed at meals, refused to sit down or eat his food. In agitation, he threw his fork across the table and screamed, "I'm not eating this!"

My goal in the moment was to draw boundaries, create structure, and teach more appropriate behavior. I used simple statements that employ as few words as possible as I worked to: 

  • Validate my child's emotion
  • Convey that his behavior was not acceptable
  • Offer alternatives

It came out something like this: "I can see you're so frustrated right now, you don't want to eat your dinner. But you may not throw things when you're upset. You may tell us that you're frustrated or take a quick walk and come back."

In the case of my son at Thanksgiving, he exploded into tears when I set a limit. But that didn't mean the limit was wrong. I realized he needed quiet and connection from me first — in other words, empathy and proximity.

P is for Proximity

Often our children negotiate, plead, or bargain with us to get us to change the limits. When they realize our answer is still the same (e.g., "honey, I still have a 'no' in me"), they get upset. 

You might be tempted to walk away because you're overwhelmed by their response or feel like you're being permissive indulging their drama. But this emotional processing is completely healthy and normal. For our children to become successful at self-regulating, we first have to co-regulate them. 

To help calm our children, we need to stay close. Look for the moment when their anger or frustration shifts into sadness. This is the golden moment of connection we don't want to miss. It's the key to children learning they can be vulnerable and show their authentic self.

Whether we're parked on the floor, sitting at the kitchen table, or cuddled up on the couch, we should never underestimate the power our physical presence holds.

Tammy Schamuhn is a Registered Psychologist and Registered Play Therapist Supervisor, and the cofounder and director of the Institute of Child Psychology . She's worked in private practice for over a decade, primarily with children and their families, and supervises master's-level students. She is the coauthor of " The Parenting Handbook: Your Guide to Raising Resilient Children ."

Tania Johnson is a Registered Psychologist, Registered Play Therapist, and cofounder and director of the Institute of Child Psychology . In her private practice, Tania specializes in parent consults, and works primarily from the perspective of attachment theory. She is the coauthor of " The Parenting Handbook: Your Guide to Raising Resilient Children ."

Want to make extra money outside of your day job?  Sign up for  CNBC's new online course How to Earn Passive Income Online  to learn about common passive income streams, tips to get started and real-life success stories. Register today and save 50% with discount code EARLYBIRD.

Plus,  sign up for CNBC Make It's newsletter  to get tips and tricks for success at work, with money and in life.

Parenting expert: The No. 1 thing every parent should teach their kids

This is an adapted excerpt from " The Parenting Handbook: Your Guide to Raising Resilient Children ," Copyright (c) 2024, Tania Johnson and Tammy Schamuhn. Reproduced by permission of Barlow Book Publishing Inc. All rights reserved.

comscore

7.3 Problem Solving

Learning objectives.

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving and decision making

People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

Problem-Solving Strategies

When you are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them ( Table 7.2 ). For example, a well-known strategy is trial and error . The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Everyday Connection

Solving puzzles.

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below ( Figure 7.7 ) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

Here is another popular type of puzzle ( Figure 7.8 ) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

Take a look at the “Puzzling Scales” logic puzzle below ( Figure 7.9 ). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

Pitfalls to Problem Solving

Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but they just need to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. Duncker (1945) conducted foundational research on functional fixedness. He created an experiment in which participants were given a candle, a book of matches, and a box of thumbtacks. They were instructed to use those items to attach the candle to the wall so that it did not drip wax onto the table below. Participants had to use functional fixedness to overcome the problem ( Figure 7.10 ). During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

Link to Learning

Check out this Apollo 13 scene about NASA engineers overcoming functional fixedness to learn more.

Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in Table 7.3 .

Watch this teacher-made music video about cognitive biases to learn more.

Were you able to determine how many marbles are needed to balance the scales in Figure 7.9 ? You need nine. Were you able to solve the problems in Figure 7.7 and Figure 7.8 ? Here are the answers ( Figure 7.11 ).

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/psychology-2e/pages/1-introduction
  • Authors: Rose M. Spielman, William J. Jenkins, Marilyn D. Lovett
  • Publisher/website: OpenStax
  • Book title: Psychology 2e
  • Publication date: Apr 22, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/psychology-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/psychology-2e/pages/7-3-problem-solving

© Jan 6, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Is Your AI-First Strategy Causing More Problems Than It’s Solving?

  • Oguz A. Acar

psychological strategies for problem solving

Consider a more balanced and thoughtful approach to AI transformation.

The problem with an AI-first strategy lies not within the “AI” but with the notion that it should come “first” aspect. An AI-first approach can be myopic, potentially leading us to overlook the true purpose of technology: to serve and enhance human endeavors. Instead, the author recommends following 3Ps during an AI transformation: problem-centric, people-first, and principle-driven.

From technology giants like Google to major management consultants like McKinsey , a rapidly growing number of companies preach an “AI-first” strategy. In essence, this means considering AI as the ultimate strategic priority , one that precedes other alternative directions. At first glance, this strategy seems logical, perhaps even inevitable. The figures speak for themselves: the sheer volume of investment flowing into AI technologies shows the confidence levels in an increasingly AI-driven future.

psychological strategies for problem solving

  • Oguz A. Acar is a Chair in Marketing at King’s Business School, King’s College London.

Partner Center

Chapter 7: Thinking and Intelligence

Solving problems.

People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

Problem-Solving Strategies

When you are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem-solving strategies can be applied, hopefully resulting in a solution.

Video 1. Problem Solving explains strategies used for solving problems.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them. For example, a well-known strategy is trial and error . The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve the desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backward is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C., and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backward heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Video 2.  What problem-solving method could you use to solve Einstein’s famous riddle?

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Everyday Connections: Solving Puzzles

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (Figure 1) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

A four column by four row Sudoku puzzle is shown. The top left cell contains the number 3. The top right cell contains the number 2. The bottom right cell contains the number 1. The bottom left cell contains the number 4. The cell at the intersection of the second row and the second column contains the number 4. The cell to the right of that contains the number 1. The cell below the cell containing the number 1 contains the number 2. The cell to the left of the cell containing the number 2 contains the number 3.

Figure 1 . How long did it take you to solve this sudoku puzzle? (You can see the answer at the end of this section.)

Here is another popular type of puzzle that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

A square shaped outline contains three rows and three columns of dots with equal space between them.

Figure 2. Did you figure it out? (The answer is at the end of this section.) Once you understand how to crack this puzzle, you won’t forget.

Take a look at the “Puzzling Scales” logic puzzle below (Figure 3). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

Figure 3 . The puzzle reads, “Since the scales now balance…and balance when arranged this way, then how many marbles will it require to balance with that top?

Were you able to determine how many marbles are needed to balance the scales in the Puzzling Scales? You need nine. Were you able to solve the other problems above? Here are the answers:

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

Pitfalls to Problem-Solving

Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem?

Video 3.   Cognitive Biases: What They Are , Why They’re Important provides an introduction to the many cognitive biases that prevent us from always thinking clearly and rationally.

Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.  Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

Link to Learning

Check out this Apollo 13 scene where a group of NASA engineers is given the task of overcoming functional fixedness.

Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

Confirmation bias   is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. This bias proves that first impressions do matter and that we tend to look for information to confirm our initial judgments of others.

Video 4.  Watch this video from the Big Think to learn more about confirmation bias.

Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . To use a common example, would you guess there are more murders or more suicides in America each year? When asked, most people would guess there are more murders. In truth, there are twice as many suicides as there are murders each year. However, murders seem more common because we hear a lot more about murders on an average day. Unless someone we know or someone famous takes their own life, it does not make the news. Murders, on the other hand, we see in the news every day. This leads to the erroneous assumption that the easier it is to think of instances of something, the more often that thing occurs.

Video 5.  Watch the following video for an example of the availability heuristic.

Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in Table 2 below.

Learn more about heuristics and common biases through the article, “ 8 Common Thinking Mistakes Our Brains Make Every Day and How to Prevent Them ” by  Belle Beth Cooper.

You can also watch this clever music video explaining these and other cognitive biases.

  • Modification and adaptation. Provided by : Lumen Learning. License : CC BY: Attribution
  • Psychology in Real Life: Choice Blindness. Authored by : Patrick Carroll for Lumen Learning. License : CC BY: Attribution
  • Problem-Solving. Authored by : OpenStax College. Located at : http://cnx.org/contents/[email protected]:Lk3YnvuC@6/Problem-Solving . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/content/col11629/latest/.
  • Actors Headshots . Authored by : Vanity Studios. Located at : https://www.flickr.com/photos/149481436@N03/34277183806/in/photostream/ . License : CC BY: Attribution
  • Image of man. Provided by : Pixabay. Located at : https://pixabay.com/en/boy-portrait-outdoors-facial-men-s-3566903/ . License : CC0: No Rights Reserved
  • https://pixabay.com/en/boy-portrait-outdoors-facial-men-s-3566903/. Authored by : Simon Robben. Provided by : Pexels. Located at : https://www.pexels.com/photo/face-facial-hair-fine-looking-guy-614810/ . License : Public Domain: No Known Copyright
  • image of businessman. Authored by : RoyalAnwar. Provided by : Pixabay. Located at : https://pixabay.com/en/model-businessman-corporate-2911332/ . License : CC0: No Rights Reserved
  • man in black shirt. Authored by : songjayjay. Provided by : Pixabay. Located at : https://pixabay.com/en/face-men-s-asia-shirts-blacj-young-1391628/ . License : CC0: No Rights Reserved
  • woman headshot. Authored by : Richard Ha. Provided by : Flickr. Located at : https://www.flickr.com/photos/richardha101/31951459743/in/photolist-QFrzNX-V9Amf2-UM2ZU5-HMQxnd-WmpZx1-5ztiGT-ovm92d-28C1Eyi-qhwZzM-8szjMV-YRsM5B-LCTNFR-LtgVC9-LCUgd8-8gRLbQ-REArrY-WQNThG-ph52sx-2bC2DwH-qE61yp-28NspiC-21h8cj4-RVoBBc-29GiNJ3-21QEU6M-M1YTcp-PePwTJ-LALKtr-RVoBtg-Ry1bpy-FVr9BB-282GDDG-V7zSQJ-NwmdK9-29bSs5N-29mSb5G-272dN8p-26brtas-28tTQWf-RS1osg-WHoUSc-25uETMH-D7crwK-28m9fEh-25taZPB-JCwqE7-241e8Xp-265Ce4A-22V7VVo-25N7i4q . License : CC BY: Attribution
  • businesswoman headshot. Authored by : Richard Rives. Provided by : Flickr. Located at : https://www.flickr.com/photos/richpat2/38251159285/in/photostream/ . License : CC BY: Attribution
  • Can you solve Einsteinu2019s Riddle? . Authored by : Dan Van der Vieren. Provided by : Ted-Ed. Located at : https://www.youtube.com/watch?v=1rDVz_Fb6HQ&index=3&list=PLUmyCeox8XCwB8FrEfDQtQZmCc2qYMS5a . License : Other . License Terms : Standard YouTube License
  • BBC Choice Blindness. Authored by : BBC. Provided by : ChoiceBlindnessLab. Located at : https://www.youtube.com/watch?v=wRqyw-EwgTk . License : Other . License Terms : Standard YouTube License
  • Using Choice Blindness to Shift Political Attitudes and Voter Intentions. Provided by : ChoiceBlindnessLab. Located at : https://www.youtube.com/watch?v=_htNx0eWmgs . License : Other . License Terms : Standard YouTube License

Footer Logo Lumen Candela

Privacy Policy

IMAGES

  1. 7 Steps to Improve Your Problem Solving Skills

    psychological strategies for problem solving

  2. How psychology does define problem solvi

    psychological strategies for problem solving

  3. How to improve your problem solving skills and strategies

    psychological strategies for problem solving

  4. Problem Solving Cycle

    psychological strategies for problem solving

  5. Psychological Steps Involved in Problem Solving

    psychological strategies for problem solving

  6. problem-solving-steps-poster

    psychological strategies for problem solving

VIDEO

  1. #psychology rule

  2. How to Drastically Decrease Your Anxiety From Jordan Peterson #shorts

  3. PROBLEM SOLVING Problems are puzzles#facts #shorts

  4. The Psychological Problem

  5. Poor problem Resolution Skills🙃

  6. Sequences And Series

COMMENTS

  1. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In insight problem-solving, the cognitive processes that help you solve a problem happen outside your conscious awareness. 4. Working backward. Working backward is a problem-solving approach often ...

  2. Problem-Solving Strategies and Obstacles

    Problem-solving is a vital skill for coping with various challenges in life. This webpage explains the different strategies and obstacles that can affect how you solve problems, and offers tips on how to improve your problem-solving skills. Learn how to identify, analyze, and overcome problems with Verywell Mind.

  3. 7.3 Problem-Solving

    Additional Problem Solving Strategies:. Abstraction - refers to solving the problem within a model of the situation before applying it to reality.; Analogy - is using a solution that solves a similar problem.; Brainstorming - refers to collecting an analyzing a large amount of solutions, especially within a group of people, to combine the solutions and developing them until an optimal ...

  4. The Problem-Solving Process

    Allocate Resources. Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off ...

  5. 8 Effective Problem-Solving Strategies

    Analytical abilities. Decision-making skills. Creativity. Critical thinking. Leadership. Communication. Time management. Emotional intelligence. Solving a problem is complex and requires the ability to recognize the issue, collect and analyze relevant data, and make decisions about the best course of action.

  6. How to Solve Problems Like an Expert

    1. First, make sure you understand the problem. You do this by developing a representation of the essential aspects of the problem. You do that by searching your knowledge base for information ...

  7. Solving Problems the Cognitive-Behavioral Way

    Problem-solving is one technique used on the behavioral side of cognitive-behavioral therapy. The problem-solving technique is an iterative, five-step process that requires one to identify the ...

  8. Problem Solving

    The major cognitive processes in problem solving are representing, planning, executing, and monitoring. The major kinds of knowledge required for problem solving are facts, concepts, procedures, strategies, and beliefs. Classic theoretical approaches to the study of problem solving are associationism, Gestalt, and information processing.

  9. PDF The Psychology of Problem Solving

    about problem solving and the factors that contribute to its success or failure. There are chapters by leading experts in this field, includ-ingMiriamBassok,RandallEngle,AndersEricsson,ArthurGraesser, Norbert Schwarz, Keith Stanovich, and Barry Zimmerman. The Psychology of Problem Solving is divided into four parts. Fol-

  10. Problem Solving

    A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A "rule of thumb" is an example of a heuristic.

  11. The Process of Problem Solving

    These findings help expand our understanding of the role of reasoning and deduction in problem solving and of the processes involved in the shift from less to more effective problem-solving strategies. Reference Louis Lee, N. Y., Johnson-Laird, P. N. (2013). Strategic changes in problem solving.

  12. Introduction to Thinking and Problem-Solving

    This is only one facet of the complex processes involved in cognition. Simply put, cognition is thinking, and it encompasses the processes associated with perception, knowledge, problem solving, judgment, language, and memory. Scientists who study cognition are searching for ways to understand how we integrate, organize, and utilize our ...

  13. Problem-solving

    Strategies to assist problem solving. Just as there are cognitive obstacles to problem solving, there are also general strategies that help the process be successful, regardless of the specific content of a problem (Thagard, 2005). One helpful strategy is problem analysis—identifying the parts of the problem and working on each part ...

  14. 10 Best Problem-Solving Therapy Worksheets & Activities

    This article introduces problem-solving therapy and offers activities and worksheets mental health professionals can use with clients. ... focuses on solving the problem "as it occurs in the natural social environment," combined with a general coping strategy and a method of self-control (Dobson, 2011, p. 198). ... Cognitive psychology: A ...

  15. 4 Main problem-solving strategies

    All therapies aim to equip people with problem-solving strategies to help them deal with their life problems. Problem-solving is really at the core of ... When we can't, all sorts of psychological problems take hold. Getting good at solving problems is a fundamental life skill. Problem-solving stages. What problem-solving does is take you ...

  16. Problem Solving

    Solving Puzzles. Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below ( [link]) is a 4×4 grid.

  17. Psychological Steps Involved in Problem Solving

    Here are the steps involved in problem solving, approved by expert psychologists. 1. Identifying the Problem. Identifying the problem seems like the obvious first stem, but it's not exactly as simple as it sounds. People might identify the wrong source of a problem, which will render the steps thus carried on useless.

  18. The Algorithm Problem Solving Approach in Psychology

    In psychology, one of these problem-solving approaches is known as an algorithm. While often thought of purely as a mathematical term, the same type of process can be followed in psychology to find the correct answer when solving a problem or making a decision. An algorithm is a defined set of step-by-step procedures that provides the correct ...

  19. Problem Solving

    Real-world problem solving transcends specific domains, as individuals in diverse fields address multifaceted issues by drawing upon their cognitive abilities and creative problem-solving strategies. Clinical psychology recognizes the profound therapeutic potential of problem-solving techniques. Problem-solving therapy (PST) is an evidence ...

  20. Stress Management Techniques

    Problem-focused coping targets the causes of stress in practical ways, which tackles the problem or stressful situation that is causing stress, consequently directly reducing the stress. Problem-focused strategies aim to remove or reduce the cause of the stressor, including: Problem-solving. Time-management. Obtaining instrumental social support.

  21. Solving Problems

    Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (Figure 1) is a 4×4 grid.

  22. Use the HELP technique in tough parenting moments: Child ...

    This is all about ensuring our children feel safe, seen, and heard before we get into limit setting, teaching, or problem-solving. Empathy means seeing their world as they see it and believing ...

  23. 7.3 Problem Solving

    Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below ( Figure 7.7) is a 4×4 grid.

  24. Is Your AI-First Strategy Causing More Problems Than It's Solving?

    Summary. The problem with an AI-first strategy lies not within the "AI" but with the notion that it should come "first" aspect. An AI-first approach can be myopic, potentially leading us ...

  25. Solving Problems

    A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A "rule of thumb" is an example of a heuristic.