• Assignment Statement

An Assignment statement is a statement that is used to set a value to the variable name in a program .

Assignment statement allows a variable to hold different types of values during its program lifespan. Another way of understanding an assignment statement is, it stores a value in the memory location which is denoted by a variable name.

Assignment Statement Method

The symbol used in an assignment statement is called as an operator . The symbol is ‘=’ .

Note: The Assignment Operator should never be used for Equality purpose which is double equal sign ‘==’.

The Basic Syntax of Assignment Statement in a programming language is :

variable = expression ;

variable = variable name

expression = it could be either a direct value or a math expression/formula or a function call

Few programming languages such as Java, C, C++ require data type to be specified for the variable, so that it is easy to allocate memory space and store those values during program execution.

data_type variable_name = value ;

In the above-given examples, Variable ‘a’ is assigned a value in the same statement as per its defined data type. A data type is only declared for Variable ‘b’. In the 3 rd line of code, Variable ‘a’ is reassigned the value 25. The 4 th line of code assigns the value for Variable ‘b’.

Assignment Statement Forms

This is one of the most common forms of Assignment Statements. Here the Variable name is defined, initialized, and assigned a value in the same statement. This form is generally used when we want to use the Variable quite a few times and we do not want to change its value very frequently.

Tuple Assignment

Generally, we use this form when we want to define and assign values for more than 1 variable at the same time. This saves time and is an easy method. Note that here every individual variable has a different value assigned to it.

(Code In Python)

Sequence Assignment

(Code in Python)

Multiple-target Assignment or Chain Assignment

In this format, a single value is assigned to two or more variables.

Augmented Assignment

In this format, we use the combination of mathematical expressions and values for the Variable. Other augmented Assignment forms are: &=, -=, **=, etc.

Browse more Topics Under Data Types, Variables and Constants

  • Concept of Data types
  • Built-in Data Types
  • Constants in Programing Language 
  • Access Modifier
  • Variables of Built-in-Datatypes
  • Declaration/Initialization of Variables
  • Type Modifier

Few Rules for Assignment Statement

Few Rules to be followed while writing the Assignment Statements are:

  • Variable names must begin with a letter, underscore, non-number character. Each language has its own conventions.
  • The Data type defined and the variable value must match.
  • A variable name once defined can only be used once in the program. You cannot define it again to store other types of value.
  • If you assign a new value to an existing variable, it will overwrite the previous value and assign the new value.

FAQs on Assignment Statement

Q1. Which of the following shows the syntax of an  assignment statement ?

  • variablename = expression ;
  • expression = variable ;
  • datatype = variablename ;
  • expression = datatype variable ;

Answer – Option A.

Q2. What is an expression ?

  • Same as statement
  • List of statements that make up a program
  • Combination of literals, operators, variables, math formulas used to calculate a value
  • Numbers expressed in digits

Answer – Option C.

Q3. What are the two steps that take place when an  assignment statement  is executed?

  • Evaluate the expression, store the value in the variable
  • Reserve memory, fill it with value
  • Evaluate variable, store the result
  • Store the value in the variable, evaluate the expression.

Customize your course in 30 seconds

Which class are you in.

tutor

Data Types, Variables and Constants

  • Variables in Programming Language
  • Concept of Data Types
  • Declaration of Variables
  • Type Modifiers
  • Access Modifiers
  • Constants in Programming Language

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

Python's Assignment Operator: Write Robust Assignments

Python's Assignment Operator: Write Robust Assignments

Table of Contents

The Assignment Statement Syntax

The assignment operator, assignments and variables, other assignment syntax, initializing and updating variables, making multiple variables refer to the same object, updating lists through indices and slices, adding and updating dictionary keys, doing parallel assignments, unpacking iterables, providing default argument values, augmented mathematical assignment operators, augmented assignments for concatenation and repetition, augmented bitwise assignment operators, annotated assignment statements, assignment expressions with the walrus operator, managed attribute assignments, define or call a function, work with classes, import modules and objects, use a decorator, access the control variable in a for loop or a comprehension, use the as keyword, access the _ special variable in an interactive session, built-in objects, named constants.

Python’s assignment operators allow you to define assignment statements . This type of statement lets you create, initialize, and update variables throughout your code. Variables are a fundamental cornerstone in every piece of code, and assignment statements give you complete control over variable creation and mutation.

Learning about the Python assignment operator and its use for writing assignment statements will arm you with powerful tools for writing better and more robust Python code.

In this tutorial, you’ll:

  • Use Python’s assignment operator to write assignment statements
  • Take advantage of augmented assignments in Python
  • Explore assignment variants, like assignment expressions and managed attributes
  • Become aware of illegal and dangerous assignments in Python

You’ll dive deep into Python’s assignment statements. To get the most out of this tutorial, you should be comfortable with several basic topics, including variables , built-in data types , comprehensions , functions , and Python keywords . Before diving into some of the later sections, you should also be familiar with intermediate topics, such as object-oriented programming , constants , imports , type hints , properties , descriptors , and decorators .

Free Source Code: Click here to download the free assignment operator source code that you’ll use to write assignment statements that allow you to create, initialize, and update variables in your code.

Assignment Statements and the Assignment Operator

One of the most powerful programming language features is the ability to create, access, and mutate variables . In Python, a variable is a name that refers to a concrete value or object, allowing you to reuse that value or object throughout your code.

To create a new variable or to update the value of an existing one in Python, you’ll use an assignment statement . This statement has the following three components:

  • A left operand, which must be a variable
  • The assignment operator ( = )
  • A right operand, which can be a concrete value , an object , or an expression

Here’s how an assignment statement will generally look in Python:

Here, variable represents a generic Python variable, while expression represents any Python object that you can provide as a concrete value—also known as a literal —or an expression that evaluates to a value.

To execute an assignment statement like the above, Python runs the following steps:

  • Evaluate the right-hand expression to produce a concrete value or object . This value will live at a specific memory address in your computer.
  • Store the object’s memory address in the left-hand variable . This step creates a new variable if the current one doesn’t already exist or updates the value of an existing variable.

The second step shows that variables work differently in Python than in other programming languages. In Python, variables aren’t containers for objects. Python variables point to a value or object through its memory address. They store memory addresses rather than objects.

This behavior difference directly impacts how data moves around in Python, which is always by reference . In most cases, this difference is irrelevant in your day-to-day coding, but it’s still good to know.

The central component of an assignment statement is the assignment operator . This operator is represented by the = symbol, which separates two operands:

  • A value or an expression that evaluates to a concrete value

Operators are special symbols that perform mathematical , logical , and bitwise operations in a programming language. The objects (or object) on which an operator operates are called operands .

Unary operators, like the not Boolean operator, operate on a single object or operand, while binary operators act on two. That means the assignment operator is a binary operator.

Note: Like C , Python uses == for equality comparisons and = for assignments. Unlike C, Python doesn’t allow you to accidentally use the assignment operator ( = ) in an equality comparison.

Equality is a symmetrical relationship, and assignment is not. For example, the expression a == 42 is equivalent to 42 == a . In contrast, the statement a = 42 is correct and legal, while 42 = a isn’t allowed. You’ll learn more about illegal assignments later on.

The right-hand operand in an assignment statement can be any Python object, such as a number , list , string , dictionary , or even a user-defined object. It can also be an expression. In the end, expressions always evaluate to concrete objects, which is their return value.

Here are a few examples of assignments in Python:

The first two sample assignments in this code snippet use concrete values, also known as literals , to create and initialize number and greeting . The third example assigns the result of a math expression to the total variable, while the last example uses a Boolean expression.

Note: You can use the built-in id() function to inspect the memory address stored in a given variable.

Here’s a short example of how this function works:

The number in your output represents the memory address stored in number . Through this address, Python can access the content of number , which is the integer 42 in this example.

If you run this code on your computer, then you’ll get a different memory address because this value varies from execution to execution and computer to computer.

Unlike expressions, assignment statements don’t have a return value because their purpose is to make the association between the variable and its value. That’s why the Python interpreter doesn’t issue any output in the above examples.

Now that you know the basics of how to write an assignment statement, it’s time to tackle why you would want to use one.

The assignment statement is the explicit way for you to associate a name with an object in Python. You can use this statement for two main purposes:

  • Creating and initializing new variables
  • Updating the values of existing variables

When you use a variable name as the left operand in an assignment statement for the first time, you’re creating a new variable. At the same time, you’re initializing the variable to point to the value of the right operand.

On the other hand, when you use an existing variable in a new assignment, you’re updating or mutating the variable’s value. Strictly speaking, every new assignment will make the variable refer to a new value and stop referring to the old one. Python will garbage-collect all the values that are no longer referenced by any existing variable.

Assignment statements not only assign a value to a variable but also determine the data type of the variable at hand. This additional behavior is another important detail to consider in this kind of statement.

Because Python is a dynamically typed language, successive assignments to a given variable can change the variable’s data type. Changing the data type of a variable during a program’s execution is considered bad practice and highly discouraged. It can lead to subtle bugs that can be difficult to track down.

Unlike in math equations, in Python assignments, the left operand must be a variable rather than an expression or a value. For example, the following construct is illegal, and Python flags it as invalid syntax:

In this example, you have expressions on both sides of the = sign, and this isn’t allowed in Python code. The error message suggests that you may be confusing the equality operator with the assignment one, but that’s not the case. You’re really running an invalid assignment.

To correct this construct and convert it into a valid assignment, you’ll have to do something like the following:

In this code snippet, you first import the sqrt() function from the math module. Then you isolate the hypotenuse variable in the original equation by using the sqrt() function. Now your code works correctly.

Now you know what kind of syntax is invalid. But don’t get the idea that assignment statements are rigid and inflexible. In fact, they offer lots of room for customization, as you’ll learn next.

Python’s assignment statements are pretty flexible and versatile. You can write them in several ways, depending on your specific needs and preferences. Here’s a quick summary of the main ways to write assignments in Python:

Up to this point, you’ve mostly learned about the base assignment syntax in the above code snippet. In the following sections, you’ll learn about multiple, parallel, and augmented assignments. You’ll also learn about assignments with iterable unpacking.

Read on to see the assignment statements in action!

Assignment Statements in Action

You’ll find and use assignment statements everywhere in your Python code. They’re a fundamental part of the language, providing an explicit way to create, initialize, and mutate variables.

You can use assignment statements with plain names, like number or counter . You can also use assignments in more complicated scenarios, such as with:

  • Qualified attribute names , like user.name
  • Indices and slices of mutable sequences, like a_list[i] and a_list[i:j]
  • Dictionary keys , like a_dict[key]

This list isn’t exhaustive. However, it gives you some idea of how flexible these statements are. You can even assign multiple values to an equal number of variables in a single line, commonly known as parallel assignment . Additionally, you can simultaneously assign the values in an iterable to a comma-separated group of variables in what’s known as an iterable unpacking operation.

In the following sections, you’ll dive deeper into all these topics and a few other exciting things that you can do with assignment statements in Python.

The most elementary use case of an assignment statement is to create a new variable and initialize it using a particular value or expression:

All these statements create new variables, assigning them initial values or expressions. For an initial value, you should always use the most sensible and least surprising value that you can think of. For example, initializing a counter to something different from 0 may be confusing and unexpected because counters almost always start having counted no objects.

Updating a variable’s current value or state is another common use case of assignment statements. In Python, assigning a new value to an existing variable doesn’t modify the variable’s current value. Instead, it causes the variable to refer to a different value. The previous value will be garbage-collected if no other variable refers to it.

Consider the following examples:

These examples run two consecutive assignments on the same variable. The first one assigns the string "Hello, World!" to a new variable named greeting .

The second assignment updates the value of greeting by reassigning it the "Hi, Pythonistas!" string. In this example, the original value of greeting —the "Hello, World!" string— is lost and garbage-collected. From this point on, you can’t access the old "Hello, World!" string.

Even though running multiple assignments on the same variable during a program’s execution is common practice, you should use this feature with caution. Changing the value of a variable can make your code difficult to read, understand, and debug. To comprehend the code fully, you’ll have to remember all the places where the variable was changed and the sequential order of those changes.

Because assignments also define the data type of their target variables, it’s also possible for your code to accidentally change the type of a given variable at runtime. A change like this can lead to breaking errors, like AttributeError exceptions. Remember that strings don’t have the same methods and attributes as lists or dictionaries, for example.

In Python, you can make several variables reference the same object in a multiple-assignment line. This can be useful when you want to initialize several similar variables using the same initial value:

In this example, you chain two assignment operators in a single line. This way, your two variables refer to the same initial value of 0 . Note how both variables hold the same memory address, so they point to the same instance of 0 .

When it comes to integer variables, Python exhibits a curious behavior. It provides a numeric interval where multiple assignments behave the same as independent assignments. Consider the following examples:

To create n and m , you use independent assignments. Therefore, they should point to different instances of the number 42 . However, both variables hold the same object, which you confirm by comparing their corresponding memory addresses.

Now check what happens when you use a greater initial value:

Now n and m hold different memory addresses, which means they point to different instances of the integer number 300 . In contrast, when you use multiple assignments, both variables refer to the same object. This tiny difference can save you small bits of memory if you frequently initialize integer variables in your code.

The implicit behavior of making independent assignments point to the same integer number is actually an optimization called interning . It consists of globally caching the most commonly used integer values in day-to-day programming.

Under the hood, Python defines a numeric interval in which interning takes place. That’s the interning interval for integer numbers. You can determine this interval using a small script like the following:

This script helps you determine the interning interval by comparing integer numbers from -10 to 500 . If you run the script from your command line, then you’ll get an output like the following:

This output means that if you use a single number between -5 and 256 to initialize several variables in independent statements, then all these variables will point to the same object, which will help you save small bits of memory in your code.

In contrast, if you use a number that falls outside of the interning interval, then your variables will point to different objects instead. Each of these objects will occupy a different memory spot.

You can use the assignment operator to mutate the value stored at a given index in a Python list. The operator also works with list slices . The syntax to write these types of assignment statements is the following:

In the first construct, expression can return any Python object, including another list. In the second construct, expression must return a series of values as a list, tuple, or any other sequence. You’ll get a TypeError if expression returns a single value.

Note: When creating slice objects, you can use up to three arguments. These arguments are start , stop , and step . They define the number that starts the slice, the number at which the slicing must stop retrieving values, and the step between values.

Here’s an example of updating an individual value in a list:

In this example, you update the value at index 2 using an assignment statement. The original number at that index was 7 , and after the assignment, the number is 3 .

Note: Using indices and the assignment operator to update a value in a tuple or a character in a string isn’t possible because tuples and strings are immutable data types in Python.

Their immutability means that you can’t change their items in place :

You can’t use the assignment operator to change individual items in tuples or strings. These data types are immutable and don’t support item assignments.

It’s important to note that you can’t add new values to a list by using indices that don’t exist in the target list:

In this example, you try to add a new value to the end of numbers by using an index that doesn’t exist. This assignment isn’t allowed because there’s no way to guarantee that new indices will be consecutive. If you ever want to add a single value to the end of a list, then use the .append() method.

If you want to update several consecutive values in a list, then you can use slicing and an assignment statement:

In the first example, you update the letters between indices 1 and 3 without including the letter at 3 . The second example updates the letters from index 3 until the end of the list. Note that this slicing appends a new value to the list because the target slice is shorter than the assigned values.

Also note that the new values were provided through a tuple, which means that this type of assignment allows you to use other types of sequences to update your target list.

The third example updates a single value using a slice where both indices are equal. In this example, the assignment inserts a new item into your target list.

In the final example, you use a step of 2 to replace alternating letters with their lowercase counterparts. This slicing starts at index 1 and runs through the whole list, stepping by two items each time.

Updating the value of an existing key or adding new key-value pairs to a dictionary is another common use case of assignment statements. To do these operations, you can use the following syntax:

The first construct helps you update the current value of an existing key, while the second construct allows you to add a new key-value pair to the dictionary.

For example, to update an existing key, you can do something like this:

In this example, you update the current inventory of oranges in your store using an assignment. The left operand is the existing dictionary key, and the right operand is the desired new value.

While you can’t add new values to a list by assignment, dictionaries do allow you to add new key-value pairs using the assignment operator. In the example below, you add a lemon key to inventory :

In this example, you successfully add a new key-value pair to your inventory with 100 units. This addition is possible because dictionaries don’t have consecutive indices but unique keys, which are safe to add by assignment.

The assignment statement does more than assign the result of a single expression to a single variable. It can also cope nicely with assigning multiple values to multiple variables simultaneously in what’s known as a parallel assignment .

Here’s the general syntax for parallel assignments in Python:

Note that the left side of the statement can be either a tuple or a list of variables. Remember that to create a tuple, you just need a series of comma-separated elements. In this case, these elements must be variables.

The right side of the statement must be a sequence or iterable of values or expressions. In any case, the number of elements in the right operand must match the number of variables on the left. Otherwise, you’ll get a ValueError exception.

In the following example, you compute the two solutions of a quadratic equation using a parallel assignment:

In this example, you first import sqrt() from the math module. Then you initialize the equation’s coefficients in a parallel assignment.

The equation’s solution is computed in another parallel assignment. The left operand contains a tuple of two variables, x1 and x2 . The right operand consists of a tuple of expressions that compute the solutions for the equation. Note how each result is assigned to each variable by position.

A classical use case of parallel assignment is to swap values between variables:

The highlighted line does the magic and swaps the values of previous_value and next_value at the same time. Note that in a programming language that doesn’t support this kind of assignment, you’d have to use a temporary variable to produce the same effect:

In this example, instead of using parallel assignment to swap values between variables, you use a new variable to temporarily store the value of previous_value to avoid losing its reference.

For a concrete example of when you’d need to swap values between variables, say you’re learning how to implement the bubble sort algorithm , and you come up with the following function:

In the highlighted line, you use a parallel assignment to swap values in place if the current value is less than the next value in the input list. To dive deeper into the bubble sort algorithm and into sorting algorithms in general, check out Sorting Algorithms in Python .

You can use assignment statements for iterable unpacking in Python. Unpacking an iterable means assigning its values to a series of variables one by one. The iterable must be the right operand in the assignment, while the variables must be the left operand.

Like in parallel assignments, the variables must come as a tuple or list. The number of variables must match the number of values in the iterable. Alternatively, you can use the unpacking operator ( * ) to grab several values in a variable if the number of variables doesn’t match the iterable length.

Here’s the general syntax for iterable unpacking in Python:

Iterable unpacking is a powerful feature that you can use all around your code. It can help you write more readable and concise code. For example, you may find yourself doing something like this:

Whenever you do something like this in your code, go ahead and replace it with a more readable iterable unpacking using a single and elegant assignment, like in the following code snippet:

The numbers list on the right side contains four values. The assignment operator unpacks these values into the four variables on the left side of the statement. The values in numbers get assigned to variables in the same order that they appear in the iterable. The assignment is done by position.

Note: Because Python sets are also iterables, you can use them in an iterable unpacking operation. However, it won’t be clear which value goes to which variable because sets are unordered data structures.

The above example shows the most common form of iterable unpacking in Python. The main condition for the example to work is that the number of variables matches the number of values in the iterable.

What if you don’t know the iterable length upfront? Will the unpacking work? It’ll work if you use the * operator to pack several values into one of your target variables.

For example, say that you want to unpack the first and second values in numbers into two different variables. Additionally, you would like to pack the rest of the values in a single variable conveniently called rest . In this case, you can use the unpacking operator like in the following code:

In this example, first and second hold the first and second values in numbers , respectively. These values are assigned by position. The * operator packs all the remaining values in the input iterable into rest .

The unpacking operator ( * ) can appear at any position in your series of target variables. However, you can only use one instance of the operator:

The iterable unpacking operator works in any position in your list of variables. Note that you can only use one unpacking operator per assignment. Using more than one unpacking operator isn’t allowed and raises a SyntaxError .

Dropping away unwanted values from the iterable is a common use case for the iterable unpacking operator. Consider the following example:

In Python, if you want to signal that a variable won’t be used, then you use an underscore ( _ ) as the variable’s name. In this example, useful holds the only value that you need to use from the input iterable. The _ variable is a placeholder that guarantees that the unpacking works correctly. You won’t use the values that end up in this disposable variable.

Note: In the example above, if your target iterable is a sequence data type, such as a list or tuple, then it’s best to access its last item directly.

To do this, you can use the -1 index:

Using -1 gives you access to the last item of any sequence data type. In contrast, if you’re dealing with iterators , then you won’t be able to use indices. That’s when the *_ syntax comes to your rescue.

The pattern used in the above example comes in handy when you have a function that returns multiple values, and you only need a few of these values in your code. The os.walk() function may provide a good example of this situation.

This function allows you to iterate over the content of a directory recursively. The function returns a generator object that yields three-item tuples. Each tuple contains the following items:

  • The path to the current directory as a string
  • The names of all the immediate subdirectories as a list of strings
  • The names of all the files in the current directory as a list of strings

Now say that you want to iterate over your home directory and list only the files. You can do something like this:

This code will issue a long output depending on the current content of your home directory. Note that you need to provide a string with the path to your user folder for the example to work. The _ placeholder variable will hold the unwanted data.

In contrast, the filenames variable will hold the list of files in the current directory, which is the data that you need. The code will print the list of filenames. Go ahead and give it a try!

The assignment operator also comes in handy when you need to provide default argument values in your functions and methods. Default argument values allow you to define functions that take arguments with sensible defaults. These defaults allow you to call the function with specific values or to simply rely on the defaults.

As an example, consider the following function:

This function takes one argument, called name . This argument has a sensible default value that’ll be used when you call the function without arguments. To provide this sensible default value, you use an assignment.

Note: According to PEP 8 , the style guide for Python code, you shouldn’t use spaces around the assignment operator when providing default argument values in function definitions.

Here’s how the function works:

If you don’t provide a name during the call to greet() , then the function uses the default value provided in the definition. If you provide a name, then the function uses it instead of the default one.

Up to this point, you’ve learned a lot about the Python assignment operator and how to use it for writing different types of assignment statements. In the following sections, you’ll dive into a great feature of assignment statements in Python. You’ll learn about augmented assignments .

Augmented Assignment Operators in Python

Python supports what are known as augmented assignments . An augmented assignment combines the assignment operator with another operator to make the statement more concise. Most Python math and bitwise operators have an augmented assignment variation that looks something like this:

Note that $ isn’t a valid Python operator. In this example, it’s a placeholder for a generic operator. This statement works as follows:

  • Evaluate expression to produce a value.
  • Run the operation defined by the operator that prefixes the = sign, using the previous value of variable and the return value of expression as operands.
  • Assign the resulting value back to variable .

In practice, an augmented assignment like the above is equivalent to the following statement:

As you can conclude, augmented assignments are syntactic sugar . They provide a shorthand notation for a specific and popular kind of assignment.

For example, say that you need to define a counter variable to count some stuff in your code. You can use the += operator to increment counter by 1 using the following code:

In this example, the += operator, known as augmented addition , adds 1 to the previous value in counter each time you run the statement counter += 1 .

It’s important to note that unlike regular assignments, augmented assignments don’t create new variables. They only allow you to update existing variables. If you use an augmented assignment with an undefined variable, then you get a NameError :

Python evaluates the right side of the statement before assigning the resulting value back to the target variable. In this specific example, when Python tries to compute x + 1 , it finds that x isn’t defined.

Great! You now know that an augmented assignment consists of combining the assignment operator with another operator, like a math or bitwise operator. To continue this discussion, you’ll learn which math operators have an augmented variation in Python.

An equation like x = x + b doesn’t make sense in math. But in programming, a statement like x = x + b is perfectly valid and can be extremely useful. It adds b to x and reassigns the result back to x .

As you already learned, Python provides an operator to shorten x = x + b . Yes, the += operator allows you to write x += b instead. Python also offers augmented assignment operators for most math operators. Here’s a summary:

Operator Description Example Equivalent
Adds the right operand to the left operand and stores the result in the left operand
Subtracts the right operand from the left operand and stores the result in the left operand
Multiplies the right operand with the left operand and stores the result in the left operand
Divides the left operand by the right operand and stores the result in the left operand
Performs of the left operand by the right operand and stores the result in the left operand
Finds the remainder of dividing the left operand by the right operand and stores the result in the left operand
Raises the left operand to the power of the right operand and stores the result in the left operand

The Example column provides generic examples of how to use the operators in actual code. Note that x must be previously defined for the operators to work correctly. On the other hand, y can be either a concrete value or an expression that returns a value.

Note: The matrix multiplication operator ( @ ) doesn’t support augmented assignments yet.

Consider the following example of matrix multiplication using NumPy arrays:

Note that the exception traceback indicates that the operation isn’t supported yet.

To illustrate how augmented assignment operators work, say that you need to create a function that takes an iterable of numeric values and returns their sum. You can write this function like in the code below:

In this function, you first initialize total to 0 . In each iteration, the loop adds a new number to total using the augmented addition operator ( += ). When the loop terminates, total holds the sum of all the input numbers. Variables like total are known as accumulators . The += operator is typically used to update accumulators.

Note: Computing the sum of a series of numeric values is a common operation in programming. Python provides the built-in sum() function for this specific computation.

Another interesting example of using an augmented assignment is when you need to implement a countdown while loop to reverse an iterable. In this case, you can use the -= operator:

In this example, custom_reversed() is a generator function because it uses yield . Calling the function creates an iterator that yields items from the input iterable in reverse order. To decrement the control variable, index , you use an augmented subtraction statement that subtracts 1 from the variable in every iteration.

Note: Similar to summing the values in an iterable, reversing an iterable is also a common requirement. Python provides the built-in reversed() function for this specific computation, so you don’t have to implement your own. The above example only intends to show the -= operator in action.

Finally, counters are a special type of accumulators that allow you to count objects. Here’s an example of a letter counter:

To create this counter, you use a Python dictionary. The keys store the letters. The values store the counts. Again, to increment the counter, you use an augmented addition.

Counters are so common in programming that Python provides a tool specially designed to facilitate the task of counting. Check out Python’s Counter: The Pythonic Way to Count Objects for a complete guide on how to use this tool.

The += and *= augmented assignment operators also work with sequences , such as lists, tuples, and strings. The += operator performs augmented concatenations , while the *= operator performs augmented repetition .

These operators behave differently with mutable and immutable data types:

Operator Description Example
Runs an augmented concatenation operation on the target sequence. Mutable sequences are updated in place. If the sequence is immutable, then a new sequence is created and assigned back to the target name.
Adds to itself times. Mutable sequences are updated in place. If the sequence is immutable, then a new sequence is created and assigned back to the target name.

Note that the augmented concatenation operator operates on two sequences, while the augmented repetition operator works on a sequence and an integer number.

Consider the following examples and pay attention to the result of calling the id() function:

Mutable sequences like lists support the += augmented assignment operator through the .__iadd__() method, which performs an in-place addition. This method mutates the underlying list, appending new values to its end.

Note: If the left operand is mutable, then x += y may not be completely equivalent to x = x + y . For example, if you do list_1 = list_1 + list_2 instead of list_1 += list_2 above, then you’ll create a new list instead of mutating the existing one. This may be important if other variables refer to the same list.

Immutable sequences, such as tuples and strings, don’t provide an .__iadd__() method. Therefore, augmented concatenations fall back to the .__add__() method, which doesn’t modify the sequence in place but returns a new sequence.

There’s another difference between mutable and immutable sequences when you use them in an augmented concatenation. Consider the following examples:

With mutable sequences, the data to be concatenated can come as a list, tuple, string, or any other iterable. In contrast, with immutable sequences, the data can only come as objects of the same type. You can concatenate tuples to tuples and strings to strings, for example.

Again, the augmented repetition operator works with a sequence on the left side of the operator and an integer on the right side. This integer value represents the number of repetitions to get in the resulting sequence:

When the *= operator operates on a mutable sequence, it falls back to the .__imul__() method, which performs the operation in place, modifying the underlying sequence. In contrast, if *= operates on an immutable sequence, then .__mul__() is called, returning a new sequence of the same type.

Note: Values of n less than 0 are treated as 0 , which returns an empty sequence of the same data type as the target sequence on the left side of the *= operand.

Note that a_list[0] is a_list[3] returns True . This is because the *= operator doesn’t make a copy of the repeated data. It only reflects the data. This behavior can be a source of issues when you use the operator with mutable values.

For example, say that you want to create a list of lists to represent a matrix, and you need to initialize the list with n empty lists, like in the following code:

In this example, you use the *= operator to populate matrix with three empty lists. Now check out what happens when you try to populate the first sublist in matrix :

The appended values are reflected in the three sublists. This happens because the *= operator doesn’t make copies of the data that you want to repeat. It only reflects the data. Therefore, every sublist in matrix points to the same object and memory address.

If you ever need to initialize a list with a bunch of empty sublists, then use a list comprehension :

This time, when you populate the first sublist of matrix , your changes aren’t propagated to the other sublists. This is because all the sublists are different objects that live in different memory addresses.

Bitwise operators also have their augmented versions. The logic behind them is similar to that of the math operators. The following table summarizes the augmented bitwise operators that Python provides:

Operator Operation Example Equivalent
Augmented bitwise AND ( )
Augmented bitwise OR ( )
Augmented bitwise XOR ( )
Augmented bitwise right shift
Augmented bitwise left shift

The augmented bitwise assignment operators perform the intended operation by taking the current value of the left operand as a starting point for the computation. Consider the following example, which uses the & and &= operators:

Programmers who work with high-level languages like Python rarely use bitwise operations in day-to-day coding. However, these types of operations can be useful in some situations.

For example, say that you’re implementing a Unix-style permission system for your users to access a given resource. In this case, you can use the characters "r" for reading, "w" for writing, and "x" for execution permissions, respectively. However, using bit-based permissions could be more memory efficient:

You can assign permissions to your users with the OR bitwise operator or the augmented OR bitwise operator. Finally, you can use the bitwise AND operator to check if a user has a certain permission, as you did in the final two examples.

You’ve learned a lot about augmented assignment operators and statements in this and the previous sections. These operators apply to math, concatenation, repetition, and bitwise operations. Now you’re ready to look at other assignment variants that you can use in your code or find in other developers’ code.

Other Assignment Variants

So far, you’ve learned that Python’s assignment statements and the assignment operator are present in many different scenarios and use cases. Those use cases include variable creation and initialization, parallel assignments, iterable unpacking, augmented assignments, and more.

In the following sections, you’ll learn about a few variants of assignment statements that can be useful in your future coding. You can also find these assignment variants in other developers’ code. So, you should be aware of them and know how they work in practice.

In short, you’ll learn about:

  • Annotated assignment statements with type hints
  • Assignment expressions with the walrus operator
  • Managed attribute assignments with properties and descriptors
  • Implicit assignments in Python

These topics will take you through several interesting and useful examples that showcase the power of Python’s assignment statements.

PEP 526 introduced a dedicated syntax for variable annotation back in Python 3.6 . The syntax consists of the variable name followed by a colon ( : ) and the variable type:

Even though these statements declare three variables with their corresponding data types, the variables aren’t actually created or initialized. So, for example, you can’t use any of these variables in an augmented assignment statement:

If you try to use one of the previously declared variables in an augmented assignment, then you get a NameError because the annotation syntax doesn’t define the variable. To actually define it, you need to use an assignment.

The good news is that you can use the variable annotation syntax in an assignment statement with the = operator:

The first statement in this example is what you can call an annotated assignment statement in Python. You may ask yourself why you should use type annotations in this type of assignment if everybody can see that counter holds an integer number. You’re right. In this example, the variable type is unambiguous.

However, imagine what would happen if you found a variable initialization like the following:

What would be the data type of each user in users ? If the initialization of users is far away from the definition of the User class, then there’s no quick way to answer this question. To clarify this ambiguity, you can provide the appropriate type hint for users :

Now you’re clearly communicating that users will hold a list of User instances. Using type hints in assignment statements that initialize variables to empty collection data types—such as lists, tuples, or dictionaries—allows you to provide more context about how your code works. This practice will make your code more explicit and less error-prone.

Up to this point, you’ve learned that regular assignment statements with the = operator don’t have a return value. They just create or update variables. Therefore, you can’t use a regular assignment to assign a value to a variable within the context of an expression.

Python 3.8 changed this by introducing a new type of assignment statement through PEP 572 . This new statement is known as an assignment expression or named expression .

Note: Expressions are a special type of statement in Python. Their distinguishing characteristic is that expressions always have a return value, which isn’t the case with all types of statements.

Unlike regular assignments, assignment expressions have a return value, which is why they’re called expressions in the first place. This return value is automatically assigned to a variable. To write an assignment expression, you must use the walrus operator ( := ), which was named for its resemblance to the eyes and tusks of a walrus lying on its side.

The general syntax of an assignment statement is as follows:

This expression looks like a regular assignment. However, instead of using the assignment operator ( = ), it uses the walrus operator ( := ). For the expression to work correctly, the enclosing parentheses are required in most use cases. However, there are certain situations in which these parentheses are superfluous. Either way, they won’t hurt you.

Assignment expressions come in handy when you want to reuse the result of an expression or part of an expression without using a dedicated assignment to grab this value beforehand.

Note: Assignment expressions with the walrus operator have several practical use cases. They also have a few restrictions. For example, they’re illegal in certain contexts, such as lambda functions, parallel assignments, and augmented assignments.

For a deep dive into this special type of assignment, check out The Walrus Operator: Python’s Assignment Expressions .

A particularly handy use case for assignment expressions is when you need to grab the result of an expression used in the context of a conditional statement. For example, say that you need to write a function to compute the mean of a sample of numeric values. Without the walrus operator, you could do something like this:

In this example, the sample size ( n ) is a value that you need to reuse in two different computations. First, you need to check whether the sample has data points or not. Then you need to use the sample size to compute the mean. To be able to reuse n , you wrote a dedicated assignment statement at the beginning of your function to grab the sample size.

You can avoid this extra step by combining it with the first use of the target value, len(sample) , using an assignment expression like the following:

The assignment expression introduced in the conditional computes the sample size and assigns it to n . This way, you guarantee that you have a reference to the sample size to use in further computations.

Because the assignment expression returns the sample size anyway, the conditional can check whether that size equals 0 or not and then take a certain course of action depending on the result of this check. The return statement computes the sample’s mean and sends the result back to the function caller.

Python provides a few tools that allow you to fine-tune the operations behind the assignment of attributes. The attributes that run implicit operations on assignments are commonly referred to as managed attributes .

Properties are the most commonly used tool for providing managed attributes in your classes. However, you can also use descriptors and, in some cases, the .__setitem__() special method.

To understand what fine-tuning the operation behind an assignment means, say that you need a Point class that only allows numeric values for its coordinates, x and y . To write this class, you must set up a validation mechanism to reject non-numeric values. You can use properties to attach the validation functionality on top of x and y .

Here’s how you can write your class:

In Point , you use properties for the .x and .y coordinates. Each property has a getter and a setter method . The getter method returns the attribute at hand. The setter method runs the input validation using a try … except block and the built-in float() function. Then the method assigns the result to the actual attribute.

Here’s how your class works in practice:

When you use a property-based attribute as the left operand in an assignment statement, Python automatically calls the property’s setter method, running any computation from it.

Because both .x and .y are properties, the input validation runs whenever you assign a value to either attribute. In the first example, the input values are valid numbers and the validation passes. In the final example, "one" isn’t a valid numeric value, so the validation fails.

If you look at your Point class, you’ll note that it follows a repetitive pattern, with the getter and setter methods looking quite similar. To avoid this repetition, you can use a descriptor instead of a property.

A descriptor is a class that implements the descriptor protocol , which consists of four special methods :

  • .__get__() runs when you access the attribute represented by the descriptor.
  • .__set__() runs when you use the attribute in an assignment statement.
  • .__delete__() runs when you use the attribute in a del statement.
  • .__set_name__() sets the attribute’s name, creating a name-aware attribute.

Here’s how your code may look if you use a descriptor to represent the coordinates of your Point class:

You’ve removed repetitive code by defining Coordinate as a descriptor that manages the input validation in a single place. Go ahead and run the following code to try out the new implementation of Point :

Great! The class works as expected. Thanks to the Coordinate descriptor, you now have a more concise and non-repetitive version of your original code.

Another way to fine-tune the operations behind an assignment statement is to provide a custom implementation of .__setitem__() in your class. You’ll use this method in classes representing mutable data collections, such as custom list-like or dictionary-like classes.

As an example, say that you need to create a dictionary-like class that stores its keys in lowercase letters:

In this example, you create a dictionary-like class by subclassing UserDict from collections . Your class implements a .__setitem__() method, which takes key and value as arguments. The method uses str.lower() to convert key into lowercase letters before storing it in the underlying dictionary.

Python implicitly calls .__setitem__() every time you use a key as the left operand in an assignment statement. This behavior allows you to tweak how you process the assignment of keys in your custom dictionary.

Implicit Assignments in Python

Python implicitly runs assignments in many different contexts. In most cases, these implicit assignments are part of the language syntax. In other cases, they support specific behaviors.

Whenever you complete an action in the following list, Python runs an implicit assignment for you:

  • Define or call a function
  • Define or instantiate a class
  • Use the current instance , self
  • Import modules and objects
  • Use a decorator
  • Use the control variable in a for loop or a comprehension
  • Use the as qualifier in with statements , imports, and try … except blocks
  • Access the _ special variable in an interactive session

Behind the scenes, Python performs an assignment in every one of the above situations. In the following subsections, you’ll take a tour of all these situations.

When you define a function, the def keyword implicitly assigns a function object to your function’s name. Here’s an example:

From this point on, the name greet refers to a function object that lives at a given memory address in your computer. You can call the function using its name and a pair of parentheses with appropriate arguments. This way, you can reuse greet() wherever you need it.

If you call your greet() function with fellow as an argument, then Python implicitly assigns the input argument value to the name parameter on the function’s definition. The parameter will hold a reference to the input arguments.

When you define a class with the class keyword, you’re assigning a specific name to a class object . You can later use this name to create instances of that class. Consider the following example:

In this example, the name User holds a reference to a class object, which was defined in __main__.User . Like with a function, when you call the class’s constructor with the appropriate arguments to create an instance, Python assigns the arguments to the parameters defined in the class initializer .

Another example of implicit assignments is the current instance of a class, which in Python is called self by convention. This name implicitly gets a reference to the current object whenever you instantiate a class. Thanks to this implicit assignment, you can access .name and .job from within the class without getting a NameError in your code.

Import statements are another variant of implicit assignments in Python. Through an import statement, you assign a name to a module object, class, function, or any other imported object. This name is then created in your current namespace so that you can access it later in your code:

In this example, you import the sys module object from the standard library and assign it to the sys name, which is now available in your namespace, as you can conclude from the second call to the built-in dir() function.

You also run an implicit assignment when you use a decorator in your code. The decorator syntax is just a shortcut for a formal assignment like the following:

Here, you call decorator() with a function object as an argument. This call will typically add functionality on top of the existing function, func() , and return a function object, which is then reassigned to the func name.

The decorator syntax is syntactic sugar for replacing the previous assignment, which you can now write as follows:

Even though this new code looks pretty different from the above assignment, the code implicitly runs the same steps.

Another situation in which Python automatically runs an implicit assignment is when you use a for loop or a comprehension. In both cases, you can have one or more control variables that you then use in the loop or comprehension body:

The memory address of control_variable changes on each iteration of the loop. This is because Python internally reassigns a new value from the loop iterable to the loop control variable on each cycle.

The same behavior appears in comprehensions:

In the end, comprehensions work like for loops but use a more concise syntax. This comprehension creates a new list of strings that mimic the output from the previous example.

The as keyword in with statements, except clauses, and import statements is another example of an implicit assignment in Python. This time, the assignment isn’t completely implicit because the as keyword provides an explicit way to define the target variable.

In a with statement, the target variable that follows the as keyword will hold a reference to the context manager that you’re working with. As an example, say that you have a hello.txt file with the following content:

You want to open this file and print each of its lines on your screen. In this case, you can use the with statement to open the file using the built-in open() function.

In the example below, you accomplish this. You also add some calls to print() that display information about the target variable defined by the as keyword:

This with statement uses the open() function to open hello.txt . The open() function is a context manager that returns a text file object represented by an io.TextIOWrapper instance.

Since you’ve defined a hello target variable with the as keyword, now that variable holds a reference to the file object itself. You confirm this by printing the object and its memory address. Finally, the for loop iterates over the lines and prints this content to the screen.

When it comes to using the as keyword in the context of an except clause, the target variable will contain an exception object if any exception occurs:

In this example, you run a division that raises a ZeroDivisionError . The as keyword assigns the raised exception to error . Note that when you print the exception object, you get only the message because exceptions have a custom .__str__() method that supports this behavior.

There’s a final detail to remember when using the as specifier in a try … except block like the one in the above example. Once you leave the except block, the target variable goes out of scope , and you can’t use it anymore.

Finally, Python’s import statements also support the as keyword. In this context, you can use as to import objects with a different name:

In these examples, you use the as keyword to import the numpy package with the np name and pandas with the name pd . If you call dir() , then you’ll realize that np and pd are now in your namespace. However, the numpy and pandas names are not.

Using the as keyword in your imports comes in handy when you want to use shorter names for your objects or when you need to use different objects that originally had the same name in your code. It’s also useful when you want to make your imported names non-public using a leading underscore, like in import sys as _sys .

The final implicit assignment that you’ll learn about in this tutorial only occurs when you’re using Python in an interactive session. Every time you run a statement that returns a value, the interpreter stores the result in a special variable denoted by a single underscore character ( _ ).

You can access this special variable as you’d access any other variable:

These examples cover several situations in which Python internally uses the _ variable. The first two examples evaluate expressions. Expressions always have a return value, which is automatically assigned to the _ variable every time.

When it comes to function calls, note that if your function returns a fruitful value, then _ will hold it. In contrast, if your function returns None , then the _ variable will remain untouched.

The next example consists of a regular assignment statement. As you already know, regular assignments don’t return any value, so the _ variable isn’t updated after these statements run. Finally, note that accessing a variable in an interactive session returns the value stored in the target variable. This value is then assigned to the _ variable.

Note that since _ is a regular variable, you can use it in other expressions:

In this example, you first create a list of values. Then you call len() to get the number of values in the list. Python automatically stores this value in the _ variable. Finally, you use _ to compute the mean of your list of values.

Now that you’ve learned about some of the implicit assignments that Python runs under the hood, it’s time to dig into a final assignment-related topic. In the following few sections, you’ll learn about some illegal and dangerous assignments that you should be aware of and avoid in your code.

Illegal and Dangerous Assignments in Python

In Python, you’ll find a few situations in which using assignments is either forbidden or dangerous. You must be aware of these special situations and try to avoid them in your code.

In the following sections, you’ll learn when using assignment statements isn’t allowed in Python. You’ll also learn about some situations in which using assignments should be avoided if you want to keep your code consistent and robust.

You can’t use Python keywords as variable names in assignment statements. This kind of assignment is explicitly forbidden. If you try to use a keyword as a variable name in an assignment, then you get a SyntaxError :

Whenever you try to use a keyword as the left operand in an assignment statement, you get a SyntaxError . Keywords are an intrinsic part of the language and can’t be overridden.

If you ever feel the need to name one of your variables using a Python keyword, then you can append an underscore to the name of your variable:

In this example, you’re using the desired name for your variables. Because you added a final underscore to the names, Python doesn’t recognize them as keywords, so it doesn’t raise an error.

Note: Even though adding an underscore at the end of a name is an officially recommended practice , it can be confusing sometimes. Therefore, try to find an alternative name or use a synonym whenever you find yourself using this convention.

For example, you can write something like this:

In this example, using the name booking_class for your variable is way clearer and more descriptive than using class_ .

You’ll also find that you can use only a few keywords as part of the right operand in an assignment statement. Those keywords will generally define simple statements that return a value or object. These include lambda , and , or , not , True , False , None , in , and is . You can also use the for keyword when it’s part of a comprehension and the if keyword when it’s used as part of a ternary operator .

In an assignment, you can never use a compound statement as the right operand. Compound statements are those that require an indented block, such as for and while loops, conditionals, with statements, try … except blocks, and class or function definitions.

Sometimes, you need to name variables, but the desired or ideal name is already taken and used as a built-in name. If this is your case, think harder and find another name. Don’t shadow the built-in.

Shadowing built-in names can cause hard-to-identify problems in your code. A common example of this issue is using list or dict to name user-defined variables. In this case, you override the corresponding built-in names, which won’t work as expected if you use them later in your code.

Consider the following example:

The exception in this example may sound surprising. How come you can’t use list() to build a list from a call to map() that returns a generator of square numbers?

By using the name list to identify your list of numbers, you shadowed the built-in list name. Now that name points to a list object rather than the built-in class. List objects aren’t callable, so your code no longer works.

In Python, you’ll have nothing that warns against using built-in, standard-library, or even relevant third-party names to identify your own variables. Therefore, you should keep an eye out for this practice. It can be a source of hard-to-debug errors.

In programming, a constant refers to a name associated with a value that never changes during a program’s execution. Unlike other programming languages, Python doesn’t have a dedicated syntax for defining constants. This fact implies that Python doesn’t have constants in the strict sense of the word.

Python only has variables. If you need a constant in Python, then you’ll have to define a variable and guarantee that it won’t change during your code’s execution. To do that, you must avoid using that variable as the left operand in an assignment statement.

To tell other Python programmers that a given variable should be treated as a constant, you must write your variable’s name in capital letters with underscores separating the words. This naming convention has been adopted by the Python community and is a recommendation that you’ll find in the Constants section of PEP 8 .

In the following examples, you define some constants in Python:

The problem with these constants is that they’re actually variables. Nothing prevents you from changing their value during your code’s execution. So, at any time, you can do something like the following:

These assignments modify the value of two of your original constants. Python doesn’t complain about these changes, which can cause issues later in your code. As a Python developer, you must guarantee that named constants in your code remain constant.

The only way to do that is never to use named constants in an assignment statement other than the constant definition.

You’ve learned a lot about Python’s assignment operators and how to use them for writing assignment statements . With this type of statement, you can create, initialize, and update variables according to your needs. Now you have the required skills to fully manage the creation and mutation of variables in your Python code.

In this tutorial, you’ve learned how to:

  • Write assignment statements using Python’s assignment operators
  • Work with augmented assignments in Python
  • Explore assignment variants, like assignment expression and managed attributes
  • Identify illegal and dangerous assignments in Python

Learning about the Python assignment operator and how to use it in assignment statements is a fundamental skill in Python. It empowers you to write reliable and effective Python code.

🐍 Python Tricks 💌

Get a short & sweet Python Trick delivered to your inbox every couple of days. No spam ever. Unsubscribe any time. Curated by the Real Python team.

Python Tricks Dictionary Merge

About Leodanis Pozo Ramos

Leodanis Pozo Ramos

Leodanis is an industrial engineer who loves Python and software development. He's a self-taught Python developer with 6+ years of experience. He's an avid technical writer with a growing number of articles published on Real Python and other sites.

Each tutorial at Real Python is created by a team of developers so that it meets our high quality standards. The team members who worked on this tutorial are:

Aldren Santos

Master Real-World Python Skills With Unlimited Access to Real Python

Join us and get access to thousands of tutorials, hands-on video courses, and a community of expert Pythonistas:

Join us and get access to thousands of tutorials, hands-on video courses, and a community of expert Pythonistas:

What Do You Think?

What’s your #1 takeaway or favorite thing you learned? How are you going to put your newfound skills to use? Leave a comment below and let us know.

Commenting Tips: The most useful comments are those written with the goal of learning from or helping out other students. Get tips for asking good questions and get answers to common questions in our support portal . Looking for a real-time conversation? Visit the Real Python Community Chat or join the next “Office Hours” Live Q&A Session . Happy Pythoning!

Keep Learning

Related Topics: intermediate best-practices python

Keep reading Real Python by creating a free account or signing in:

Already have an account? Sign-In

Almost there! Complete this form and click the button below to gain instant access:

Python's Assignment Operator: Write Robust Assignments (Source Code)

🔒 No spam. We take your privacy seriously.

assignment statement for computer

Logo for Rebus Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Kenneth Leroy Busbee

An assignment statement sets and/or re-sets the value stored in the storage location(s) denoted by a variable name; in other words, it copies a value into the variable. [1]

The assignment operator allows us to change the value of a modifiable data object (for beginning programmers this typically means a variable). It is associated with the concept of moving a value into the storage location (again usually a variable). Within most programming languages the symbol used for assignment is the equal symbol. But bite your tongue, when you see the = symbol you need to start thinking: assignment. The assignment operator has two operands. The one to the left of the operator is usually an identifier name for a variable. The one to the right of the operator is a value.

Simple Assignment

The value 21 is moved to the memory location for the variable named: age. Another way to say it: age is assigned the value 21.

Assignment with an Expression

The item to the right of the assignment operator is an expression. The expression will be evaluated and the answer is 14. The value 14 would be assigned to the variable named: total_cousins.

Assignment with Identifier Names in the Expression

The expression to the right of the assignment operator contains some identifier names. The program would fetch the values stored in those variables; add them together and get a value of 44; then assign the 44 to the total_students variable.

  • cnx.org: Programming Fundamentals – A Modular Structured Approach using C++
  • Wikipedia: Assignment (computer science) ↵

Programming Fundamentals Copyright © 2018 by Kenneth Leroy Busbee is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

CS101: Introduction to Computer Science I

assignment statement for computer

Variables and Assignment Statements

Read this chapter, which covers variables and arithmetic operations and order precedence in Java.

9. Assignment Statements

No. The incorrect splittings are highlighted in red:

Assignment Statement

public class AssignmentExample
{
public static void main ( String[] args )
{
long payAmount ; // payAmount is declared without an initial value payAmount = 123; // an assignment statement
System.out.println("The variable contains: " + payAmount );
}
}

So far, the example programs have been using the value initially put into a variable. Programs can change the value in a variable. An  assignment statement  changes the value that is held in a variable. The program uses an assignment statement.

The assignment statement puts the value 123 into the variable. In other words, while the program is executing there will be a 64 bit section of memory that holds the value 123.

Remember that the word "execute" is often used to mean "run". You speak of "executing a program" or "executing" a line of the program.

Question 10:

assignment statement for computer

  • Table of Contents
  • Course Home
  • Assignments
  • Peer Instruction (Instructor)
  • Peer Instruction (Student)
  • Change Course
  • Instructor's Page
  • Progress Page
  • Edit Profile
  • Change Password
  • Scratch ActiveCode
  • Scratch Activecode
  • Instructors Guide
  • About Runestone
  • Report A Problem
  • 1.1 Getting Started
  • 1.1.1 Preface
  • 1.1.2 About the AP CSA Exam
  • 1.1.3 Transitioning from AP CSP to AP CSA
  • 1.1.4 Java Development Environments
  • 1.1.5 Growth Mindset and Pair Programming
  • 1.1.6 Pretest for the AP CSA Exam
  • 1.1.7 Survey
  • 1.2 Why Programming? Why Java?
  • 1.3 Variables and Data Types
  • 1.4 Expressions and Assignment Statements
  • 1.5 Compound Assignment Operators
  • 1.6 Casting and Ranges of Values
  • 1.7 Unit 1 Summary
  • 1.8 Mixed Up Code Practice
  • 1.9 Toggle Mixed Up or Write Code Practice
  • 1.10 Coding Practice
  • 1.11 Multiple Choice Exercises
  • 1.12 Method Signatures (preview 2026 curriculum)
  • 1.13 Calling Class Methods (preview 2026 curriculum)
  • 1.3. Variables and Data Types" data-toggle="tooltip">
  • 1.5. Compound Assignment Operators' data-toggle="tooltip" >

Before you keep reading...

Runestone Academy can only continue if we get support from individuals like you. As a student you are well aware of the high cost of textbooks. Our mission is to provide great books to you for free, but we ask that you consider a $10 donation, more if you can or less if $10 is a burden.

Making great stuff takes time and $$. If you appreciate the book you are reading now and want to keep quality materials free for other students please consider a donation to Runestone Academy. We ask that you consider a $10 donation, but if you can give more thats great, if $10 is too much for your budget we would be happy with whatever you can afford as a show of support.

Time estimate: 90 min.

1.4. Expressions and Assignment Statements ¶

In this lesson, you will learn about assignment statements and expressions that contain math operators and variables.

1.4.1. Assignment Statements ¶

Assignment statements initialize or change the value stored in a variable using the assignment operator = . An assignment statement always has a single variable on the left hand side. The value of the expression (which can contain math operators and other variables) on the right of the = sign is stored in the variable on the left.

../_images/assignment.png

Figure 1: Assignment Statement (variable = expression;) ¶

Instead of saying equals for the = in an assignment statement, say “gets” or “is assigned” to remember that the variable gets or is assigned the value on the right. In the figure above score is assigned the value of the expression 10 times points (which is another variable) plus 5.

The following video by Dr. Colleen Lewis shows how variables can change values in memory using assignment statements.

As we saw in the video, we can set one variable’s value to a copy of the value of another variable like y = x; . This won’t change the value of the variable that you are copying from.

Let’s step through the following code in the Java visualizer to see the values in memory. Click on the Next button at the bottom of the code to see how the values of the variables change. You can run the visualizer on any Active Code in this e-book by just clicking on the Code Lens button at the top of each Active Code.

Activity: CodeLens 1.4.1.2 (asgnviz1)

exercise

1-4-3: What are the values of x, y, and z after the following code executes? You can step through this code by clicking on this Java visualizer link.

  • x = 0, y = 1, z = 2
  • These are the initial values in the variable, but the values are changed.
  • x = 1, y = 2, z = 3
  • x changes to y's initial value, y's value is doubled, and z is set to 3
  • x = 2, y = 2, z = 3
  • Remember that the equal sign doesn't mean that the two sides are equal. It sets the value for the variable on the left to the value from evaluating the right side.
  • x = 0, y = 0, z = 3

The following has the correct code to ‘swap’ the values in x and y (so that x ends up with y’s initial value and y ends up with x’s initial value), but the code is mixed up and contains one extra block which is not needed in a correct solution. Drag the needed blocks from the left into the correct order on the right. Check your solution by clicking on the Check button. You will be told if any of the blocks are in the wrong order or if you need to remove one or more blocks. After three incorrect attempts you will be able to use the Help Me button to make the problem easier.

1.4.2. Adding 1 to a Variable ¶

If you use a variable to keep score, you would probably increment it (add one to the current value) whenever score should go up. You can do this by setting the variable to the current value of the variable plus one ( score = score + 1 ) as shown below. The formula would look strange in math class, but it makes sense in coding because it is assigning a new value to the variable on the left that comes from evaluating the arithmetic expression on the right. So, the score variable is set to the previous value of score plus 1.

Try the code below to see how score is incremented by 1. Try substituting 2 instead of 1 to see what happens.

1.4.3. Input with Variables ¶

Variables are a powerful abstraction in programming because the same algorithm can be used with different input values saved in variables. The code below using the Scanner class will say hello to anyone who types in their name and will have different results for different name values. First, type in your name below the code and then click on run. Try again with a friend’s name. The code works for any name: behold, the power of variables!

The code below will say hello to anyone who types in their name. Type in your name below the code and then click on run. Try again with a friend’s name.

Although you will not be tested in the AP CSA exam on using the Java input or the Scanner or Console classes, learning how to do input in Java is very useful and fun. For more information on using the Scanner class, go to https://www.w3schools.com/java/java_user_input.asp , and for the newer Console class, https://howtodoinjava.com/java-examples/console-input-output/ . We are limited with the one way communication with the Java server in this Runestone ebook, but in most IDEs like replit, the input/output would be more interactive. Here are some examples in replit for Java Scanner Input Repl using the Scanner class and Java Console Input Repl using the Console class that you can try out.

1.4.4. Operators ¶

Java uses the standard mathematical operators for addition ( + ), subtraction ( - ), and division ( / ). The multiplication operator is written as * , as it is in most programming languages, since the character sets used until relatively recently didn’t have a character for a real multiplication sign, × , and keyboards still don’t have a key for it. Likewise no ÷ .

You may be used to using ^ for exponentiation, either from a graphing calculator or tools like Desmos. Confusingly ^ is an operator in Java, but it has a completely different meaning than exponentiation and isn’t even exactly an arithmetic operator. You will learn how to use the Math.pow method to do exponents in Unit 2.

Arithmetic expressions can be of type int or double . An arithmetic expression consisting only of int values will evaluate to an int value. An arithmetic expression that uses at least one double value will evaluate to a double value. (You may have noticed that + was also used to combine String and other values into new String s. More on this when we talk about String s more fully in Unit 2.)

Java uses the operator == to test if the value on the left is equal to the value on the right and != to test if two items are not equal. Don’t get one equal sign = confused with two equal signs == . They mean very different things in Java. One equal sign is used to assign a value to a variable. Two equal signs are used to test a variable to see if it is a certain value and that returns true or false as you’ll see below. Also note that using == and != with double values can produce surprising results. Because double values are only an approximation of the real numbers even things that should be mathematically equivalent might not be represented by the exactly same double value and thus will not be == . To see this for yourself, write a line of code below to print the value of the expression 0.3 == 0.1 + 0.2 ; it will be false !

coding exercise

Run the code below to see all the operators in action. Do all of those operators do what you expected? What about 2 / 3? Isn’t it surprising that it prints 0? See the note below about truncating division with integers. Change the code to make it print the decimal part of the division too. You can do this by making at least one of the numbers a double like 2.0.

When Java sees you doing integer division (or any operation with integers) it assumes you want an integer result so it throws away anything after the decimal point in the answer. This is called truncating division . If you need a double answer, you should make at least one of the values in the expression a double like 2.0.

With division, another thing to watch out for is dividing by 0. An attempt to divide an integer by zero will result in an ArithmeticException error message. Try it in one of the active code windows above.

Operators can be used to create compound expressions with more than one operator. You can either use a literal value which is a fixed value like 2, or variables in them. When compound expressions are evaluated, operator precedence rules are used, just like when we do math (remember PEMDAS?), so that * , / , and % are done before + and - . However, anything in parentheses is done first. It doesn’t hurt to put in extra parentheses if you are unsure as to what will be done first or just to make it more clear.

In the example below, try to guess what it will print out and then run it to see if you are right. Remember to consider operator precedence . How do the parentheses change the precedence?

1.4.5. The Remainder Operator ¶

The operator % in Java is the remainder operator. Like the other arithmetic operators is takes two operands. Mathematically it returns the remainder after dividing the first number by the second, using truncating integer division. For instance, 5 % 2 evaluates to 1 since 2 goes into 5 two times with a remainder of 1.

While you may not have heard of remainder as an operator, think back to elementary school math. Remember when you first learned long division, before they taught you about decimals, how when you did a long division that didn’t divide evenly, you gave the answer as the number of even divisions and the remainder. That remainder is what is returned by this operator. In the figures below, the remainders are the same values that would be returned by 2 % 3 and 5 % 2 .

../_images/mod-py.png

Figure 1: Long division showing the integer result and the remainder ¶

Sometimes people—including Professor Lewis in the next video—will call % the modulo , or mod , operator. That is not actually correct though the difference between remainder and modulo, which uses Euclidean division instead of truncating integer division, only matters when negative operands are involved and the signs of the operands differ. With positive operands, remainder and mod give the same results. Java does have a method Math.floorMod in the Math class if you need to use modulo instead of remainder, but % is all you need in the AP exam.

Here’s the video .

In the example below, try to guess what it will print out and then run it to see if you are right.

The result of x % y when x is smaller than y is always x. The value y can’t go into x at all (goes in 0 times), since x is smaller than y, so the result is just x. So if you see 2 % 3 the result is 2.

1-4-11: What is the result of 158 % 10?

  • This would be the result of 158 divided by 10. % gives you the remainder.
  • % gives you the remainder after the division.
  • When you divide 158 by 10 you get a remainder of 8.

1-4-12: What is the result of 3 % 8?

  • 8 goes into 3 no times so the remainder is 3. The remainder of a smaller number divided by a larger number is always the smaller number!
  • This would be the remainder if the question was 8 % 3 but here we are asking for the reminder after we divide 3 by 8.
  • What is the remainder after you divide 3 by 8?

1.4.6. Programming Challenge : Dog Years ¶

dog

In this programming challenge, you will calculate your age, and your pet’s age from your birthdates, and your pet’s age in dog years. In the code below, type in the current year, the year you were born, the year your dog or cat was born (if you don’t have one, make one up!) in the variables below. Then write formulas in assignment statements to calculate how old you are, how old your dog or cat is, and how old they are in dog years which is 7 times a human year. Finally, print it all out. If you are pair programming, switch drivers (who has control of the keyboard in pair programming) after every line of code.

Calculate your age and your pet’s age from the birthdates, and then your pet’s age in dog years.

Your teacher may suggest that you use a Java IDE like replit.com for this challenge so that you can use input to get these values using the Scanner class . Here is a repl template that you can use to get started if you want to try the challenge with input.

1.4.7. Summary ¶

Arithmetic expressions include expressions of type int and double .

The arithmetic operators consist of + , - , * , / , and % also known as addition, subtraction, multiplication, division, and remainder.

An arithmetic operation that uses two int values will evaluate to an int value. With integer division, any decimal part in the result will be thrown away.

An arithmetic operation that uses at least one double value will evaluate to a double value.

Operators can be used to construct compound expressions.

During evaluation, operands are associated with operators according to operator precedence to determine how they are grouped. ( * , / , % have precedence over + and - , unless parentheses are used to group those.)

An attempt to divide an integer by zero will result in an ArithmeticException .

The assignment operator ( = ) allows a program to initialize or change the value stored in a variable. The value of the expression on the right is stored in the variable on the left.

During execution, expressions are evaluated to produce a single value.

The value of an expression has a type based on the types of the values and operators used in the expression.

1.4.8. AP Practice ¶

The following is a 2019 AP CSA sample question.

1-4-14: Consider the following code segment.

What is printed when the code segment is executed?

  • 0.666666666666667
  • Don't forget that division and multiplication will be done first due to operator precedence.
  • Yes, this is equivalent to (5 + ((a/b)*c) - 1).
  • Don't forget that division and multiplication will be done first due to operator precedence, and that an int/int gives an int truncated result where everything to the right of the decimal point is dropped.
  • Structured Problem Solving
  • Assignment Statement
  • Edit on GitHub

Assignment Statement ¶

Programs can have many variables. Usually information is gathered from the user, stored in a variable, processed with other variables, saved back to one/some variable(s) and then returned to the user. Variables are changed or initially assigned a value by the use of an assignment statement . Assignment statements are usually read in reverse order from what we are use to in math class. A variable on the left side of the assignment statement will receive the value that is on the right hand side of the assignment statement. Note that different programming languages use different symbols to represent the assignment statement (for example in Alpha it is” ←”, in Pascal it is” :=”). No matter what the symbol is, you always read it as, “is assigned”. This is particularly important in many languages where the assignment symbol is an equal sign ( = ) and people are use to reading this as “is equal to”. In many of these language when you actually want to check for “equality” you then use (==).

Here are a few examples of assignment statements:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 // Copyright (c) 2020 Mr. Coxall All rights reserved. // // Created by: Mr. Coxall // Created on: Sep 2020 // This program shows assingment statements #include <stdio.h> #include <string.h> int main () { // variable definition int numberOfStudents = 2 ; float width = 32.5F ; float length = 10.0F ; float areaOfRectangle = 0 ; char someWords1 [] = "Hello" ; char someWords2 [] = "World!" ; char helloWorld [ 13 ] = "" ; // using assignment statements numberOfStudents = numberOfStudents + 5 ; areaOfRectangle = length * width ; strcat ( helloWorld , someWords1 ); strcat ( helloWorld , ", " ); strcat ( helloWorld , someWords2 ); // output printf ( "The number of students is: %d \n " , numberOfStudents ); printf ( "The area of a rectangle is: %.2f cm² \n " , areaOfRectangle ); printf ( "%s \n " , helloWorld ); printf ( " \n Done. \n " ); return 0 ; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 // Copyright (c) 2020 Mr. Coxall All rights reserved. // // Created by: Mr. Coxall // Created on: Sep 2020 // This program shows assingment statements #include <iostream> int main () { // variable definition int numberOfStudents = 2 ; float width = 32.5F ; float length = 10.0F ; float areaOfRectangle = 0 ; std :: string someWords1 = "Hello" ; std :: string someWords2 = "World!" ; std :: string helloWorld = "" ; // using assignment statements numberOfStudents = numberOfStudents + 5 ; areaOfRectangle = length * width ; helloWorld = someWords1 + ", " + someWords2 ; // output std :: cout << "The number of students is: " << numberOfStudents << std :: endl ; std :: cout << "The area of a rectangle is: " << areaOfRectangle << " cm²" << std :: endl ; std :: cout << helloWorld << std :: endl ; std :: cout << " \n Done." << std :: endl ; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 /* Created by: Mr. Coxall * Created on: Sep 2020 * This program shows assingment statements */ using System ; /* * The Program class * Contains all methods for performing basic variable usage */ class Program { public static void Main ( string [] args ) { // variable definition int numberOfStudents = 2 ; float width = 32.5F ; float length = 10.0F ; float areaOfRectangle = 0F ; string someWords1 = "Hello" ; string someWords2 = "World!" ; string helloWorld = null ; // using assignment statements numberOfStudents = numberOfStudents + 5 ; areaOfRectangle = length * width ; helloWorld = someWords1 + ", " + someWords2 ; // output Console . WriteLine ( "The number of students is: " + numberOfStudents ); Console . WriteLine ( "The area of a rectangle is: " + areaOfRectangle + " cm²" ); Console . WriteLine ( helloWorld ); Console . WriteLine ( "\nDone." ); } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 /** * Created by: Mr. Coxall * Created on: Sep 2020 * This program shows assingment statements */ package main import "fmt" func main () { // variable definition numberOfStudents := 2 width := 32.5 length := 10.0 someWords1 := "Hello" someWords2 := "World!" // using assignment statements numberOfStudents += 5 areaOfRectangle := length * width helloWorld := someWords1 + ", " + someWords2 // output fmt . Println ( "The number of students is:" , numberOfStudents ) fmt . Println ( "The area of a rectangle is:" , areaOfRectangle , "cm²" ) fmt . Println ( helloWorld ) fmt . Println ( "\nDone." ) }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 /* * This program program shows assingment statements * * @author Mr Coxall * @version 1.0 * @since 2020-09-01 */ final class Main { private Main () { // Prevent instantiation // Optional: throw an exception e.g. AssertionError // if this ever *is* called throw new IllegalStateException ( "Cannot be instantiated" ); } /** Constant number TWO. */ private static final int TWO = 2 ; /** Constant number THIRTY_TWO_POINT_FIVE. */ private static final float THIRTY_TWO_POINT_FIVE = 32.5F ; /** Constant number TEN. */ private static final float TEN = 10.0F ; /** Constant number FIVE. */ private static final int FIVE = 5 ; /** * Main entry point into program. * * @param args nothing passed in */ public static void main ( final String [] args ) { // variable definition int numberOfStudents = TWO ; float width = THIRTY_TWO_POINT_FIVE ; float length = TEN ; float areaOfRectangle = 0F ; String someWords1 = "Hello" ; String someWords2 = "World!" ; String helloWorld = null ; // using assignment statements numberOfStudents = numberOfStudents + FIVE ; areaOfRectangle = length * width ; helloWorld = someWords1 + ", " + someWords2 ; // output System . out . println ( "The number of students is: " + numberOfStudents ); System . out . println ( "The area of a rectangle is: " + areaOfRectangle + " cm²" ); System . out . println ( helloWorld ); System . out . println ( "\nDone." ); } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 /* Created by: Mr. Coxall * Created on: Sep 2020 * This program shows assingment statements */ // variable definition numberOfStudents = 2 width = 32.5 length = 10.0 someWords1 = "Hello" someWords2 = "World!" // using assignment statements numberOfStudents = numberOfStudents + 5 areaOfRectangle = length * width helloWorld = someWords1 + ", " + someWords2 // output console . log ( "The number of students is: " + numberOfStudents ) console . log ( "The area of a rectangle is: " + areaOfRectangle + " cm²" ) console . log ( helloWorld ) console . log ( "\nDone." )
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 #!/usr/bin/env python3 """ Created by: Mr. Coxall Created on: Sep 2020 This module shows using the assignment statement """ def main () -> None : """The main() function shows variable definition, returns None.""" number_of_students = 2 width = 32.5 length = 10.0 some_words1 = "Hello" some_words2 = "World!" # using assignment statements number_of_students = number_of_students + 5 area_of_rectangle = length * width hello_world = some_words1 + ", " + some_words2 # output print ( "The number of students is: " + str ( number_of_students )) print ( "The area of a rectangle is: " + str ( area_of_rectangle ) + " cm²" ) print ( hello_world ) print ( " \n Done." ) if __name__ == "__main__" : main ()

Example Output ¶

  • Stack Overflow for Teams Where developers & technologists share private knowledge with coworkers
  • Advertising & Talent Reach devs & technologists worldwide about your product, service or employer brand
  • OverflowAI GenAI features for Teams
  • OverflowAPI Train & fine-tune LLMs
  • Labs The future of collective knowledge sharing
  • About the company Visit the blog

Collectives™ on Stack Overflow

Find centralized, trusted content and collaborate around the technologies you use most.

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

Get early access and see previews of new features.

Difference between declaration statement and assignment statement in C? [duplicate]

I am new to programming and trying to learn C. I am reading a book where I read about these statements but could not understand their meaning.

Saro Taşciyan's user avatar

2 Answers 2

Declaration:

Assignment:

Declaration and assignment in one statement:

Declaration says, "I'm going to use a variable named " a " to store an integer value." Assignment says, "Put the value 3 into the variable a ."

(As @delnan points out, my last example is technically initialization , since you're specifying what value the variable starts with, rather than changing the value. Initialization has special syntax that also supports specifying the contents of a struct or array.)

Russell Zahniser's user avatar

  • 6 The third isn't an assignment. It's initalization. –  user395760 Commented Apr 22, 2014 at 18:33
  • 6 It matters in C insofar you can do things in initialization that you can't do in assignment. For example int a[2] = {}; works but int a[2]; a = {}; doesn't. –  user395760 Commented Apr 22, 2014 at 18:41

Declaring a variable sets it up to be used at a later point in the code. You can create variables to hold numbers, characters, strings (an array of characters), etc.

You can declare a variable without giving it a value. But, until a variable has a value, it's not very useful.

You declare a variable like so: char myChar; NOTE: This variable is not initialized.

Once a variable is declared, you can assign a value to it, like: myChar = 'a'; NOTE: Assigning a value to myChar initializes the variable.

To make things easier, if you know what a variable should be when you declare it, you can simply declare it and assign it a value in one statement: char myChar = 'a'; NOTE: This declares and initializes the variable.

So, once your myChar variable has been given a value, you can then use it in your code elsewhere. Example:

This prints the value of myChar and myOtherChar to stdout (the console), and looks like:

If you had declared char myChar; without assigning it a value, and then attempted to print myChar to stdout, you would receive an error telling you that myChar has not been initialized.

Aaron St. Clair's user avatar

  • You mostly describe the difference between declaring a variable and not initializing it vs. declaring a variable and initializing it. –  user395760 Commented Apr 22, 2014 at 18:42

Not the answer you're looking for? Browse other questions tagged c difference or ask your own question .

  • The Overflow Blog
  • Where does Postgres fit in a world of GenAI and vector databases?
  • Mobile Observability: monitoring performance through cracked screens, old...
  • Featured on Meta
  • Announcing a change to the data-dump process
  • Bringing clarity to status tag usage on meta sites
  • What does a new user need in a homepage experience on Stack Overflow?
  • Staging Ground Reviewer Motivation
  • Feedback requested: How do you use tag hover descriptions for curating and do...

Hot Network Questions

  • Whence “uniform distribution”?
  • Whatever happened to Chessmaster?
  • What explanations can be offered for the extreme see-sawing in Montana's senate race polling?
  • How did Oswald Mosley escape treason charges?
  • Why did the Fallschirmjäger have such terrible parachutes?
  • Why is there no article after 'by'?
  • Why does flow separation cause an increase in pressure drag?
  • What are some refutations to the etymological fallacy?
  • TikZ -- Best strategy to choose points for the Hobby algorithm
  • How to remove obligation to run as administrator in Windows?
  • All stationary martingales are constant?
  • How is it possible to know a proposed perpetual motion machine won't work without even looking at it?
  • How do we reconcile the story of the woman caught in adultery in John 8 and the man stoned for picking up sticks on Sabbath in Numbers 15?
  • Displaying a text in the center of the page
  • Parody of Fables About Authenticity
  • How to disable Google Lens in search when using Google Chrome?
  • Where does the energy in ion propulsion come from?
  • How can moral disagreements be resolved when the conflicting parties are guided by fundamentally different value systems?
  • Does the order of ingredients while cooking matter to an extent that it changes the overall taste of the food?
  • How is message waiting conveyed to home POTS phone
  • Why was this lighting fixture smoking? What do I do about it?
  • Took a pic of old school friend in the 80s who is now quite famous and written a huge selling memoir. Pic has ben used in book without permission
  • Is it possible to accurately describe something without describing the rest of the universe?
  • Maximizing the common value of both sides of an equation

assignment statement for computer

  • C Data Types
  • C Operators
  • C Input and Output
  • C Control Flow
  • C Functions
  • C Preprocessors
  • C File Handling
  • C Cheatsheet
  • C Interview Questions

Assignment Operators in C

assignment statement for computer

Assignment operators are used for assigning value to a variable. The left side operand of the assignment operator is a variable and right side operand of the assignment operator is a value. The value on the right side must be of the same data-type of the variable on the left side otherwise the compiler will raise an error.

Different types of assignment operators are shown below:

1. “=”: This is the simplest assignment operator. This operator is used to assign the value on the right to the variable on the left. Example:

2. “+=” : This operator is combination of ‘+’ and ‘=’ operators. This operator first adds the current value of the variable on left to the value on the right and then assigns the result to the variable on the left. Example:

If initially value stored in a is 5. Then (a += 6) = 11.

3. “-=” This operator is combination of ‘-‘ and ‘=’ operators. This operator first subtracts the value on the right from the current value of the variable on left and then assigns the result to the variable on the left. Example:

If initially value stored in a is 8. Then (a -= 6) = 2.

4. “*=” This operator is combination of ‘*’ and ‘=’ operators. This operator first multiplies the current value of the variable on left to the value on the right and then assigns the result to the variable on the left. Example:

If initially value stored in a is 5. Then (a *= 6) = 30.

5. “/=” This operator is combination of ‘/’ and ‘=’ operators. This operator first divides the current value of the variable on left by the value on the right and then assigns the result to the variable on the left. Example:

If initially value stored in a is 6. Then (a /= 2) = 3.

Below example illustrates the various Assignment Operators:

Please Login to comment...

Similar reads.

  • C-Operators
  • cpp-operator
  • California Lawmakers Pass Bill to Limit AI Replicas
  • Best 10 IPTV Service Providers in Germany
  • Python 3.13 Releases | Enhanced REPL for Developers
  • IPTV Anbieter in Deutschland - Top IPTV Anbieter Abonnements
  • Content Improvement League 2024: From Good To A Great Article

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Browse Course Material

Course info, instructors.

  • Prof. Eric Grimson
  • Prof. John Guttag

Departments

  • Electrical Engineering and Computer Science

As Taught In

  • Programming Languages

Introduction to Computer Science and Programming

Assignments.

facebook

You are leaving MIT OpenCourseWare

IMAGES

  1. The Assignment Statement.pdf

    assignment statement for computer

  2. How to make assignment in MS Word

    assignment statement for computer

  3. Computer|constant|assignment statement

    assignment statement for computer

  4. Computer Assignment

    assignment statement for computer

  5. Method Statement Templates

    assignment statement for computer

  6. Computer Science (Assignment/Report) Template

    assignment statement for computer

VIDEO

  1. FINANCIAL STATEMENT ANALYSIS GROUP ASSIGNMENT

  2. 43 Augmented Assignment statement

  3. 6 storing values in variable, assignment statement

  4. Module-2 Assignment Statement- Programming Paradigm KTU

  5. official statement.....computer seekhai

  6. How to write an assignment

COMMENTS

  1. Assignment (computer science)

    Assignment (computer science) In computer programming, an assignment statement sets and/or re-sets the value stored in the storage location (s) denoted by a variable name; in other words, it copies a value into the variable. In most imperative programming languages, the assignment statement (or expression) is a fundamental construct.

  2. What are Assignment Statement: Definition, Assignment Statement ...

    An Assignment statement is a statement that is used to set a value to the variable name in a program. Assignment statement allows a variable to hold different types of values during its program lifespan. Another way of understanding an assignment statement is, it stores a value in the memory location which is denoted.

  3. PDF Resource: Variables, Declarations & Assignment Statements

    is written to record the result of a 3-point basket, or elapse of a second on the shot clock. As before, the assignment means add three to score's current value and make the result the value of score. That's how assignment works. But in algebra, the equal sign means that the values on both sides are the same.

  4. The Assignment Statement

    The meaning of the first assignment is computing the sum of the value in Counter and 1, and saves it back to Counter. Since Counter 's current value is zero, Counter + 1 is 1+0 = 1 and hence 1 is saved into Counter. Therefore, the new value of Counter becomes 1 and its original value 0 disappears. The second assignment statement computes the ...

  5. What is an Assignment?

    An assignment is a statement in computer programming that is used to set a value to a variable name. The operator used to do assignment is denoted with an equal sign (=). This operand works by assigning the value on the right-hand side of the operand to the operand on the left-hand side. Advertisements.

  6. Python's Assignment Operator: Write Robust Assignments

    To create a new variable or to update the value of an existing one in Python, you'll use an assignment statement. This statement has the following three components: A left operand, which must be a variable. The assignment operator ( =) A right operand, which can be a concrete value, an object, or an expression.

  7. Different Forms of Assignment Statements in Python

    Multiple- target assignment: x = y = 75. print(x, y) In this form, Python assigns a reference to the same object (the object which is rightmost) to all the target on the left. OUTPUT. 75 75. 7. Augmented assignment : The augmented assignment is a shorthand assignment that combines an expression and an assignment.

  8. Assignment

    Assignment Kenneth Leroy Busbee. Overview. An assignment statement sets and/or re-sets the value stored in the storage location(s) denoted by a variable name; in other words, it copies a value into the variable. [1] Discussion. The assignment operator allows us to change the value of a modifiable data object (for beginning programmers this typically means a variable).

  9. 2. Assignment Statements

    2. Assignment Statements. One of the most common statements (instructions) in C++ is the assignment statement, which has the form: destination = expression ; = is the assignment operator. This statement means that the expression on the right hand side should be evaluated, and the resulting value stored at the desitnation named on the left.

  10. 2.1: Assignment statements

    An assignment statement creates a new variable and gives it a value: This example makes three assignments. The first assigns a string to a new variable named message; the second gives the integer 17 to n; the third assigns the (approximate) value of π π to pi. A common way to represent variables on paper is to write the name with an arrow ...

  11. Variables and Assignment Statements: Assignment Statements

    So far, the example programs have been using the value initially put into a variable. Programs can change the value in a variable. An assignment statement changes the value that is held in a variable. The program uses an assignment statement. The assignment statement puts the value 123 into the variable.

  12. 1.4. Expressions and Assignment Statements

    1.4.1. Assignment Statements ¶. Assignment statements initialize or change the value stored in a variable using the assignment operator =. An assignment statement always has a single variable on the left hand side. The value of the expression (which can contain math operators and other variables) on the right of the = sign is stored in the ...

  13. Programming

    To evaluate an assignment statement: Evaluate the "right side" of the expression (to the right of the equal sign). Once everything is figured out, place the computed value into the variables bucket. More info . We've already seen many examples of assignment. Assignment means: "storing a value (of a particular type) under a variable name".

  14. PDF 1. The Assignment Statement and Types

    Evaluate the expression on the right hand side. Store the result in the variable named on the left hand side. >> radius = 10. >> Area = 3.14*radius**2. radius -> 10. Area -> 314.0. Rule 1. Name must be comprised of digits, upper case letters, lower case letters, and the underscore character "_". Rule 2.

  15. Assignment Statement in Python

    Learn the basics of assignment statements in Python in this tutorial. We'll cover the syntax and usage of the assignment operator, including multiple assignm...

  16. Assignment (computer science)

    In computer programming, an assignment statement sets and/or re-sets the value stored in the storage location(s) denoted by a variable name; in other words, it copies a value into the variable.In most imperative programming languages, the assignment statement (or expression) is a fundamental construct.. Today, the most commonly used notation for this operation is x = expr (originally Superplan ...

  17. Assignment Statements

    In C, the assignment operator is ``='' instead. For example, the C statement: ankle_x = 0.0; assigns the (floating point) value zero to the (floating point) variable ankle_x. Go through the program and locate all of the assignment statements. Remember that assignment is not the same thing as equality or definition. For example, consider the ...

  18. Assignment Statement

    Assignment statements are usually read in reverse order from what we are use to in math class. A variable on the left side of the assignment statement will receive the value that is on the right hand side of the assignment statement. Note that different programming languages use different symbols to represent the assignment statement (for ...

  19. Assignment Operators in Programming

    Assignment operators are used in programming to assign values to variables. We use an assignment operator to store and update data within a program. They enable programmers to store data in variables and manipulate that data. The most common assignment operator is the equals sign (=), which assigns the value on the right side of the operator to ...

  20. Difference between declaration statement and assignment statement in C

    Declaration: int a; Assignment: a = 3; Declaration and assignment in one statement: int a = 3; Declaration says, "I'm going to use a variable named "a" to store an integer value."Assignment says, "Put the value 3 into the variable a." (As @delnan points out, my last example is technically initialization, since you're specifying what value the variable starts with, rather than changing the value.

  21. Assignment Operators in C

    1. "=": This is the simplest assignment operator. This operator is used to assign the value on the right to the variable on the left. Example: a = 10; b = 20; ch = 'y'; 2. "+=": This operator is combination of '+' and '=' operators.This operator first adds the current value of the variable on left to the value on the right and then assigns the result to the variable on the left.

  22. Assignments

    Assignments. pdf. 98 kB Getting Started: Python and IDLE. file. 193 B shapes. file. 3 kB subjects. file. 634 kB words. pdf. 52 kB ... Computer Science. Programming Languages; Over 2,500 courses & materials Freely sharing knowledge with learners and educators around the world.

  23. Statement (computer science)

    In computer programming, a statement is a syntactic unit of an imperative programming language that expresses some action to be carried out. [1] ... but rather just a separator in the assignment statement. Although Python allows multiple assignments as each assignment were an expression, this is simply a special case of the assignment statement ...

  24. Skiatook Public Schools: Teacher no longer employed after controversial

    UPDATE (8/30/24) — Skiatook Public Schools announced a teacher is no longer employed by the district following a controversial homework assignment that gained traction online. FOX23 reported on ...