• Privacy Policy

Buy Me a Coffee

Research Method

Home » Research Paper – Structure, Examples and Writing Guide

Research Paper – Structure, Examples and Writing Guide

Table of Contents

Research Paper

Research Paper

Definition:

Research Paper is a written document that presents the author’s original research, analysis, and interpretation of a specific topic or issue.

It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new knowledge or insights to a particular field of study, and to demonstrate the author’s understanding of the existing literature and theories related to the topic.

Structure of Research Paper

The structure of a research paper typically follows a standard format, consisting of several sections that convey specific information about the research study. The following is a detailed explanation of the structure of a research paper:

The title page contains the title of the paper, the name(s) of the author(s), and the affiliation(s) of the author(s). It also includes the date of submission and possibly, the name of the journal or conference where the paper is to be published.

The abstract is a brief summary of the research paper, typically ranging from 100 to 250 words. It should include the research question, the methods used, the key findings, and the implications of the results. The abstract should be written in a concise and clear manner to allow readers to quickly grasp the essence of the research.

Introduction

The introduction section of a research paper provides background information about the research problem, the research question, and the research objectives. It also outlines the significance of the research, the research gap that it aims to fill, and the approach taken to address the research question. Finally, the introduction section ends with a clear statement of the research hypothesis or research question.

Literature Review

The literature review section of a research paper provides an overview of the existing literature on the topic of study. It includes a critical analysis and synthesis of the literature, highlighting the key concepts, themes, and debates. The literature review should also demonstrate the research gap and how the current study seeks to address it.

The methods section of a research paper describes the research design, the sample selection, the data collection and analysis procedures, and the statistical methods used to analyze the data. This section should provide sufficient detail for other researchers to replicate the study.

The results section presents the findings of the research, using tables, graphs, and figures to illustrate the data. The findings should be presented in a clear and concise manner, with reference to the research question and hypothesis.

The discussion section of a research paper interprets the findings and discusses their implications for the research question, the literature review, and the field of study. It should also address the limitations of the study and suggest future research directions.

The conclusion section summarizes the main findings of the study, restates the research question and hypothesis, and provides a final reflection on the significance of the research.

The references section provides a list of all the sources cited in the paper, following a specific citation style such as APA, MLA or Chicago.

How to Write Research Paper

You can write Research Paper by the following guide:

  • Choose a Topic: The first step is to select a topic that interests you and is relevant to your field of study. Brainstorm ideas and narrow down to a research question that is specific and researchable.
  • Conduct a Literature Review: The literature review helps you identify the gap in the existing research and provides a basis for your research question. It also helps you to develop a theoretical framework and research hypothesis.
  • Develop a Thesis Statement : The thesis statement is the main argument of your research paper. It should be clear, concise and specific to your research question.
  • Plan your Research: Develop a research plan that outlines the methods, data sources, and data analysis procedures. This will help you to collect and analyze data effectively.
  • Collect and Analyze Data: Collect data using various methods such as surveys, interviews, observations, or experiments. Analyze data using statistical tools or other qualitative methods.
  • Organize your Paper : Organize your paper into sections such as Introduction, Literature Review, Methods, Results, Discussion, and Conclusion. Ensure that each section is coherent and follows a logical flow.
  • Write your Paper : Start by writing the introduction, followed by the literature review, methods, results, discussion, and conclusion. Ensure that your writing is clear, concise, and follows the required formatting and citation styles.
  • Edit and Proofread your Paper: Review your paper for grammar and spelling errors, and ensure that it is well-structured and easy to read. Ask someone else to review your paper to get feedback and suggestions for improvement.
  • Cite your Sources: Ensure that you properly cite all sources used in your research paper. This is essential for giving credit to the original authors and avoiding plagiarism.

Research Paper Example

Note : The below example research paper is for illustrative purposes only and is not an actual research paper. Actual research papers may have different structures, contents, and formats depending on the field of study, research question, data collection and analysis methods, and other factors. Students should always consult with their professors or supervisors for specific guidelines and expectations for their research papers.

Research Paper Example sample for Students:

Title: The Impact of Social Media on Mental Health among Young Adults

Abstract: This study aims to investigate the impact of social media use on the mental health of young adults. A literature review was conducted to examine the existing research on the topic. A survey was then administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO (Fear of Missing Out) are significant predictors of mental health problems among young adults.

Introduction: Social media has become an integral part of modern life, particularly among young adults. While social media has many benefits, including increased communication and social connectivity, it has also been associated with negative outcomes, such as addiction, cyberbullying, and mental health problems. This study aims to investigate the impact of social media use on the mental health of young adults.

Literature Review: The literature review highlights the existing research on the impact of social media use on mental health. The review shows that social media use is associated with depression, anxiety, stress, and other mental health problems. The review also identifies the factors that contribute to the negative impact of social media, including social comparison, cyberbullying, and FOMO.

Methods : A survey was administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The survey included questions on social media use, mental health status (measured using the DASS-21), and perceived impact of social media on their mental health. Data were analyzed using descriptive statistics and regression analysis.

Results : The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO are significant predictors of mental health problems among young adults.

Discussion : The study’s findings suggest that social media use has a negative impact on the mental health of young adults. The study highlights the need for interventions that address the factors contributing to the negative impact of social media, such as social comparison, cyberbullying, and FOMO.

Conclusion : In conclusion, social media use has a significant impact on the mental health of young adults. The study’s findings underscore the need for interventions that promote healthy social media use and address the negative outcomes associated with social media use. Future research can explore the effectiveness of interventions aimed at reducing the negative impact of social media on mental health. Additionally, longitudinal studies can investigate the long-term effects of social media use on mental health.

Limitations : The study has some limitations, including the use of self-report measures and a cross-sectional design. The use of self-report measures may result in biased responses, and a cross-sectional design limits the ability to establish causality.

Implications: The study’s findings have implications for mental health professionals, educators, and policymakers. Mental health professionals can use the findings to develop interventions that address the negative impact of social media use on mental health. Educators can incorporate social media literacy into their curriculum to promote healthy social media use among young adults. Policymakers can use the findings to develop policies that protect young adults from the negative outcomes associated with social media use.

References :

  • Twenge, J. M., & Campbell, W. K. (2019). Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Preventive medicine reports, 15, 100918.
  • Primack, B. A., Shensa, A., Escobar-Viera, C. G., Barrett, E. L., Sidani, J. E., Colditz, J. B., … & James, A. E. (2017). Use of multiple social media platforms and symptoms of depression and anxiety: A nationally-representative study among US young adults. Computers in Human Behavior, 69, 1-9.
  • Van der Meer, T. G., & Verhoeven, J. W. (2017). Social media and its impact on academic performance of students. Journal of Information Technology Education: Research, 16, 383-398.

Appendix : The survey used in this study is provided below.

Social Media and Mental Health Survey

  • How often do you use social media per day?
  • Less than 30 minutes
  • 30 minutes to 1 hour
  • 1 to 2 hours
  • 2 to 4 hours
  • More than 4 hours
  • Which social media platforms do you use?
  • Others (Please specify)
  • How often do you experience the following on social media?
  • Social comparison (comparing yourself to others)
  • Cyberbullying
  • Fear of Missing Out (FOMO)
  • Have you ever experienced any of the following mental health problems in the past month?
  • Do you think social media use has a positive or negative impact on your mental health?
  • Very positive
  • Somewhat positive
  • Somewhat negative
  • Very negative
  • In your opinion, which factors contribute to the negative impact of social media on mental health?
  • Social comparison
  • In your opinion, what interventions could be effective in reducing the negative impact of social media on mental health?
  • Education on healthy social media use
  • Counseling for mental health problems caused by social media
  • Social media detox programs
  • Regulation of social media use

Thank you for your participation!

Applications of Research Paper

Research papers have several applications in various fields, including:

  • Advancing knowledge: Research papers contribute to the advancement of knowledge by generating new insights, theories, and findings that can inform future research and practice. They help to answer important questions, clarify existing knowledge, and identify areas that require further investigation.
  • Informing policy: Research papers can inform policy decisions by providing evidence-based recommendations for policymakers. They can help to identify gaps in current policies, evaluate the effectiveness of interventions, and inform the development of new policies and regulations.
  • Improving practice: Research papers can improve practice by providing evidence-based guidance for professionals in various fields, including medicine, education, business, and psychology. They can inform the development of best practices, guidelines, and standards of care that can improve outcomes for individuals and organizations.
  • Educating students : Research papers are often used as teaching tools in universities and colleges to educate students about research methods, data analysis, and academic writing. They help students to develop critical thinking skills, research skills, and communication skills that are essential for success in many careers.
  • Fostering collaboration: Research papers can foster collaboration among researchers, practitioners, and policymakers by providing a platform for sharing knowledge and ideas. They can facilitate interdisciplinary collaborations and partnerships that can lead to innovative solutions to complex problems.

When to Write Research Paper

Research papers are typically written when a person has completed a research project or when they have conducted a study and have obtained data or findings that they want to share with the academic or professional community. Research papers are usually written in academic settings, such as universities, but they can also be written in professional settings, such as research organizations, government agencies, or private companies.

Here are some common situations where a person might need to write a research paper:

  • For academic purposes: Students in universities and colleges are often required to write research papers as part of their coursework, particularly in the social sciences, natural sciences, and humanities. Writing research papers helps students to develop research skills, critical thinking skills, and academic writing skills.
  • For publication: Researchers often write research papers to publish their findings in academic journals or to present their work at academic conferences. Publishing research papers is an important way to disseminate research findings to the academic community and to establish oneself as an expert in a particular field.
  • To inform policy or practice : Researchers may write research papers to inform policy decisions or to improve practice in various fields. Research findings can be used to inform the development of policies, guidelines, and best practices that can improve outcomes for individuals and organizations.
  • To share new insights or ideas: Researchers may write research papers to share new insights or ideas with the academic or professional community. They may present new theories, propose new research methods, or challenge existing paradigms in their field.

Purpose of Research Paper

The purpose of a research paper is to present the results of a study or investigation in a clear, concise, and structured manner. Research papers are written to communicate new knowledge, ideas, or findings to a specific audience, such as researchers, scholars, practitioners, or policymakers. The primary purposes of a research paper are:

  • To contribute to the body of knowledge : Research papers aim to add new knowledge or insights to a particular field or discipline. They do this by reporting the results of empirical studies, reviewing and synthesizing existing literature, proposing new theories, or providing new perspectives on a topic.
  • To inform or persuade: Research papers are written to inform or persuade the reader about a particular issue, topic, or phenomenon. They present evidence and arguments to support their claims and seek to persuade the reader of the validity of their findings or recommendations.
  • To advance the field: Research papers seek to advance the field or discipline by identifying gaps in knowledge, proposing new research questions or approaches, or challenging existing assumptions or paradigms. They aim to contribute to ongoing debates and discussions within a field and to stimulate further research and inquiry.
  • To demonstrate research skills: Research papers demonstrate the author’s research skills, including their ability to design and conduct a study, collect and analyze data, and interpret and communicate findings. They also demonstrate the author’s ability to critically evaluate existing literature, synthesize information from multiple sources, and write in a clear and structured manner.

Characteristics of Research Paper

Research papers have several characteristics that distinguish them from other forms of academic or professional writing. Here are some common characteristics of research papers:

  • Evidence-based: Research papers are based on empirical evidence, which is collected through rigorous research methods such as experiments, surveys, observations, or interviews. They rely on objective data and facts to support their claims and conclusions.
  • Structured and organized: Research papers have a clear and logical structure, with sections such as introduction, literature review, methods, results, discussion, and conclusion. They are organized in a way that helps the reader to follow the argument and understand the findings.
  • Formal and objective: Research papers are written in a formal and objective tone, with an emphasis on clarity, precision, and accuracy. They avoid subjective language or personal opinions and instead rely on objective data and analysis to support their arguments.
  • Citations and references: Research papers include citations and references to acknowledge the sources of information and ideas used in the paper. They use a specific citation style, such as APA, MLA, or Chicago, to ensure consistency and accuracy.
  • Peer-reviewed: Research papers are often peer-reviewed, which means they are evaluated by other experts in the field before they are published. Peer-review ensures that the research is of high quality, meets ethical standards, and contributes to the advancement of knowledge in the field.
  • Objective and unbiased: Research papers strive to be objective and unbiased in their presentation of the findings. They avoid personal biases or preconceptions and instead rely on the data and analysis to draw conclusions.

Advantages of Research Paper

Research papers have many advantages, both for the individual researcher and for the broader academic and professional community. Here are some advantages of research papers:

  • Contribution to knowledge: Research papers contribute to the body of knowledge in a particular field or discipline. They add new information, insights, and perspectives to existing literature and help advance the understanding of a particular phenomenon or issue.
  • Opportunity for intellectual growth: Research papers provide an opportunity for intellectual growth for the researcher. They require critical thinking, problem-solving, and creativity, which can help develop the researcher’s skills and knowledge.
  • Career advancement: Research papers can help advance the researcher’s career by demonstrating their expertise and contributions to the field. They can also lead to new research opportunities, collaborations, and funding.
  • Academic recognition: Research papers can lead to academic recognition in the form of awards, grants, or invitations to speak at conferences or events. They can also contribute to the researcher’s reputation and standing in the field.
  • Impact on policy and practice: Research papers can have a significant impact on policy and practice. They can inform policy decisions, guide practice, and lead to changes in laws, regulations, or procedures.
  • Advancement of society: Research papers can contribute to the advancement of society by addressing important issues, identifying solutions to problems, and promoting social justice and equality.

Limitations of Research Paper

Research papers also have some limitations that should be considered when interpreting their findings or implications. Here are some common limitations of research papers:

  • Limited generalizability: Research findings may not be generalizable to other populations, settings, or contexts. Studies often use specific samples or conditions that may not reflect the broader population or real-world situations.
  • Potential for bias : Research papers may be biased due to factors such as sample selection, measurement errors, or researcher biases. It is important to evaluate the quality of the research design and methods used to ensure that the findings are valid and reliable.
  • Ethical concerns: Research papers may raise ethical concerns, such as the use of vulnerable populations or invasive procedures. Researchers must adhere to ethical guidelines and obtain informed consent from participants to ensure that the research is conducted in a responsible and respectful manner.
  • Limitations of methodology: Research papers may be limited by the methodology used to collect and analyze data. For example, certain research methods may not capture the complexity or nuance of a particular phenomenon, or may not be appropriate for certain research questions.
  • Publication bias: Research papers may be subject to publication bias, where positive or significant findings are more likely to be published than negative or non-significant findings. This can skew the overall findings of a particular area of research.
  • Time and resource constraints: Research papers may be limited by time and resource constraints, which can affect the quality and scope of the research. Researchers may not have access to certain data or resources, or may be unable to conduct long-term studies due to practical limitations.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Conclusion

Research Paper Conclusion – Writing Guide and...

Appendices

Appendices – Writing Guide, Types and Examples

Research Paper Citation

How to Cite Research Paper – All Formats and...

Research Report

Research Report – Example, Writing Guide and...

Delimitations

Delimitations in Research – Types, Examples and...

Scope of the Research

Scope of the Research – Writing Guide and...

Organizing Your Social Sciences Research Assignments

  • Annotated Bibliography
  • Analyzing a Scholarly Journal Article
  • Group Presentations
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • Types of Structured Group Activities
  • Group Project Survival Skills
  • Leading a Class Discussion
  • Multiple Book Review Essay
  • Reviewing Collected Works
  • Writing a Case Analysis Paper
  • Writing a Case Study
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Reflective Paper
  • Writing a Research Proposal
  • Generative AI and Writing
  • Acknowledgments

Definition and Introduction

Journal article analysis assignments require you to summarize and critically assess the quality of an empirical research study published in a scholarly [a.k.a., academic, peer-reviewed] journal. The article may be assigned by the professor, chosen from course readings listed in the syllabus, or you must locate an article on your own, usually with the requirement that you search using a reputable library database, such as, JSTOR or ProQuest . The article chosen is expected to relate to the overall discipline of the course, specific course content, or key concepts discussed in class. In some cases, the purpose of the assignment is to analyze an article that is part of the literature review for a future research project.

Analysis of an article can be assigned to students individually or as part of a small group project. The final product is usually in the form of a short paper [typically 1- 6 double-spaced pages] that addresses key questions the professor uses to guide your analysis or that assesses specific parts of a scholarly research study [e.g., the research problem, methodology, discussion, conclusions or findings]. The analysis paper may be shared on a digital course management platform and/or presented to the class for the purpose of promoting a wider discussion about the topic of the study. Although assigned in any level of undergraduate and graduate coursework in the social and behavioral sciences, professors frequently include this assignment in upper division courses to help students learn how to effectively identify, read, and analyze empirical research within their major.

Franco, Josue. “Introducing the Analysis of Journal Articles.” Prepared for presentation at the American Political Science Association’s 2020 Teaching and Learning Conference, February 7-9, 2020, Albuquerque, New Mexico; Sego, Sandra A. and Anne E. Stuart. "Learning to Read Empirical Articles in General Psychology." Teaching of Psychology 43 (2016): 38-42; Kershaw, Trina C., Jordan P. Lippman, and Jennifer Fugate. "Practice Makes Proficient: Teaching Undergraduate Students to Understand Published Research." Instructional Science 46 (2018): 921-946; Woodward-Kron, Robyn. "Critical Analysis and the Journal Article Review Assignment." Prospect 18 (August 2003): 20-36; MacMillan, Margy and Allison MacKenzie. "Strategies for Integrating Information Literacy and Academic Literacy: Helping Undergraduate Students make the most of Scholarly Articles." Library Management 33 (2012): 525-535.

Benefits of Journal Article Analysis Assignments

Analyzing and synthesizing a scholarly journal article is intended to help students obtain the reading and critical thinking skills needed to develop and write their own research papers. This assignment also supports workplace skills where you could be asked to summarize a report or other type of document and report it, for example, during a staff meeting or for a presentation.

There are two broadly defined ways that analyzing a scholarly journal article supports student learning:

Improve Reading Skills

Conducting research requires an ability to review, evaluate, and synthesize prior research studies. Reading prior research requires an understanding of the academic writing style , the type of epistemological beliefs or practices underpinning the research design, and the specific vocabulary and technical terminology [i.e., jargon] used within a discipline. Reading scholarly articles is important because academic writing is unfamiliar to most students; they have had limited exposure to using peer-reviewed journal articles prior to entering college or students have yet to gain exposure to the specific academic writing style of their disciplinary major. Learning how to read scholarly articles also requires careful and deliberate concentration on how authors use specific language and phrasing to convey their research, the problem it addresses, its relationship to prior research, its significance, its limitations, and how authors connect methods of data gathering to the results so as to develop recommended solutions derived from the overall research process.

Improve Comprehension Skills

In addition to knowing how to read scholarly journals articles, students must learn how to effectively interpret what the scholar(s) are trying to convey. Academic writing can be dense, multi-layered, and non-linear in how information is presented. In addition, scholarly articles contain footnotes or endnotes, references to sources, multiple appendices, and, in some cases, non-textual elements [e.g., graphs, charts] that can break-up the reader’s experience with the narrative flow of the study. Analyzing articles helps students practice comprehending these elements of writing, critiquing the arguments being made, reflecting upon the significance of the research, and how it relates to building new knowledge and understanding or applying new approaches to practice. Comprehending scholarly writing also involves thinking critically about where you fit within the overall dialogue among scholars concerning the research problem, finding possible gaps in the research that require further analysis, or identifying where the author(s) has failed to examine fully any specific elements of the study.

In addition, journal article analysis assignments are used by professors to strengthen discipline-specific information literacy skills, either alone or in relation to other tasks, such as, giving a class presentation or participating in a group project. These benefits can include the ability to:

  • Effectively paraphrase text, which leads to a more thorough understanding of the overall study;
  • Identify and describe strengths and weaknesses of the study and their implications;
  • Relate the article to other course readings and in relation to particular research concepts or ideas discussed during class;
  • Think critically about the research and summarize complex ideas contained within;
  • Plan, organize, and write an effective inquiry-based paper that investigates a research study, evaluates evidence, expounds on the author’s main ideas, and presents an argument concerning the significance and impact of the research in a clear and concise manner;
  • Model the type of source summary and critique you should do for any college-level research paper; and,
  • Increase interest and engagement with the research problem of the study as well as with the discipline.

Kershaw, Trina C., Jennifer Fugate, and Aminda J. O'Hare. "Teaching Undergraduates to Understand Published Research through Structured Practice in Identifying Key Research Concepts." Scholarship of Teaching and Learning in Psychology . Advance online publication, 2020; Franco, Josue. “Introducing the Analysis of Journal Articles.” Prepared for presentation at the American Political Science Association’s 2020 Teaching and Learning Conference, February 7-9, 2020, Albuquerque, New Mexico; Sego, Sandra A. and Anne E. Stuart. "Learning to Read Empirical Articles in General Psychology." Teaching of Psychology 43 (2016): 38-42; Woodward-Kron, Robyn. "Critical Analysis and the Journal Article Review Assignment." Prospect 18 (August 2003): 20-36; MacMillan, Margy and Allison MacKenzie. "Strategies for Integrating Information Literacy and Academic Literacy: Helping Undergraduate Students make the most of Scholarly Articles." Library Management 33 (2012): 525-535; Kershaw, Trina C., Jordan P. Lippman, and Jennifer Fugate. "Practice Makes Proficient: Teaching Undergraduate Students to Understand Published Research." Instructional Science 46 (2018): 921-946.

Structure and Organization

A journal article analysis paper should be written in paragraph format and include an instruction to the study, your analysis of the research, and a conclusion that provides an overall assessment of the author's work, along with an explanation of what you believe is the study's overall impact and significance. Unless the purpose of the assignment is to examine foundational studies published many years ago, you should select articles that have been published relatively recently [e.g., within the past few years].

Since the research has been completed, reference to the study in your paper should be written in the past tense, with your analysis stated in the present tense [e.g., “The author portrayed access to health care services in rural areas as primarily a problem of having reliable transportation. However, I believe the author is overgeneralizing this issue because...”].

Introduction Section

The first section of a journal analysis paper should describe the topic of the article and highlight the author’s main points. This includes describing the research problem and theoretical framework, the rationale for the research, the methods of data gathering and analysis, the key findings, and the author’s final conclusions and recommendations. The narrative should focus on the act of describing rather than analyzing. Think of the introduction as a more comprehensive and detailed descriptive abstract of the study.

Possible questions to help guide your writing of the introduction section may include:

  • Who are the authors and what credentials do they hold that contributes to the validity of the study?
  • What was the research problem being investigated?
  • What type of research design was used to investigate the research problem?
  • What theoretical idea(s) and/or research questions were used to address the problem?
  • What was the source of the data or information used as evidence for analysis?
  • What methods were applied to investigate this evidence?
  • What were the author's overall conclusions and key findings?

Critical Analysis Section

The second section of a journal analysis paper should describe the strengths and weaknesses of the study and analyze its significance and impact. This section is where you shift the narrative from describing to analyzing. Think critically about the research in relation to other course readings, what has been discussed in class, or based on your own life experiences. If you are struggling to identify any weaknesses, explain why you believe this to be true. However, no study is perfect, regardless of how laudable its design may be. Given this, think about the repercussions of the choices made by the author(s) and how you might have conducted the study differently. Examples can include contemplating the choice of what sources were included or excluded in support of examining the research problem, the choice of the method used to analyze the data, or the choice to highlight specific recommended courses of action and/or implications for practice over others. Another strategy is to place yourself within the research study itself by thinking reflectively about what may be missing if you had been a participant in the study or if the recommended courses of action specifically targeted you or your community.

Possible questions to help guide your writing of the analysis section may include:

Introduction

  • Did the author clearly state the problem being investigated?
  • What was your reaction to and perspective on the research problem?
  • Was the study’s objective clearly stated? Did the author clearly explain why the study was necessary?
  • How well did the introduction frame the scope of the study?
  • Did the introduction conclude with a clear purpose statement?

Literature Review

  • Did the literature review lay a foundation for understanding the significance of the research problem?
  • Did the literature review provide enough background information to understand the problem in relation to relevant contexts [e.g., historical, economic, social, cultural, etc.].
  • Did literature review effectively place the study within the domain of prior research? Is anything missing?
  • Was the literature review organized by conceptual categories or did the author simply list and describe sources?
  • Did the author accurately explain how the data or information were collected?
  • Was the data used sufficient in supporting the study of the research problem?
  • Was there another methodological approach that could have been more illuminating?
  • Give your overall evaluation of the methods used in this article. How much trust would you put in generating relevant findings?

Results and Discussion

  • Were the results clearly presented?
  • Did you feel that the results support the theoretical and interpretive claims of the author? Why?
  • What did the author(s) do especially well in describing or analyzing their results?
  • Was the author's evaluation of the findings clearly stated?
  • How well did the discussion of the results relate to what is already known about the research problem?
  • Was the discussion of the results free of repetition and redundancies?
  • What interpretations did the authors make that you think are in incomplete, unwarranted, or overstated?
  • Did the conclusion effectively capture the main points of study?
  • Did the conclusion address the research questions posed? Do they seem reasonable?
  • Were the author’s conclusions consistent with the evidence and arguments presented?
  • Has the author explained how the research added new knowledge or understanding?

Overall Writing Style

  • If the article included tables, figures, or other non-textual elements, did they contribute to understanding the study?
  • Were ideas developed and related in a logical sequence?
  • Were transitions between sections of the article smooth and easy to follow?

Overall Evaluation Section

The final section of a journal analysis paper should bring your thoughts together into a coherent assessment of the value of the research study . This section is where the narrative flow transitions from analyzing specific elements of the article to critically evaluating the overall study. Explain what you view as the significance of the research in relation to the overall course content and any relevant discussions that occurred during class. Think about how the article contributes to understanding the overall research problem, how it fits within existing literature on the topic, how it relates to the course, and what it means to you as a student researcher. In some cases, your professor will also ask you to describe your experiences writing the journal article analysis paper as part of a reflective learning exercise.

Possible questions to help guide your writing of the conclusion and evaluation section may include:

  • Was the structure of the article clear and well organized?
  • Was the topic of current or enduring interest to you?
  • What were the main weaknesses of the article? [this does not refer to limitations stated by the author, but what you believe are potential flaws]
  • Was any of the information in the article unclear or ambiguous?
  • What did you learn from the research? If nothing stood out to you, explain why.
  • Assess the originality of the research. Did you believe it contributed new understanding of the research problem?
  • Were you persuaded by the author’s arguments?
  • If the author made any final recommendations, will they be impactful if applied to practice?
  • In what ways could future research build off of this study?
  • What implications does the study have for daily life?
  • Was the use of non-textual elements, footnotes or endnotes, and/or appendices helpful in understanding the research?
  • What lingering questions do you have after analyzing the article?

NOTE: Avoid using quotes. One of the main purposes of writing an article analysis paper is to learn how to effectively paraphrase and use your own words to summarize a scholarly research study and to explain what the research means to you. Using and citing a direct quote from the article should only be done to help emphasize a key point or to underscore an important concept or idea.

Business: The Article Analysis . Fred Meijer Center for Writing, Grand Valley State University; Bachiochi, Peter et al. "Using Empirical Article Analysis to Assess Research Methods Courses." Teaching of Psychology 38 (2011): 5-9; Brosowsky, Nicholaus P. et al. “Teaching Undergraduate Students to Read Empirical Articles: An Evaluation and Revision of the QALMRI Method.” PsyArXi Preprints , 2020; Holster, Kristin. “Article Evaluation Assignment”. TRAILS: Teaching Resources and Innovations Library for Sociology . Washington DC: American Sociological Association, 2016; Kershaw, Trina C., Jennifer Fugate, and Aminda J. O'Hare. "Teaching Undergraduates to Understand Published Research through Structured Practice in Identifying Key Research Concepts." Scholarship of Teaching and Learning in Psychology . Advance online publication, 2020; Franco, Josue. “Introducing the Analysis of Journal Articles.” Prepared for presentation at the American Political Science Association’s 2020 Teaching and Learning Conference, February 7-9, 2020, Albuquerque, New Mexico; Reviewer's Guide . SAGE Reviewer Gateway, SAGE Journals; Sego, Sandra A. and Anne E. Stuart. "Learning to Read Empirical Articles in General Psychology." Teaching of Psychology 43 (2016): 38-42; Kershaw, Trina C., Jordan P. Lippman, and Jennifer Fugate. "Practice Makes Proficient: Teaching Undergraduate Students to Understand Published Research." Instructional Science 46 (2018): 921-946; Gyuris, Emma, and Laura Castell. "To Tell Them or Show Them? How to Improve Science Students’ Skills of Critical Reading." International Journal of Innovation in Science and Mathematics Education 21 (2013): 70-80; Woodward-Kron, Robyn. "Critical Analysis and the Journal Article Review Assignment." Prospect 18 (August 2003): 20-36; MacMillan, Margy and Allison MacKenzie. "Strategies for Integrating Information Literacy and Academic Literacy: Helping Undergraduate Students Make the Most of Scholarly Articles." Library Management 33 (2012): 525-535.

Writing Tip

Not All Scholarly Journal Articles Can Be Critically Analyzed

There are a variety of articles published in scholarly journals that do not fit within the guidelines of an article analysis assignment. This is because the work cannot be empirically examined or it does not generate new knowledge in a way which can be critically analyzed.

If you are required to locate a research study on your own, avoid selecting these types of journal articles:

  • Theoretical essays which discuss concepts, assumptions, and propositions, but report no empirical research;
  • Statistical or methodological papers that may analyze data, but the bulk of the work is devoted to refining a new measurement, statistical technique, or modeling procedure;
  • Articles that review, analyze, critique, and synthesize prior research, but do not report any original research;
  • Brief essays devoted to research methods and findings;
  • Articles written by scholars in popular magazines or industry trade journals;
  • Pre-print articles that have been posted online, but may undergo further editing and revision by the journal's editorial staff before final publication; and
  • Academic commentary that discusses research trends or emerging concepts and ideas, but does not contain citations to sources.

Journal Analysis Assignment - Myers . Writing@CSU, Colorado State University; Franco, Josue. “Introducing the Analysis of Journal Articles.” Prepared for presentation at the American Political Science Association’s 2020 Teaching and Learning Conference, February 7-9, 2020, Albuquerque, New Mexico; Woodward-Kron, Robyn. "Critical Analysis and the Journal Article Review Assignment." Prospect 18 (August 2003): 20-36.

  • << Previous: Annotated Bibliography
  • Next: Giving an Oral Presentation >>
  • Last Updated: Mar 6, 2024 1:00 PM
  • URL: https://libguides.usc.edu/writingguide/assignments

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Research paper

How to Write a Research Paper | A Beginner's Guide

A research paper is a piece of academic writing that provides analysis, interpretation, and argument based on in-depth independent research.

Research papers are similar to academic essays , but they are usually longer and more detailed assignments, designed to assess not only your writing skills but also your skills in scholarly research. Writing a research paper requires you to demonstrate a strong knowledge of your topic, engage with a variety of sources, and make an original contribution to the debate.

This step-by-step guide takes you through the entire writing process, from understanding your assignment to proofreading your final draft.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

Understand the assignment, choose a research paper topic, conduct preliminary research, develop a thesis statement, create a research paper outline, write a first draft of the research paper, write the introduction, write a compelling body of text, write the conclusion, the second draft, the revision process, research paper checklist, free lecture slides.

Completing a research paper successfully means accomplishing the specific tasks set out for you. Before you start, make sure you thoroughly understanding the assignment task sheet:

  • Read it carefully, looking for anything confusing you might need to clarify with your professor.
  • Identify the assignment goal, deadline, length specifications, formatting, and submission method.
  • Make a bulleted list of the key points, then go back and cross completed items off as you’re writing.

Carefully consider your timeframe and word limit: be realistic, and plan enough time to research, write, and edit.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

a research paper is analyzed at a

There are many ways to generate an idea for a research paper, from brainstorming with pen and paper to talking it through with a fellow student or professor.

You can try free writing, which involves taking a broad topic and writing continuously for two or three minutes to identify absolutely anything relevant that could be interesting.

You can also gain inspiration from other research. The discussion or recommendations sections of research papers often include ideas for other specific topics that require further examination.

Once you have a broad subject area, narrow it down to choose a topic that interests you, m eets the criteria of your assignment, and i s possible to research. Aim for ideas that are both original and specific:

  • A paper following the chronology of World War II would not be original or specific enough.
  • A paper on the experience of Danish citizens living close to the German border during World War II would be specific and could be original enough.

Note any discussions that seem important to the topic, and try to find an issue that you can focus your paper around. Use a variety of sources , including journals, books, and reliable websites, to ensure you do not miss anything glaring.

Do not only verify the ideas you have in mind, but look for sources that contradict your point of view.

  • Is there anything people seem to overlook in the sources you research?
  • Are there any heated debates you can address?
  • Do you have a unique take on your topic?
  • Have there been some recent developments that build on the extant research?

In this stage, you might find it helpful to formulate some research questions to help guide you. To write research questions, try to finish the following sentence: “I want to know how/what/why…”

A thesis statement is a statement of your central argument — it establishes the purpose and position of your paper. If you started with a research question, the thesis statement should answer it. It should also show what evidence and reasoning you’ll use to support that answer.

The thesis statement should be concise, contentious, and coherent. That means it should briefly summarize your argument in a sentence or two, make a claim that requires further evidence or analysis, and make a coherent point that relates to every part of the paper.

You will probably revise and refine the thesis statement as you do more research, but it can serve as a guide throughout the writing process. Every paragraph should aim to support and develop this central claim.

The only proofreading tool specialized in correcting academic writing - try for free!

The academic proofreading tool has been trained on 1000s of academic texts and by native English editors. Making it the most accurate and reliable proofreading tool for students.

a research paper is analyzed at a

Try for free

A research paper outline is essentially a list of the key topics, arguments, and evidence you want to include, divided into sections with headings so that you know roughly what the paper will look like before you start writing.

A structure outline can help make the writing process much more efficient, so it’s worth dedicating some time to create one.

Your first draft won’t be perfect — you can polish later on. Your priorities at this stage are as follows:

  • Maintaining forward momentum — write now, perfect later.
  • Paying attention to clear organization and logical ordering of paragraphs and sentences, which will help when you come to the second draft.
  • Expressing your ideas as clearly as possible, so you know what you were trying to say when you come back to the text.

You do not need to start by writing the introduction. Begin where it feels most natural for you — some prefer to finish the most difficult sections first, while others choose to start with the easiest part. If you created an outline, use it as a map while you work.

Do not delete large sections of text. If you begin to dislike something you have written or find it doesn’t quite fit, move it to a different document, but don’t lose it completely — you never know if it might come in useful later.

Paragraph structure

Paragraphs are the basic building blocks of research papers. Each one should focus on a single claim or idea that helps to establish the overall argument or purpose of the paper.

Example paragraph

George Orwell’s 1946 essay “Politics and the English Language” has had an enduring impact on thought about the relationship between politics and language. This impact is particularly obvious in light of the various critical review articles that have recently referenced the essay. For example, consider Mark Falcoff’s 2009 article in The National Review Online, “The Perversion of Language; or, Orwell Revisited,” in which he analyzes several common words (“activist,” “civil-rights leader,” “diversity,” and more). Falcoff’s close analysis of the ambiguity built into political language intentionally mirrors Orwell’s own point-by-point analysis of the political language of his day. Even 63 years after its publication, Orwell’s essay is emulated by contemporary thinkers.

Citing sources

It’s also important to keep track of citations at this stage to avoid accidental plagiarism . Each time you use a source, make sure to take note of where the information came from.

You can use our free citation generators to automatically create citations and save your reference list as you go.

APA Citation Generator MLA Citation Generator

The research paper introduction should address three questions: What, why, and how? After finishing the introduction, the reader should know what the paper is about, why it is worth reading, and how you’ll build your arguments.

What? Be specific about the topic of the paper, introduce the background, and define key terms or concepts.

Why? This is the most important, but also the most difficult, part of the introduction. Try to provide brief answers to the following questions: What new material or insight are you offering? What important issues does your essay help define or answer?

How? To let the reader know what to expect from the rest of the paper, the introduction should include a “map” of what will be discussed, briefly presenting the key elements of the paper in chronological order.

The major struggle faced by most writers is how to organize the information presented in the paper, which is one reason an outline is so useful. However, remember that the outline is only a guide and, when writing, you can be flexible with the order in which the information and arguments are presented.

One way to stay on track is to use your thesis statement and topic sentences . Check:

  • topic sentences against the thesis statement;
  • topic sentences against each other, for similarities and logical ordering;
  • and each sentence against the topic sentence of that paragraph.

Be aware of paragraphs that seem to cover the same things. If two paragraphs discuss something similar, they must approach that topic in different ways. Aim to create smooth transitions between sentences, paragraphs, and sections.

The research paper conclusion is designed to help your reader out of the paper’s argument, giving them a sense of finality.

Trace the course of the paper, emphasizing how it all comes together to prove your thesis statement. Give the paper a sense of finality by making sure the reader understands how you’ve settled the issues raised in the introduction.

You might also discuss the more general consequences of the argument, outline what the paper offers to future students of the topic, and suggest any questions the paper’s argument raises but cannot or does not try to answer.

You should not :

  • Offer new arguments or essential information
  • Take up any more space than necessary
  • Begin with stock phrases that signal you are ending the paper (e.g. “In conclusion”)

There are four main considerations when it comes to the second draft.

  • Check how your vision of the paper lines up with the first draft and, more importantly, that your paper still answers the assignment.
  • Identify any assumptions that might require (more substantial) justification, keeping your reader’s perspective foremost in mind. Remove these points if you cannot substantiate them further.
  • Be open to rearranging your ideas. Check whether any sections feel out of place and whether your ideas could be better organized.
  • If you find that old ideas do not fit as well as you anticipated, you should cut them out or condense them. You might also find that new and well-suited ideas occurred to you during the writing of the first draft — now is the time to make them part of the paper.

The goal during the revision and proofreading process is to ensure you have completed all the necessary tasks and that the paper is as well-articulated as possible. You can speed up the proofreading process by using the AI proofreader .

Global concerns

  • Confirm that your paper completes every task specified in your assignment sheet.
  • Check for logical organization and flow of paragraphs.
  • Check paragraphs against the introduction and thesis statement.

Fine-grained details

Check the content of each paragraph, making sure that:

  • each sentence helps support the topic sentence.
  • no unnecessary or irrelevant information is present.
  • all technical terms your audience might not know are identified.

Next, think about sentence structure , grammatical errors, and formatting . Check that you have correctly used transition words and phrases to show the connections between your ideas. Look for typos, cut unnecessary words, and check for consistency in aspects such as heading formatting and spellings .

Finally, you need to make sure your paper is correctly formatted according to the rules of the citation style you are using. For example, you might need to include an MLA heading  or create an APA title page .

Scribbr’s professional editors can help with the revision process with our award-winning proofreading services.

Discover our paper editing service

Checklist: Research paper

I have followed all instructions in the assignment sheet.

My introduction presents my topic in an engaging way and provides necessary background information.

My introduction presents a clear, focused research problem and/or thesis statement .

My paper is logically organized using paragraphs and (if relevant) section headings .

Each paragraph is clearly focused on one central idea, expressed in a clear topic sentence .

Each paragraph is relevant to my research problem or thesis statement.

I have used appropriate transitions  to clarify the connections between sections, paragraphs, and sentences.

My conclusion provides a concise answer to the research question or emphasizes how the thesis has been supported.

My conclusion shows how my research has contributed to knowledge or understanding of my topic.

My conclusion does not present any new points or information essential to my argument.

I have provided an in-text citation every time I refer to ideas or information from a source.

I have included a reference list at the end of my paper, consistently formatted according to a specific citation style .

I have thoroughly revised my paper and addressed any feedback from my professor or supervisor.

I have followed all formatting guidelines (page numbers, headers, spacing, etc.).

You've written a great paper. Make sure it's perfect with the help of a Scribbr editor!

Open Google Slides Download PowerPoint

Is this article helpful?

Other students also liked.

  • Writing a Research Paper Introduction | Step-by-Step Guide
  • Writing a Research Paper Conclusion | Step-by-Step Guide
  • Research Paper Format | APA, MLA, & Chicago Templates

More interesting articles

  • Academic Paragraph Structure | Step-by-Step Guide & Examples
  • Checklist: Writing a Great Research Paper
  • How to Create a Structured Research Paper Outline | Example
  • How to Write a Discussion Section | Tips & Examples
  • How to Write Recommendations in Research | Examples & Tips
  • How to Write Topic Sentences | 4 Steps, Examples & Purpose
  • Research Paper Appendix | Example & Templates
  • Research Paper Damage Control | Managing a Broken Argument
  • What Is a Theoretical Framework? | Guide to Organizing

Unlimited Academic AI-Proofreading

✔ Document error-free in 5minutes ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

  • Skip to main content
  • Skip to ChatBot Assistant
  • Academic Writing
  • What is a Research Paper?
  • Steps in Writing a Research Paper
  • Critical Reading and Writing
  • Punctuation
  • Writing Exercises
  • ELL/ESL Resources

Analysis in Research Papers

To analyze means to break a topic or concept down into its parts in order to inspect and understand it, and to restructure those parts in a way that makes sense to you. In an analytical research paper, you do research to become an expert on a topic so that you can restructure and present the parts of the topic from your own perspective.

For example, you could analyze the role of the mother in the ancient Egyptian family. You could break down that topic into its parts--the mother's duties in the family, social status, and expected role in the larger society--and research those parts in order to present your general perspective and conclusion about the mother's role.

Need Assistance?

If you would like assistance with any type of writing assignment, learning coaches are available to assist you. Please contact Academic Support by emailing [email protected].

Questions or feedback about SUNY Empire's Writing Support?

Contact us at [email protected] .

Smart Cookies

They're not just in our classes – they help power our website. Cookies and similar tools allow us to better understand the experience of our visitors. By continuing to use this website, you consent to SUNY Empire State University's usage of cookies and similar technologies in accordance with the university's Privacy Notice and Cookies Policy .

Join thousands of product people at Insight Out Conf on April 11. Register free.

Insights hub solutions

Analyze data

Uncover deep customer insights with fast, powerful features, store insights, curate and manage insights in one searchable platform, scale research, unlock the potential of customer insights at enterprise scale.

Featured reads

Create a quick summary to identify key takeaways and keep your team in the loop.

Tips and tricks

Make magic with your customer data in Dovetail

a research paper is analyzed at a

Four ways Dovetail helps Product Managers master continuous product discovery

a research paper is analyzed at a

Product updates

Dovetail retro: our biggest releases from the past year

Events and videos

© Dovetail Research Pty. Ltd.

  • How to write a research paper

Last updated

11 January 2024

Reviewed by

With proper planning, knowledge, and framework, completing a research paper can be a fulfilling and exciting experience. 

Though it might initially sound slightly intimidating, this guide will help you embrace the challenge. 

By documenting your findings, you can inspire others and make a difference in your field. Here's how you can make your research paper unique and comprehensive.

  • What is a research paper?

Research papers allow you to demonstrate your knowledge and understanding of a particular topic. These papers are usually lengthier and more detailed than typical essays, requiring deeper insight into the chosen topic.

To write a research paper, you must first choose a topic that interests you and is relevant to the field of study. Once you’ve selected your topic, gathering as many relevant resources as possible, including books, scholarly articles, credible websites, and other academic materials, is essential. You must then read and analyze these sources, summarizing their key points and identifying gaps in the current research.

You can formulate your ideas and opinions once you thoroughly understand the existing research. To get there might involve conducting original research, gathering data, or analyzing existing data sets. It could also involve presenting an original argument or interpretation of the existing research.

Writing a successful research paper involves presenting your findings clearly and engagingly, which might involve using charts, graphs, or other visual aids to present your data and using concise language to explain your findings. You must also ensure your paper adheres to relevant academic formatting guidelines, including proper citations and references.

Overall, writing a research paper requires a significant amount of time, effort, and attention to detail. However, it is also an enriching experience that allows you to delve deeply into a subject that interests you and contribute to the existing body of knowledge in your chosen field.

  • How long should a research paper be?

Research papers are deep dives into a topic. Therefore, they tend to be longer pieces of work than essays or opinion pieces. 

However, a suitable length depends on the complexity of the topic and your level of expertise. For instance, are you a first-year college student or an experienced professional? 

Also, remember that the best research papers provide valuable information for the benefit of others. Therefore, the quality of information matters most, not necessarily the length. Being concise is valuable.

Following these best practice steps will help keep your process simple and productive:

1. Gaining a deep understanding of any expectations

Before diving into your intended topic or beginning the research phase, take some time to orient yourself. Suppose there’s a specific topic assigned to you. In that case, it’s essential to deeply understand the question and organize your planning and approach in response. Pay attention to the key requirements and ensure you align your writing accordingly. 

This preparation step entails

Deeply understanding the task or assignment

Being clear about the expected format and length

Familiarizing yourself with the citation and referencing requirements 

Understanding any defined limits for your research contribution

Where applicable, speaking to your professor or research supervisor for further clarification

2. Choose your research topic

Select a research topic that aligns with both your interests and available resources. Ideally, focus on a field where you possess significant experience and analytical skills. In crafting your research paper, it's crucial to go beyond summarizing existing data and contribute fresh insights to the chosen area.

Consider narrowing your focus to a specific aspect of the topic. For example, if exploring the link between technology and mental health, delve into how social media use during the pandemic impacts the well-being of college students. Conducting interviews and surveys with students could provide firsthand data and unique perspectives, adding substantial value to the existing knowledge.

When finalizing your topic, adhere to legal and ethical norms in the relevant area (this ensures the integrity of your research, protects participants' rights, upholds intellectual property standards, and ensures transparency and accountability). Following these principles not only maintains the credibility of your work but also builds trust within your academic or professional community.

For instance, in writing about medical research, consider legal and ethical norms, including patient confidentiality laws and informed consent requirements. Similarly, if analyzing user data on social media platforms, be mindful of data privacy regulations, ensuring compliance with laws governing personal information collection and use. Aligning with legal and ethical standards not only avoids potential issues but also underscores the responsible conduct of your research.

3. Gather preliminary research

Once you’ve landed on your topic, it’s time to explore it further. You’ll want to discover more about available resources and existing research relevant to your assignment at this stage. 

This exploratory phase is vital as you may discover issues with your original idea or realize you have insufficient resources to explore the topic effectively. This key bit of groundwork allows you to redirect your research topic in a different, more feasible, or more relevant direction if necessary. 

Spending ample time at this stage ensures you gather everything you need, learn as much as you can about the topic, and discover gaps where the topic has yet to be sufficiently covered, offering an opportunity to research it further. 

4. Define your research question

To produce a well-structured and focused paper, it is imperative to formulate a clear and precise research question that will guide your work. Your research question must be informed by the existing literature and tailored to the scope and objectives of your project. By refining your focus, you can produce a thoughtful and engaging paper that effectively communicates your ideas to your readers.

5. Write a thesis statement

A thesis statement is a one-to-two-sentence summary of your research paper's main argument or direction. It serves as an overall guide to summarize the overall intent of the research paper for you and anyone wanting to know more about the research.

A strong thesis statement is:

Concise and clear: Explain your case in simple sentences (avoid covering multiple ideas). It might help to think of this section as an elevator pitch.

Specific: Ensure that there is no ambiguity in your statement and that your summary covers the points argued in the paper.

Debatable: A thesis statement puts forward a specific argument––it is not merely a statement but a debatable point that can be analyzed and discussed.

Here are three thesis statement examples from different disciplines:

Psychology thesis example: "We're studying adults aged 25-40 to see if taking short breaks for mindfulness can help with stress. Our goal is to find practical ways to manage anxiety better."

Environmental science thesis example: "This research paper looks into how having more city parks might make the air cleaner and keep people healthier. I want to find out if more green spaces means breathing fewer carcinogens in big cities."

UX research thesis example: "This study focuses on improving mobile banking for older adults using ethnographic research, eye-tracking analysis, and interactive prototyping. We investigate the usefulness of eye-tracking analysis with older individuals, aiming to spark debate and offer fresh perspectives on UX design and digital inclusivity for the aging population."

6. Conduct in-depth research

A research paper doesn’t just include research that you’ve uncovered from other papers and studies but your fresh insights, too. You will seek to become an expert on your topic––understanding the nuances in the current leading theories. You will analyze existing research and add your thinking and discoveries.  It's crucial to conduct well-designed research that is rigorous, robust, and based on reliable sources. Suppose a research paper lacks evidence or is biased. In that case, it won't benefit the academic community or the general public. Therefore, examining the topic thoroughly and furthering its understanding through high-quality research is essential. That usually means conducting new research. Depending on the area under investigation, you may conduct surveys, interviews, diary studies, or observational research to uncover new insights or bolster current claims.

7. Determine supporting evidence

Not every piece of research you’ve discovered will be relevant to your research paper. It’s important to categorize the most meaningful evidence to include alongside your discoveries. It's important to include evidence that doesn't support your claims to avoid exclusion bias and ensure a fair research paper.

8. Write a research paper outline

Before diving in and writing the whole paper, start with an outline. It will help you to see if more research is needed, and it will provide a framework by which to write a more compelling paper. Your supervisor may even request an outline to approve before beginning to write the first draft of the full paper. An outline will include your topic, thesis statement, key headings, short summaries of the research, and your arguments.

9. Write your first draft

Once you feel confident about your outline and sources, it’s time to write your first draft. While penning a long piece of content can be intimidating, if you’ve laid the groundwork, you will have a structure to help you move steadily through each section. To keep up motivation and inspiration, it’s often best to keep the pace quick. Stopping for long periods can interrupt your flow and make jumping back in harder than writing when things are fresh in your mind.

10. Cite your sources correctly

It's always a good practice to give credit where it's due, and the same goes for citing any works that have influenced your paper. Building your arguments on credible references adds value and authenticity to your research. In the formatting guidelines section, you’ll find an overview of different citation styles (MLA, CMOS, or APA), which will help you meet any publishing or academic requirements and strengthen your paper's credibility. It is essential to follow the guidelines provided by your school or the publication you are submitting to ensure the accuracy and relevance of your citations.

11. Ensure your work is original

It is crucial to ensure the originality of your paper, as plagiarism can lead to serious consequences. To avoid plagiarism, you should use proper paraphrasing and quoting techniques. Paraphrasing is rewriting a text in your own words while maintaining the original meaning. Quoting involves directly citing the source. Giving credit to the original author or source is essential whenever you borrow their ideas or words. You can also use plagiarism detection tools such as Scribbr or Grammarly to check the originality of your paper. These tools compare your draft writing to a vast database of online sources. If you find any accidental plagiarism, you should correct it immediately by rephrasing or citing the source.

12. Revise, edit, and proofread

One of the essential qualities of excellent writers is their ability to understand the importance of editing and proofreading. Even though it's tempting to call it a day once you've finished your writing, editing your work can significantly improve its quality. It's natural to overlook the weaker areas when you've just finished writing a paper. Therefore, it's best to take a break of a day or two, or even up to a week, to refresh your mind. This way, you can return to your work with a new perspective. After some breathing room, you can spot any inconsistencies, spelling and grammar errors, typos, or missing citations and correct them. 

  • The best research paper format 

The format of your research paper should align with the requirements set forth by your college, school, or target publication. 

There is no one “best” format, per se. Depending on the stated requirements, you may need to include the following elements:

Title page: The title page of a research paper typically includes the title, author's name, and institutional affiliation and may include additional information such as a course name or instructor's name. 

Table of contents: Include a table of contents to make it easy for readers to find specific sections of your paper.

Abstract: The abstract is a summary of the purpose of the paper.

Methods : In this section, describe the research methods used. This may include collecting data, conducting interviews, or doing field research.

Results: Summarize the conclusions you drew from your research in this section.

Discussion: In this section, discuss the implications of your research. Be sure to mention any significant limitations to your approach and suggest areas for further research.

Tables, charts, and illustrations: Use tables, charts, and illustrations to help convey your research findings and make them easier to understand.

Works cited or reference page: Include a works cited or reference page to give credit to the sources that you used to conduct your research.

Bibliography: Provide a list of all the sources you consulted while conducting your research.

Dedication and acknowledgments : Optionally, you may include a dedication and acknowledgments section to thank individuals who helped you with your research.

  • General style and formatting guidelines

Formatting your research paper means you can submit it to your college, journal, or other publications in compliance with their criteria.

Research papers tend to follow the American Psychological Association (APA), Modern Language Association (MLA), or Chicago Manual of Style (CMOS) guidelines.

Here’s how each style guide is typically used:

Chicago Manual of Style (CMOS):

CMOS is a versatile style guide used for various types of writing. It's known for its flexibility and use in the humanities. CMOS provides guidelines for citations, formatting, and overall writing style. It allows for both footnotes and in-text citations, giving writers options based on their preferences or publication requirements.

American Psychological Association (APA):

APA is common in the social sciences. It’s hailed for its clarity and emphasis on precision. It has specific rules for citing sources, creating references, and formatting papers. APA style uses in-text citations with an accompanying reference list. It's designed to convey information efficiently and is widely used in academic and scientific writing.

Modern Language Association (MLA):

MLA is widely used in the humanities, especially literature and language studies. It emphasizes the author-page format for in-text citations and provides guidelines for creating a "Works Cited" page. MLA is known for its focus on the author's name and the literary works cited. It’s frequently used in disciplines that prioritize literary analysis and critical thinking.

To confirm you're using the latest style guide, check the official website or publisher's site for updates, consult academic resources, and verify the guide's publication date. Online platforms and educational resources may also provide summaries and alerts about any revisions or additions to the style guide.

Citing sources

When working on your research paper, it's important to cite the sources you used properly. Your citation style will guide you through this process. Generally, there are three parts to citing sources in your research paper: 

First, provide a brief citation in the body of your essay. This is also known as a parenthetical or in-text citation. 

Second, include a full citation in the Reference list at the end of your paper. Different types of citations include in-text citations, footnotes, and reference lists. 

In-text citations include the author's surname and the date of the citation. 

Footnotes appear at the bottom of each page of your research paper. They may also be summarized within a reference list at the end of the paper. 

A reference list includes all of the research used within the paper at the end of the document. It should include the author, date, paper title, and publisher listed in the order that aligns with your citation style.

10 research paper writing tips:

Following some best practices is essential to writing a research paper that contributes to your field of study and creates a positive impact.

These tactics will help you structure your argument effectively and ensure your work benefits others:

Clear and precise language:  Ensure your language is unambiguous. Use academic language appropriately, but keep it simple. Also, provide clear takeaways for your audience.

Effective idea separation:  Organize the vast amount of information and sources in your paper with paragraphs and titles. Create easily digestible sections for your readers to navigate through.

Compelling intro:  Craft an engaging introduction that captures your reader's interest. Hook your audience and motivate them to continue reading.

Thorough revision and editing:  Take the time to review and edit your paper comprehensively. Use tools like Grammarly to detect and correct small, overlooked errors.

Thesis precision:  Develop a clear and concise thesis statement that guides your paper. Ensure that your thesis aligns with your research's overall purpose and contribution.

Logical flow of ideas:  Maintain a logical progression throughout the paper. Use transitions effectively to connect different sections and maintain coherence.

Critical evaluation of sources:  Evaluate and critically assess the relevance and reliability of your sources. Ensure that your research is based on credible and up-to-date information.

Thematic consistency:  Maintain a consistent theme throughout the paper. Ensure that all sections contribute cohesively to the overall argument.

Relevant supporting evidence:  Provide concise and relevant evidence to support your arguments. Avoid unnecessary details that may distract from the main points.

Embrace counterarguments:  Acknowledge and address opposing views to strengthen your position. Show that you have considered alternative arguments in your field.

7 research tips 

If you want your paper to not only be well-written but also contribute to the progress of human knowledge, consider these tips to take your paper to the next level:

Selecting the appropriate topic: The topic you select should align with your area of expertise, comply with the requirements of your project, and have sufficient resources for a comprehensive investigation.

Use academic databases: Academic databases such as PubMed, Google Scholar, and JSTOR offer a wealth of research papers that can help you discover everything you need to know about your chosen topic.

Critically evaluate sources: It is important not to accept research findings at face value. Instead, it is crucial to critically analyze the information to avoid jumping to conclusions or overlooking important details. A well-written research paper requires a critical analysis with thorough reasoning to support claims.

Diversify your sources: Expand your research horizons by exploring a variety of sources beyond the standard databases. Utilize books, conference proceedings, and interviews to gather diverse perspectives and enrich your understanding of the topic.

Take detailed notes: Detailed note-taking is crucial during research and can help you form the outline and body of your paper.

Stay up on trends: Keep abreast of the latest developments in your field by regularly checking for recent publications. Subscribe to newsletters, follow relevant journals, and attend conferences to stay informed about emerging trends and advancements. 

Engage in peer review: Seek feedback from peers or mentors to ensure the rigor and validity of your research. Peer review helps identify potential weaknesses in your methodology and strengthens the overall credibility of your findings.

  • The real-world impact of research papers

Writing a research paper is more than an academic or business exercise. The experience provides an opportunity to explore a subject in-depth, broaden one's understanding, and arrive at meaningful conclusions. With careful planning, dedication, and hard work, writing a research paper can be a fulfilling and enriching experience contributing to advancing knowledge.

How do I publish my research paper? 

Many academics wish to publish their research papers. While challenging, your paper might get traction if it covers new and well-written information. To publish your research paper, find a target publication, thoroughly read their guidelines, format your paper accordingly, and send it to them per their instructions. You may need to include a cover letter, too. After submission, your paper may be peer-reviewed by experts to assess its legitimacy, quality, originality, and methodology. Following review, you will be informed by the publication whether they have accepted or rejected your paper. 

What is a good opening sentence for a research paper? 

Beginning your research paper with a compelling introduction can ensure readers are interested in going further. A relevant quote, a compelling statistic, or a bold argument can start the paper and hook your reader. Remember, though, that the most important aspect of a research paper is the quality of the information––not necessarily your ability to storytell, so ensure anything you write aligns with your goals.

Research paper vs. a research proposal—what’s the difference?

While some may confuse research papers and proposals, they are different documents. 

A research proposal comes before a research paper. It is a detailed document that outlines an intended area of exploration. It includes the research topic, methodology, timeline, sources, and potential conclusions. Research proposals are often required when seeking approval to conduct research. 

A research paper is a summary of research findings. A research paper follows a structured format to present those findings and construct an argument or conclusion.

Get started today

Go from raw data to valuable insights with a flexible research platform

Editor’s picks

Last updated: 21 December 2023

Last updated: 16 December 2023

Last updated: 17 February 2024

Last updated: 19 November 2023

Last updated: 5 March 2024

Last updated: 15 February 2024

Last updated: 11 March 2024

Last updated: 12 December 2023

Last updated: 6 March 2024

Last updated: 10 April 2023

Last updated: 20 December 2023

Latest articles

Related topics.

  • 10 research paper

Log in or sign up

Get started for free

Research Paper Analysis: How to Analyze a Research Article + Example

Why might you need to analyze research? First of all, when you analyze a research article, you begin to understand your assigned reading better. It is also the first step toward learning how to write your own research articles and literature reviews. However, if you have never written a research paper before, it may be difficult for you to analyze one. After all, you may not know what criteria to use to evaluate it. But don’t panic! We will help you figure it out!

In this article, our team has explained how to analyze research papers quickly and effectively. At the end, you will also find a research analysis paper example to see how everything works in practice.

  • 🔤 Research Analysis Definition

📊 How to Analyze a Research Article

✍️ how to write a research analysis.

  • 📝 Analysis Example
  • 🔎 More Examples

🔗 References

🔤 research paper analysis: what is it.

A research paper analysis is an academic writing assignment in which you analyze a scholarly article’s methodology, data, and findings. In essence, “to analyze” means to break something down into components and assess each of them individually and in relation to each other. The goal of an analysis is to gain a deeper understanding of a subject. So, when you analyze a research article, you dissect it into elements like data sources , research methods, and results and evaluate how they contribute to the study’s strengths and weaknesses.

📋 Research Analysis Format

A research analysis paper has a pretty straightforward structure. Check it out below!

Research articles usually include the following sections: introduction, methods, results, and discussion. In the following paragraphs, we will discuss how to analyze a scientific article with a focus on each of its parts.

This image shows the main sections of a research article.

How to Analyze a Research Paper: Purpose

The purpose of the study is usually outlined in the introductory section of the article. Analyzing the research paper’s objectives is critical to establish the context for the rest of your analysis.

When analyzing the research aim, you should evaluate whether it was justified for the researchers to conduct the study. In other words, you should assess whether their research question was significant and whether it arose from existing literature on the topic.

Here are some questions that may help you analyze a research paper’s purpose:

  • Why was the research carried out?
  • What gaps does it try to fill, or what controversies to settle?
  • How does the study contribute to its field?
  • Do you agree with the author’s justification for approaching this particular question in this way?

How to Analyze a Paper: Methods

When analyzing the methodology section , you should indicate the study’s research design (qualitative, quantitative, or mixed) and methods used (for example, experiment, case study, correlational research, survey, etc.). After that, you should assess whether these methods suit the research purpose. In other words, do the chosen methods allow scholars to answer their research questions within the scope of their study?

For example, if scholars wanted to study US students’ average satisfaction with their higher education experience, they could conduct a quantitative survey . However, if they wanted to gain an in-depth understanding of the factors influencing US students’ satisfaction with higher education, qualitative interviews would be more appropriate.

When analyzing methods, you should also look at the research sample . Did the scholars use randomization to select study participants? Was the sample big enough for the results to be generalizable to a larger population?

You can also answer the following questions in your methodology analysis:

  • Is the methodology valid? In other words, did the researchers use methods that accurately measure the variables of interest?
  • Is the research methodology reliable? A research method is reliable if it can produce stable and consistent results under the same circumstances.
  • Is the study biased in any way?
  • What are the limitations of the chosen methodology?

How to Analyze Research Articles’ Results

You should start the analysis of the article results by carefully reading the tables, figures, and text. Check whether the findings correspond to the initial research purpose. See whether the results answered the author’s research questions or supported the hypotheses stated in the introduction.

To analyze the results section effectively, answer the following questions:

  • What are the major findings of the study?
  • Did the author present the results clearly and unambiguously?
  • Are the findings statistically significant ?
  • Does the author provide sufficient information on the validity and reliability of the results?
  • Have you noticed any trends or patterns in the data that the author did not mention?

How to Analyze Research: Discussion

Finally, you should analyze the authors’ interpretation of results and its connection with research objectives. Examine what conclusions the authors drew from their study and whether these conclusions answer the original question.

You should also pay attention to how the authors used findings to support their conclusions. For example, you can reflect on why their findings support that particular inference and not another one. Moreover, more than one conclusion can sometimes be made based on the same set of results. If that’s the case with your article, you should analyze whether the authors addressed other interpretations of their findings .

Here are some useful questions you can use to analyze the discussion section:

  • What findings did the authors use to support their conclusions?
  • How do the researchers’ conclusions compare to other studies’ findings?
  • How does this study contribute to its field?
  • What future research directions do the authors suggest?
  • What additional insights can you share regarding this article? For example, do you agree with the results? What other questions could the researchers have answered?

This image shows how to analyze a research article.

Now, you know how to analyze an article that presents research findings. However, it’s just a part of the work you have to do to complete your paper. So, it’s time to learn how to write research analysis! Check out the steps below!

1. Introduce the Article

As with most academic assignments, you should start your research article analysis with an introduction. Here’s what it should include:

  • The article’s publication details . Specify the title of the scholarly work you are analyzing, its authors, and publication date. Remember to enclose the article’s title in quotation marks and write it in title case .
  • The article’s main point . State what the paper is about. What did the authors study, and what was their major finding?
  • Your thesis statement . End your introduction with a strong claim summarizing your evaluation of the article. Consider briefly outlining the research paper’s strengths, weaknesses, and significance in your thesis.

Keep your introduction brief. Save the word count for the “meat” of your paper — that is, for the analysis.

2. Summarize the Article

Now, you should write a brief and focused summary of the scientific article. It should be shorter than your analysis section and contain all the relevant details about the research paper.

Here’s what you should include in your summary:

  • The research purpose . Briefly explain why the research was done. Identify the authors’ purpose and research questions or hypotheses .
  • Methods and results . Summarize what happened in the study. State only facts, without the authors’ interpretations of them. Avoid using too many numbers and details; instead, include only the information that will help readers understand what happened.
  • The authors’ conclusions . Outline what conclusions the researchers made from their study. In other words, describe how the authors explained the meaning of their findings.

If you need help summarizing an article, you can use our free summary generator .

3. Write Your Research Analysis

The analysis of the study is the most crucial part of this assignment type. Its key goal is to evaluate the article critically and demonstrate your understanding of it.

We’ve already covered how to analyze a research article in the section above. Here’s a quick recap:

  • Analyze whether the study’s purpose is significant and relevant.
  • Examine whether the chosen methodology allows for answering the research questions.
  • Evaluate how the authors presented the results.
  • Assess whether the authors’ conclusions are grounded in findings and answer the original research questions.

Although you should analyze the article critically, it doesn’t mean you only should criticize it. If the authors did a good job designing and conducting their study, be sure to explain why you think their work is well done. Also, it is a great idea to provide examples from the article to support your analysis.

4. Conclude Your Analysis of Research Paper

A conclusion is your chance to reflect on the study’s relevance and importance. Explain how the analyzed paper can contribute to the existing knowledge or lead to future research. Also, you need to summarize your thoughts on the article as a whole. Avoid making value judgments — saying that the paper is “good” or “bad.” Instead, use more descriptive words and phrases such as “This paper effectively showed…”

Need help writing a compelling conclusion? Try our free essay conclusion generator !

5. Revise and Proofread

Last but not least, you should carefully proofread your paper to find any punctuation, grammar, and spelling mistakes. Start by reading your work out loud to ensure that your sentences fit together and sound cohesive. Also, it can be helpful to ask your professor or peer to read your work and highlight possible weaknesses or typos.

This image shows how to write a research analysis.

📝 Research Paper Analysis Example

We have prepared an analysis of a research paper example to show how everything works in practice.

No Homework Policy: Research Article Analysis Example

This paper aims to analyze the research article entitled “No Assignment: A Boon or a Bane?” by Cordova, Pagtulon-an, and Tan (2019). This study examined the effects of having and not having assignments on weekends on high school students’ performance and transmuted mean scores. This article effectively shows the value of homework for students, but larger studies are needed to support its findings.

Cordova et al. (2019) conducted a descriptive quantitative study using a sample of 115 Grade 11 students of the Central Mindanao University Laboratory High School in the Philippines. The sample was divided into two groups: the first received homework on weekends, while the second didn’t. The researchers compared students’ performance records made by teachers and found that students who received assignments performed better than their counterparts without homework.

The purpose of this study is highly relevant and justified as this research was conducted in response to the debates about the “No Homework Policy” in the Philippines. Although the descriptive research design used by the authors allows to answer the research question, the study could benefit from an experimental design. This way, the authors would have firm control over variables. Additionally, the study’s sample size was not large enough for the findings to be generalized to a larger population.

The study results are presented clearly, logically, and comprehensively and correspond to the research objectives. The researchers found that students’ mean grades decreased in the group without homework and increased in the group with homework. Based on these findings, the authors concluded that homework positively affected students’ performance. This conclusion is logical and grounded in data.

This research effectively showed the importance of homework for students’ performance. Yet, since the sample size was relatively small, larger studies are needed to ensure the authors’ conclusions can be generalized to a larger population.

🔎 More Research Analysis Paper Examples

Do you want another research analysis example? Check out the best analysis research paper samples below:

  • Gracious Leadership Principles for Nurses: Article Analysis
  • Effective Mental Health Interventions: Analysis of an Article
  • Nursing Turnover: Article Analysis
  • Nursing Practice Issue: Qualitative Research Article Analysis
  • Quantitative Article Critique in Nursing
  • LIVE Program: Quantitative Article Critique
  • Evidence-Based Practice Beliefs and Implementation: Article Critique
  • “Differential Effectiveness of Placebo Treatments”: Research Paper Analysis
  • “Family-Based Childhood Obesity Prevention Interventions”: Analysis Research Paper Example
  • “Childhood Obesity Risk in Overweight Mothers”: Article Analysis
  • “Fostering Early Breast Cancer Detection” Article Analysis
  • Lesson Planning for Diversity: Analysis of an Article
  • Journal Article Review: Correlates of Physical Violence at School
  • Space and the Atom: Article Analysis
  • “Democracy and Collective Identity in the EU and the USA”: Article Analysis
  • China’s Hegemonic Prospects: Article Review
  • Article Analysis: Fear of Missing Out
  • Article Analysis: “Perceptions of ADHD Among Diagnosed Children and Their Parents”
  • Codependence, Narcissism, and Childhood Trauma: Analysis of the Article
  • Relationship Between Work Intensity, Workaholism, Burnout, and MSC: Article Review

We hope that our article on research paper analysis has been helpful. If you liked it, please share this article with your friends!

  • Analyzing Research Articles: A Guide for Readers and Writers | Sam Mathews
  • Summary and Analysis of Scientific Research Articles | San José State University Writing Center
  • Analyzing Scholarly Articles | Texas A&M University
  • Article Analysis Assignment | University of Wisconsin-Madison
  • How to Summarize a Research Article | University of Connecticut
  • Critique/Review of Research Articles | University of Calgary
  • Art of Reading a Journal Article: Methodically and Effectively | PubMed Central
  • Write a Critical Review of a Scientific Journal Article | McLaughlin Library
  • How to Read and Understand a Scientific Paper: A Guide for Non-scientists | LSE
  • How to Analyze Journal Articles | Classroom

How to Write an Animal Testing Essay: Tips for Argumentative & Persuasive Papers

Descriptive essay topics: examples, outline, & more.

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

a research paper is analyzed at a

Home Market Research

Data Analysis in Research: Types & Methods

data-analysis-in-research

Content Index

Why analyze data in research?

Types of data in research, finding patterns in the qualitative data, methods used for data analysis in qualitative research, preparing data for analysis, methods used for data analysis in quantitative research, considerations in research data analysis, what is data analysis in research.

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. 

Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.

LEARN ABOUT: Research Process Steps

On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.

We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”

Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.

Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research. 

Create a Free Account

Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.

  • Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
  • Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
  • Categorical data: It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.

Learn More : Examples of Qualitative Data in Education

Data analysis in qualitative research

Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .

Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words. 

For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find  “food”  and  “hunger” are the most commonly used words and will highlight them for further analysis.

LEARN ABOUT: Level of Analysis

The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.  

For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’

The scrutiny-based technique is also one of the highly recommended  text analysis  methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other. 

For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .

Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.

Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,

  • Content Analysis:  It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
  • Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and  surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
  • Discourse Analysis:  Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
  • Grounded Theory:  When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.

LEARN ABOUT: 12 Best Tools for Researchers

Data analysis in quantitative research

The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.

Phase I: Data Validation

Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages

  • Fraud: To ensure an actual human being records each response to the survey or the questionnaire
  • Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
  • Procedure: To ensure ethical standards were maintained while collecting the data sample
  • Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.

Phase II: Data Editing

More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.

Phase III: Data Coding

Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.

LEARN ABOUT: Steps in Qualitative Research

After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .

Descriptive statistics

This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.

Measures of Frequency

  • Count, Percent, Frequency
  • It is used to denote home often a particular event occurs.
  • Researchers use it when they want to showcase how often a response is given.

Measures of Central Tendency

  • Mean, Median, Mode
  • The method is widely used to demonstrate distribution by various points.
  • Researchers use this method when they want to showcase the most commonly or averagely indicated response.

Measures of Dispersion or Variation

  • Range, Variance, Standard deviation
  • Here the field equals high/low points.
  • Variance standard deviation = difference between the observed score and mean
  • It is used to identify the spread of scores by stating intervals.
  • Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.

Measures of Position

  • Percentile ranks, Quartile ranks
  • It relies on standardized scores helping researchers to identify the relationship between different scores.
  • It is often used when researchers want to compare scores with the average count.

For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided  sample  without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.

Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.

Inferential statistics

Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected  sample  to reason that about 80-90% of people like the movie. 

Here are two significant areas of inferential statistics.

  • Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
  • Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.

These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.

Here are some of the commonly used methods for data analysis in research.

  • Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
  • Cross-tabulation: Also called contingency tables,  cross-tabulation  is used to analyze the relationship between multiple variables.  Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
  • Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
  • Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
  • Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection  methods, and choose samples.

LEARN ABOUT: Best Data Collection Tools

  • The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing  audience  sample il to draw a biased inference.
  • Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
  • The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.

LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.

LEARN ABOUT: Average Order Value

QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.

MORE LIKE THIS

idea management software

Unlocking Creativity With 10 Top Idea Management Software

Mar 23, 2024

website optimization tools

20 Best Website Optimization Tools to Improve Your Website

Mar 22, 2024

digital customer experience software

15 Best Digital Customer Experience Software of 2024

product experience software

15 Best Product Experience Software of 2024

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Purdue Online Writing Lab Purdue OWL® College of Liberal Arts

OWL logo

Welcome to the Purdue OWL

This page is brought to you by the OWL at Purdue University. When printing this page, you must include the entire legal notice.

Copyright ©1995-2018 by The Writing Lab & The OWL at Purdue and Purdue University. All rights reserved. This material may not be published, reproduced, broadcast, rewritten, or redistributed without permission. Use of this site constitutes acceptance of our terms and conditions of fair use.

Primary research involves collecting data about a given subject directly from the real world. This section includes information on what primary research is, how to get started, ethics involved with primary research and different types of research you can do. It includes details about interviews, surveys, observations, and analysis.

Analysis is a type of primary research that involves finding and interpreting patterns in data, classifying those patterns, and generalizing the results. It is useful when looking at actions, events, or occurrences in different texts, media, or publications. Analysis can usually be done without considering most of the ethical issues discussed in the overview, as you are not working with people but rather publicly accessible documents. Analysis can be done on new documents or performed on raw data that you yourself have collected.

Here are several examples of analysis:

  • Recording commercials on three major television networks and analyzing race and gender within the commercials to discover some conclusion.
  • Analyzing the historical trends in public laws by looking at the records at a local courthouse.
  • Analyzing topics of discussion in chat rooms for patterns based on gender and age.

Analysis research involves several steps:

  • Finding and collecting documents.
  • Specifying criteria or patterns that you are looking for.
  • Analyzing documents for patterns, noting number of occurrences or other factors.

13.5 Research Process: Making Notes, Synthesizing Information, and Keeping a Research Log

Learning outcomes.

By the end of this section, you will be able to:

  • Employ the methods and technologies commonly used for research and communication within various fields.
  • Practice and apply strategies such as interpretation, synthesis, response, and critique to compose texts that integrate the writer’s ideas with those from appropriate sources.
  • Analyze and make informed decisions about intellectual property based on the concepts that motivate them.
  • Apply citation conventions systematically.

As you conduct research, you will work with a range of “texts” in various forms, including sources and documents from online databases as well as images, audio, and video files from the Internet. You may also work with archival materials and with transcribed and analyzed primary data. Additionally, you will be taking notes and recording quotations from secondary sources as you find materials that shape your understanding of your topic and, at the same time, provide you with facts and perspectives. You also may download articles as PDFs that you then annotate. Like many other students, you may find it challenging to keep so much material organized, accessible, and easy to work with while you write a major research paper. As it does for many of those students, a research log for your ideas and sources will help you keep track of the scope, purpose, and possibilities of any research project.

A research log is essentially a journal in which you collect information, ask questions, and monitor the results. Even if you are completing the annotated bibliography for Writing Process: Informing and Analyzing , keeping a research log is an effective organizational tool. Like Lily Tran’s research log entry, most entries have three parts: a part for notes on secondary sources, a part for connections to the thesis or main points, and a part for your own notes or questions. Record source notes by date, and allow room to add cross-references to other entries.

Summary of Assignment: Research Log

Your assignment is to create a research log similar to the student model. You will use it for the argumentative research project assigned in Writing Process: Integrating Research to record all secondary source information: your notes, complete publication data, relation to thesis, and other information as indicated in the right-hand column of the sample entry.

Another Lens. A somewhat different approach to maintaining a research log is to customize it to your needs or preferences. You can apply shading or color coding to headers, rows, and/or columns in the three-column format (for colors and shading). Or you can add columns to accommodate more information, analysis, synthesis, or commentary, formatting them as you wish. Consider adding a column for questions only or one for connections to other sources. Finally, consider a different visual format , such as one without columns. Another possibility is to record some of your comments and questions so that you have an aural rather than a written record of these.

Writing Center

At this point, or at any other point during the research and writing process, you may find that your school’s writing center can provide extensive assistance. If you are unfamiliar with the writing center, now is a good time to pay your first visit. Writing centers provide free peer tutoring for all types and phases of writing. Discussing your research with a trained writing center tutor can help you clarify, analyze, and connect ideas as well as provide feedback on works in progress.

Quick Launch: Beginning Questions

You may begin your research log with some open pages in which you freewrite, exploring answers to the following questions. Although you generally would do this at the beginning, it is a process to which you likely will return as you find more information about your topic and as your focus changes, as it may during the course of your research.

  • What information have I found so far?
  • What do I still need to find?
  • Where am I most likely to find it?

These are beginning questions. Like Lily Tran, however, you will come across general questions or issues that a quick note or freewrite may help you resolve. The key to this section is to revisit it regularly. Written answers to these and other self-generated questions in your log clarify your tasks as you go along, helping you articulate ideas and examine supporting evidence critically. As you move further into the process, consider answering the following questions in your freewrite:

  • What evidence looks as though it best supports my thesis?
  • What evidence challenges my working thesis?
  • How is my thesis changing from where it started?

Creating the Research Log

As you gather source material for your argumentative research paper, keep in mind that the research is intended to support original thinking. That is, you are not writing an informational report in which you simply supply facts to readers. Instead, you are writing to support a thesis that shows original thinking, and you are collecting and incorporating research into your paper to support that thinking. Therefore, a research log, whether digital or handwritten, is a great way to keep track of your thinking as well as your notes and bibliographic information.

In the model below, Lily Tran records the correct MLA bibliographic citation for the source. Then, she records a note and includes the in-text citation here to avoid having to retrieve this information later. Perhaps most important, Tran records why she noted this information—how it supports her thesis: The human race must turn to sustainable food systems that provide healthy diets with minimal environmental impact, starting now . Finally, she makes a note to herself about an additional visual to include in the final paper to reinforce the point regarding the current pressure on food systems. And she connects the information to other information she finds, thus cross-referencing and establishing a possible synthesis. Use a format similar to that in Table 13.4 to begin your own research log.

Types of Research Notes

Taking good notes will make the research process easier by enabling you to locate and remember sources and use them effectively. While some research projects requiring only a few sources may seem easily tracked, research projects requiring more than a few sources are more effectively managed when you take good bibliographic and informational notes. As you gather evidence for your argumentative research paper, follow the descriptions and the electronic model to record your notes. You can combine these with your research log, or you can use the research log for secondary sources and your own note-taking system for primary sources if a division of this kind is helpful. Either way, be sure to include all necessary information.

Bibliographic Notes

These identify the source you are using. When you locate a useful source, record the information necessary to find that source again. It is important to do this as you find each source, even before taking notes from it. If you create bibliographic notes as you go along, then you can easily arrange them in alphabetical order later to prepare the reference list required at the end of formal academic papers. If your instructor requires you to use MLA formatting for your essay, be sure to record the following information:

  • Title of source
  • Title of container (larger work in which source is included)
  • Other contributors
  • Publication date

When using MLA style with online sources, also record the following information:

  • Date of original publication
  • Date of access
  • DOI (A DOI, or digital object identifier, is a series of digits and letters that leads to the location of an online source. Articles in journals are often assigned DOIs to ensure that the source can be located, even if the URL changes. If your source is listed with a DOI, use that instead of a URL.)

It is important to understand which documentation style your instructor will require you to use. Check the Handbook for MLA Documentation and Format and APA Documentation and Format styles . In addition, you can check the style guide information provided by the Purdue Online Writing Lab .

Informational Notes

These notes record the relevant information found in your sources. When writing your essay, you will work from these notes, so be sure they contain all the information you need from every source you intend to use. Also try to focus your notes on your research question so that their relevance is clear when you read them later. To avoid confusion, work with separate entries for each piece of information recorded. At the top of each entry, identify the source through brief bibliographic identification (author and title), and note the page numbers on which the information appears. Also helpful is to add personal notes, including ideas for possible use of the information or cross-references to other information. As noted in Writing Process: Integrating Research , you will be using a variety of formats when borrowing from sources. Below is a quick review of these formats in terms of note-taking processes. By clarifying whether you are quoting directly, paraphrasing, or summarizing during these stages, you can record information accurately and thus take steps to avoid plagiarism.

Direct Quotations, Paraphrases, and Summaries

A direct quotation is an exact duplication of the author’s words as they appear in the original source. In your notes, put quotation marks around direct quotations so that you remember these words are the author’s, not yours. One advantage of copying exact quotations is that it allows you to decide later whether to include a quotation, paraphrase, or summary. ln general, though, use direct quotations only when the author’s words are particularly lively or persuasive.

A paraphrase is a restatement of the author’s words in your own words. Paraphrase to simplify or clarify the original author’s point. In your notes, use paraphrases when you need to record details but not exact words.

A summary is a brief condensation or distillation of the main point and most important details of the original source. Write a summary in your own words, with facts and ideas accurately represented. A summary is useful when specific details in the source are unimportant or irrelevant to your research question. You may find you can summarize several paragraphs or even an entire article or chapter in just a few sentences without losing useful information. It is a good idea to note when your entry contains a summary to remind you later that it omits detailed information. See Writing Process Integrating Research for more detailed information and examples of quotations, paraphrases, and summaries and when to use them.

Other Systems for Organizing Research Logs and Digital Note-Taking

Students often become frustrated and at times overwhelmed by the quantity of materials to be managed in the research process. If this is your first time working with both primary and secondary sources, finding ways to keep all of the information in one place and well organized is essential.

Because gathering primary evidence may be a relatively new practice, this section is designed to help you navigate the process. As mentioned earlier, information gathered in fieldwork is not cataloged, organized, indexed, or shelved for your convenience. Obtaining it requires diligence, energy, and planning. Online resources can assist you with keeping a research log. Your college library may have subscriptions to tools such as Todoist or EndNote. Consult with a librarian to find out whether you have access to any of these. If not, use something like the template shown in Figure 13.8 , or another like it, as a template for creating your own research notes and organizational tool. You will need to have a record of all field research data as well as the research log for all secondary sources.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/writing-guide/pages/1-unit-introduction
  • Authors: Michelle Bachelor Robinson, Maria Jerskey, featuring Toby Fulwiler
  • Publisher/website: OpenStax
  • Book title: Writing Guide with Handbook
  • Publication date: Dec 21, 2021
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/writing-guide/pages/1-unit-introduction
  • Section URL: https://openstax.org/books/writing-guide/pages/13-5-research-process-making-notes-synthesizing-information-and-keeping-a-research-log

© Dec 19, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Neurol Res Pract

Logo of neurrp

How to use and assess qualitative research methods

Loraine busetto.

1 Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany

Wolfgang Wick

2 Clinical Cooperation Unit Neuro-Oncology, German Cancer Research Center, Heidelberg, Germany

Christoph Gumbinger

Associated data.

Not applicable.

This paper aims to provide an overview of the use and assessment of qualitative research methods in the health sciences. Qualitative research can be defined as the study of the nature of phenomena and is especially appropriate for answering questions of why something is (not) observed, assessing complex multi-component interventions, and focussing on intervention improvement. The most common methods of data collection are document study, (non-) participant observations, semi-structured interviews and focus groups. For data analysis, field-notes and audio-recordings are transcribed into protocols and transcripts, and coded using qualitative data management software. Criteria such as checklists, reflexivity, sampling strategies, piloting, co-coding, member-checking and stakeholder involvement can be used to enhance and assess the quality of the research conducted. Using qualitative in addition to quantitative designs will equip us with better tools to address a greater range of research problems, and to fill in blind spots in current neurological research and practice.

The aim of this paper is to provide an overview of qualitative research methods, including hands-on information on how they can be used, reported and assessed. This article is intended for beginning qualitative researchers in the health sciences as well as experienced quantitative researchers who wish to broaden their understanding of qualitative research.

What is qualitative research?

Qualitative research is defined as “the study of the nature of phenomena”, including “their quality, different manifestations, the context in which they appear or the perspectives from which they can be perceived” , but excluding “their range, frequency and place in an objectively determined chain of cause and effect” [ 1 ]. This formal definition can be complemented with a more pragmatic rule of thumb: qualitative research generally includes data in form of words rather than numbers [ 2 ].

Why conduct qualitative research?

Because some research questions cannot be answered using (only) quantitative methods. For example, one Australian study addressed the issue of why patients from Aboriginal communities often present late or not at all to specialist services offered by tertiary care hospitals. Using qualitative interviews with patients and staff, it found one of the most significant access barriers to be transportation problems, including some towns and communities simply not having a bus service to the hospital [ 3 ]. A quantitative study could have measured the number of patients over time or even looked at possible explanatory factors – but only those previously known or suspected to be of relevance. To discover reasons for observed patterns, especially the invisible or surprising ones, qualitative designs are needed.

While qualitative research is common in other fields, it is still relatively underrepresented in health services research. The latter field is more traditionally rooted in the evidence-based-medicine paradigm, as seen in " research that involves testing the effectiveness of various strategies to achieve changes in clinical practice, preferably applying randomised controlled trial study designs (...) " [ 4 ]. This focus on quantitative research and specifically randomised controlled trials (RCT) is visible in the idea of a hierarchy of research evidence which assumes that some research designs are objectively better than others, and that choosing a "lesser" design is only acceptable when the better ones are not practically or ethically feasible [ 5 , 6 ]. Others, however, argue that an objective hierarchy does not exist, and that, instead, the research design and methods should be chosen to fit the specific research question at hand – "questions before methods" [ 2 , 7 – 9 ]. This means that even when an RCT is possible, some research problems require a different design that is better suited to addressing them. Arguing in JAMA, Berwick uses the example of rapid response teams in hospitals, which he describes as " a complex, multicomponent intervention – essentially a process of social change" susceptible to a range of different context factors including leadership or organisation history. According to him, "[in] such complex terrain, the RCT is an impoverished way to learn. Critics who use it as a truth standard in this context are incorrect" [ 8 ] . Instead of limiting oneself to RCTs, Berwick recommends embracing a wider range of methods , including qualitative ones, which for "these specific applications, (...) are not compromises in learning how to improve; they are superior" [ 8 ].

Research problems that can be approached particularly well using qualitative methods include assessing complex multi-component interventions or systems (of change), addressing questions beyond “what works”, towards “what works for whom when, how and why”, and focussing on intervention improvement rather than accreditation [ 7 , 9 – 12 ]. Using qualitative methods can also help shed light on the “softer” side of medical treatment. For example, while quantitative trials can measure the costs and benefits of neuro-oncological treatment in terms of survival rates or adverse effects, qualitative research can help provide a better understanding of patient or caregiver stress, visibility of illness or out-of-pocket expenses.

How to conduct qualitative research?

Given that qualitative research is characterised by flexibility, openness and responsivity to context, the steps of data collection and analysis are not as separate and consecutive as they tend to be in quantitative research [ 13 , 14 ]. As Fossey puts it : “sampling, data collection, analysis and interpretation are related to each other in a cyclical (iterative) manner, rather than following one after another in a stepwise approach” [ 15 ]. The researcher can make educated decisions with regard to the choice of method, how they are implemented, and to which and how many units they are applied [ 13 ]. As shown in Fig.  1 , this can involve several back-and-forth steps between data collection and analysis where new insights and experiences can lead to adaption and expansion of the original plan. Some insights may also necessitate a revision of the research question and/or the research design as a whole. The process ends when saturation is achieved, i.e. when no relevant new information can be found (see also below: sampling and saturation). For reasons of transparency, it is essential for all decisions as well as the underlying reasoning to be well-documented.

An external file that holds a picture, illustration, etc.
Object name is 42466_2020_59_Fig1_HTML.jpg

Iterative research process

While it is not always explicitly addressed, qualitative methods reflect a different underlying research paradigm than quantitative research (e.g. constructivism or interpretivism as opposed to positivism). The choice of methods can be based on the respective underlying substantive theory or theoretical framework used by the researcher [ 2 ].

Data collection

The methods of qualitative data collection most commonly used in health research are document study, observations, semi-structured interviews and focus groups [ 1 , 14 , 16 , 17 ].

Document study

Document study (also called document analysis) refers to the review by the researcher of written materials [ 14 ]. These can include personal and non-personal documents such as archives, annual reports, guidelines, policy documents, diaries or letters.

Observations

Observations are particularly useful to gain insights into a certain setting and actual behaviour – as opposed to reported behaviour or opinions [ 13 ]. Qualitative observations can be either participant or non-participant in nature. In participant observations, the observer is part of the observed setting, for example a nurse working in an intensive care unit [ 18 ]. In non-participant observations, the observer is “on the outside looking in”, i.e. present in but not part of the situation, trying not to influence the setting by their presence. Observations can be planned (e.g. for 3 h during the day or night shift) or ad hoc (e.g. as soon as a stroke patient arrives at the emergency room). During the observation, the observer takes notes on everything or certain pre-determined parts of what is happening around them, for example focusing on physician-patient interactions or communication between different professional groups. Written notes can be taken during or after the observations, depending on feasibility (which is usually lower during participant observations) and acceptability (e.g. when the observer is perceived to be judging the observed). Afterwards, these field notes are transcribed into observation protocols. If more than one observer was involved, field notes are taken independently, but notes can be consolidated into one protocol after discussions. Advantages of conducting observations include minimising the distance between the researcher and the researched, the potential discovery of topics that the researcher did not realise were relevant and gaining deeper insights into the real-world dimensions of the research problem at hand [ 18 ].

Semi-structured interviews

Hijmans & Kuyper describe qualitative interviews as “an exchange with an informal character, a conversation with a goal” [ 19 ]. Interviews are used to gain insights into a person’s subjective experiences, opinions and motivations – as opposed to facts or behaviours [ 13 ]. Interviews can be distinguished by the degree to which they are structured (i.e. a questionnaire), open (e.g. free conversation or autobiographical interviews) or semi-structured [ 2 , 13 ]. Semi-structured interviews are characterized by open-ended questions and the use of an interview guide (or topic guide/list) in which the broad areas of interest, sometimes including sub-questions, are defined [ 19 ]. The pre-defined topics in the interview guide can be derived from the literature, previous research or a preliminary method of data collection, e.g. document study or observations. The topic list is usually adapted and improved at the start of the data collection process as the interviewer learns more about the field [ 20 ]. Across interviews the focus on the different (blocks of) questions may differ and some questions may be skipped altogether (e.g. if the interviewee is not able or willing to answer the questions or for concerns about the total length of the interview) [ 20 ]. Qualitative interviews are usually not conducted in written format as it impedes on the interactive component of the method [ 20 ]. In comparison to written surveys, qualitative interviews have the advantage of being interactive and allowing for unexpected topics to emerge and to be taken up by the researcher. This can also help overcome a provider or researcher-centred bias often found in written surveys, which by nature, can only measure what is already known or expected to be of relevance to the researcher. Interviews can be audio- or video-taped; but sometimes it is only feasible or acceptable for the interviewer to take written notes [ 14 , 16 , 20 ].

Focus groups

Focus groups are group interviews to explore participants’ expertise and experiences, including explorations of how and why people behave in certain ways [ 1 ]. Focus groups usually consist of 6–8 people and are led by an experienced moderator following a topic guide or “script” [ 21 ]. They can involve an observer who takes note of the non-verbal aspects of the situation, possibly using an observation guide [ 21 ]. Depending on researchers’ and participants’ preferences, the discussions can be audio- or video-taped and transcribed afterwards [ 21 ]. Focus groups are useful for bringing together homogeneous (to a lesser extent heterogeneous) groups of participants with relevant expertise and experience on a given topic on which they can share detailed information [ 21 ]. Focus groups are a relatively easy, fast and inexpensive method to gain access to information on interactions in a given group, i.e. “the sharing and comparing” among participants [ 21 ]. Disadvantages include less control over the process and a lesser extent to which each individual may participate. Moreover, focus group moderators need experience, as do those tasked with the analysis of the resulting data. Focus groups can be less appropriate for discussing sensitive topics that participants might be reluctant to disclose in a group setting [ 13 ]. Moreover, attention must be paid to the emergence of “groupthink” as well as possible power dynamics within the group, e.g. when patients are awed or intimidated by health professionals.

Choosing the “right” method

As explained above, the school of thought underlying qualitative research assumes no objective hierarchy of evidence and methods. This means that each choice of single or combined methods has to be based on the research question that needs to be answered and a critical assessment with regard to whether or to what extent the chosen method can accomplish this – i.e. the “fit” between question and method [ 14 ]. It is necessary for these decisions to be documented when they are being made, and to be critically discussed when reporting methods and results.

Let us assume that our research aim is to examine the (clinical) processes around acute endovascular treatment (EVT), from the patient’s arrival at the emergency room to recanalization, with the aim to identify possible causes for delay and/or other causes for sub-optimal treatment outcome. As a first step, we could conduct a document study of the relevant standard operating procedures (SOPs) for this phase of care – are they up-to-date and in line with current guidelines? Do they contain any mistakes, irregularities or uncertainties that could cause delays or other problems? Regardless of the answers to these questions, the results have to be interpreted based on what they are: a written outline of what care processes in this hospital should look like. If we want to know what they actually look like in practice, we can conduct observations of the processes described in the SOPs. These results can (and should) be analysed in themselves, but also in comparison to the results of the document analysis, especially as regards relevant discrepancies. Do the SOPs outline specific tests for which no equipment can be observed or tasks to be performed by specialized nurses who are not present during the observation? It might also be possible that the written SOP is outdated, but the actual care provided is in line with current best practice. In order to find out why these discrepancies exist, it can be useful to conduct interviews. Are the physicians simply not aware of the SOPs (because their existence is limited to the hospital’s intranet) or do they actively disagree with them or does the infrastructure make it impossible to provide the care as described? Another rationale for adding interviews is that some situations (or all of their possible variations for different patient groups or the day, night or weekend shift) cannot practically or ethically be observed. In this case, it is possible to ask those involved to report on their actions – being aware that this is not the same as the actual observation. A senior physician’s or hospital manager’s description of certain situations might differ from a nurse’s or junior physician’s one, maybe because they intentionally misrepresent facts or maybe because different aspects of the process are visible or important to them. In some cases, it can also be relevant to consider to whom the interviewee is disclosing this information – someone they trust, someone they are otherwise not connected to, or someone they suspect or are aware of being in a potentially “dangerous” power relationship to them. Lastly, a focus group could be conducted with representatives of the relevant professional groups to explore how and why exactly they provide care around EVT. The discussion might reveal discrepancies (between SOPs and actual care or between different physicians) and motivations to the researchers as well as to the focus group members that they might not have been aware of themselves. For the focus group to deliver relevant information, attention has to be paid to its composition and conduct, for example, to make sure that all participants feel safe to disclose sensitive or potentially problematic information or that the discussion is not dominated by (senior) physicians only. The resulting combination of data collection methods is shown in Fig.  2 .

An external file that holds a picture, illustration, etc.
Object name is 42466_2020_59_Fig2_HTML.jpg

Possible combination of data collection methods

Attributions for icons: “Book” by Serhii Smirnov, “Interview” by Adrien Coquet, FR, “Magnifying Glass” by anggun, ID, “Business communication” by Vectors Market; all from the Noun Project

The combination of multiple data source as described for this example can be referred to as “triangulation”, in which multiple measurements are carried out from different angles to achieve a more comprehensive understanding of the phenomenon under study [ 22 , 23 ].

Data analysis

To analyse the data collected through observations, interviews and focus groups these need to be transcribed into protocols and transcripts (see Fig.  3 ). Interviews and focus groups can be transcribed verbatim , with or without annotations for behaviour (e.g. laughing, crying, pausing) and with or without phonetic transcription of dialects and filler words, depending on what is expected or known to be relevant for the analysis. In the next step, the protocols and transcripts are coded , that is, marked (or tagged, labelled) with one or more short descriptors of the content of a sentence or paragraph [ 2 , 15 , 23 ]. Jansen describes coding as “connecting the raw data with “theoretical” terms” [ 20 ]. In a more practical sense, coding makes raw data sortable. This makes it possible to extract and examine all segments describing, say, a tele-neurology consultation from multiple data sources (e.g. SOPs, emergency room observations, staff and patient interview). In a process of synthesis and abstraction, the codes are then grouped, summarised and/or categorised [ 15 , 20 ]. The end product of the coding or analysis process is a descriptive theory of the behavioural pattern under investigation [ 20 ]. The coding process is performed using qualitative data management software, the most common ones being InVivo, MaxQDA and Atlas.ti. It should be noted that these are data management tools which support the analysis performed by the researcher(s) [ 14 ].

An external file that holds a picture, illustration, etc.
Object name is 42466_2020_59_Fig3_HTML.jpg

From data collection to data analysis

Attributions for icons: see Fig. ​ Fig.2, 2 , also “Speech to text” by Trevor Dsouza, “Field Notes” by Mike O’Brien, US, “Voice Record” by ProSymbols, US, “Inspection” by Made, AU, and “Cloud” by Graphic Tigers; all from the Noun Project

How to report qualitative research?

Protocols of qualitative research can be published separately and in advance of the study results. However, the aim is not the same as in RCT protocols, i.e. to pre-define and set in stone the research questions and primary or secondary endpoints. Rather, it is a way to describe the research methods in detail, which might not be possible in the results paper given journals’ word limits. Qualitative research papers are usually longer than their quantitative counterparts to allow for deep understanding and so-called “thick description”. In the methods section, the focus is on transparency of the methods used, including why, how and by whom they were implemented in the specific study setting, so as to enable a discussion of whether and how this may have influenced data collection, analysis and interpretation. The results section usually starts with a paragraph outlining the main findings, followed by more detailed descriptions of, for example, the commonalities, discrepancies or exceptions per category [ 20 ]. Here it is important to support main findings by relevant quotations, which may add information, context, emphasis or real-life examples [ 20 , 23 ]. It is subject to debate in the field whether it is relevant to state the exact number or percentage of respondents supporting a certain statement (e.g. “Five interviewees expressed negative feelings towards XYZ”) [ 21 ].

How to combine qualitative with quantitative research?

Qualitative methods can be combined with other methods in multi- or mixed methods designs, which “[employ] two or more different methods [ …] within the same study or research program rather than confining the research to one single method” [ 24 ]. Reasons for combining methods can be diverse, including triangulation for corroboration of findings, complementarity for illustration and clarification of results, expansion to extend the breadth and range of the study, explanation of (unexpected) results generated with one method with the help of another, or offsetting the weakness of one method with the strength of another [ 1 , 17 , 24 – 26 ]. The resulting designs can be classified according to when, why and how the different quantitative and/or qualitative data strands are combined. The three most common types of mixed method designs are the convergent parallel design , the explanatory sequential design and the exploratory sequential design. The designs with examples are shown in Fig.  4 .

An external file that holds a picture, illustration, etc.
Object name is 42466_2020_59_Fig4_HTML.jpg

Three common mixed methods designs

In the convergent parallel design, a qualitative study is conducted in parallel to and independently of a quantitative study, and the results of both studies are compared and combined at the stage of interpretation of results. Using the above example of EVT provision, this could entail setting up a quantitative EVT registry to measure process times and patient outcomes in parallel to conducting the qualitative research outlined above, and then comparing results. Amongst other things, this would make it possible to assess whether interview respondents’ subjective impressions of patients receiving good care match modified Rankin Scores at follow-up, or whether observed delays in care provision are exceptions or the rule when compared to door-to-needle times as documented in the registry. In the explanatory sequential design, a quantitative study is carried out first, followed by a qualitative study to help explain the results from the quantitative study. This would be an appropriate design if the registry alone had revealed relevant delays in door-to-needle times and the qualitative study would be used to understand where and why these occurred, and how they could be improved. In the exploratory design, the qualitative study is carried out first and its results help informing and building the quantitative study in the next step [ 26 ]. If the qualitative study around EVT provision had shown a high level of dissatisfaction among the staff members involved, a quantitative questionnaire investigating staff satisfaction could be set up in the next step, informed by the qualitative study on which topics dissatisfaction had been expressed. Amongst other things, the questionnaire design would make it possible to widen the reach of the research to more respondents from different (types of) hospitals, regions, countries or settings, and to conduct sub-group analyses for different professional groups.

How to assess qualitative research?

A variety of assessment criteria and lists have been developed for qualitative research, ranging in their focus and comprehensiveness [ 14 , 17 , 27 ]. However, none of these has been elevated to the “gold standard” in the field. In the following, we therefore focus on a set of commonly used assessment criteria that, from a practical standpoint, a researcher can look for when assessing a qualitative research report or paper.

Assessors should check the authors’ use of and adherence to the relevant reporting checklists (e.g. Standards for Reporting Qualitative Research (SRQR)) to make sure all items that are relevant for this type of research are addressed [ 23 , 28 ]. Discussions of quantitative measures in addition to or instead of these qualitative measures can be a sign of lower quality of the research (paper). Providing and adhering to a checklist for qualitative research contributes to an important quality criterion for qualitative research, namely transparency [ 15 , 17 , 23 ].

Reflexivity

While methodological transparency and complete reporting is relevant for all types of research, some additional criteria must be taken into account for qualitative research. This includes what is called reflexivity, i.e. sensitivity to the relationship between the researcher and the researched, including how contact was established and maintained, or the background and experience of the researcher(s) involved in data collection and analysis. Depending on the research question and population to be researched this can be limited to professional experience, but it may also include gender, age or ethnicity [ 17 , 27 ]. These details are relevant because in qualitative research, as opposed to quantitative research, the researcher as a person cannot be isolated from the research process [ 23 ]. It may influence the conversation when an interviewed patient speaks to an interviewer who is a physician, or when an interviewee is asked to discuss a gynaecological procedure with a male interviewer, and therefore the reader must be made aware of these details [ 19 ].

Sampling and saturation

The aim of qualitative sampling is for all variants of the objects of observation that are deemed relevant for the study to be present in the sample “ to see the issue and its meanings from as many angles as possible” [ 1 , 16 , 19 , 20 , 27 ] , and to ensure “information-richness [ 15 ]. An iterative sampling approach is advised, in which data collection (e.g. five interviews) is followed by data analysis, followed by more data collection to find variants that are lacking in the current sample. This process continues until no new (relevant) information can be found and further sampling becomes redundant – which is called saturation [ 1 , 15 ] . In other words: qualitative data collection finds its end point not a priori , but when the research team determines that saturation has been reached [ 29 , 30 ].

This is also the reason why most qualitative studies use deliberate instead of random sampling strategies. This is generally referred to as “ purposive sampling” , in which researchers pre-define which types of participants or cases they need to include so as to cover all variations that are expected to be of relevance, based on the literature, previous experience or theory (i.e. theoretical sampling) [ 14 , 20 ]. Other types of purposive sampling include (but are not limited to) maximum variation sampling, critical case sampling or extreme or deviant case sampling [ 2 ]. In the above EVT example, a purposive sample could include all relevant professional groups and/or all relevant stakeholders (patients, relatives) and/or all relevant times of observation (day, night and weekend shift).

Assessors of qualitative research should check whether the considerations underlying the sampling strategy were sound and whether or how researchers tried to adapt and improve their strategies in stepwise or cyclical approaches between data collection and analysis to achieve saturation [ 14 ].

Good qualitative research is iterative in nature, i.e. it goes back and forth between data collection and analysis, revising and improving the approach where necessary. One example of this are pilot interviews, where different aspects of the interview (especially the interview guide, but also, for example, the site of the interview or whether the interview can be audio-recorded) are tested with a small number of respondents, evaluated and revised [ 19 ]. In doing so, the interviewer learns which wording or types of questions work best, or which is the best length of an interview with patients who have trouble concentrating for an extended time. Of course, the same reasoning applies to observations or focus groups which can also be piloted.

Ideally, coding should be performed by at least two researchers, especially at the beginning of the coding process when a common approach must be defined, including the establishment of a useful coding list (or tree), and when a common meaning of individual codes must be established [ 23 ]. An initial sub-set or all transcripts can be coded independently by the coders and then compared and consolidated after regular discussions in the research team. This is to make sure that codes are applied consistently to the research data.

Member checking

Member checking, also called respondent validation , refers to the practice of checking back with study respondents to see if the research is in line with their views [ 14 , 27 ]. This can happen after data collection or analysis or when first results are available [ 23 ]. For example, interviewees can be provided with (summaries of) their transcripts and asked whether they believe this to be a complete representation of their views or whether they would like to clarify or elaborate on their responses [ 17 ]. Respondents’ feedback on these issues then becomes part of the data collection and analysis [ 27 ].

Stakeholder involvement

In those niches where qualitative approaches have been able to evolve and grow, a new trend has seen the inclusion of patients and their representatives not only as study participants (i.e. “members”, see above) but as consultants to and active participants in the broader research process [ 31 – 33 ]. The underlying assumption is that patients and other stakeholders hold unique perspectives and experiences that add value beyond their own single story, making the research more relevant and beneficial to researchers, study participants and (future) patients alike [ 34 , 35 ]. Using the example of patients on or nearing dialysis, a recent scoping review found that 80% of clinical research did not address the top 10 research priorities identified by patients and caregivers [ 32 , 36 ]. In this sense, the involvement of the relevant stakeholders, especially patients and relatives, is increasingly being seen as a quality indicator in and of itself.

How not to assess qualitative research

The above overview does not include certain items that are routine in assessments of quantitative research. What follows is a non-exhaustive, non-representative, experience-based list of the quantitative criteria often applied to the assessment of qualitative research, as well as an explanation of the limited usefulness of these endeavours.

Protocol adherence

Given the openness and flexibility of qualitative research, it should not be assessed by how well it adheres to pre-determined and fixed strategies – in other words: its rigidity. Instead, the assessor should look for signs of adaptation and refinement based on lessons learned from earlier steps in the research process.

Sample size

For the reasons explained above, qualitative research does not require specific sample sizes, nor does it require that the sample size be determined a priori [ 1 , 14 , 27 , 37 – 39 ]. Sample size can only be a useful quality indicator when related to the research purpose, the chosen methodology and the composition of the sample, i.e. who was included and why.

Randomisation

While some authors argue that randomisation can be used in qualitative research, this is not commonly the case, as neither its feasibility nor its necessity or usefulness has been convincingly established for qualitative research [ 13 , 27 ]. Relevant disadvantages include the negative impact of a too large sample size as well as the possibility (or probability) of selecting “ quiet, uncooperative or inarticulate individuals ” [ 17 ]. Qualitative studies do not use control groups, either.

Interrater reliability, variability and other “objectivity checks”

The concept of “interrater reliability” is sometimes used in qualitative research to assess to which extent the coding approach overlaps between the two co-coders. However, it is not clear what this measure tells us about the quality of the analysis [ 23 ]. This means that these scores can be included in qualitative research reports, preferably with some additional information on what the score means for the analysis, but it is not a requirement. Relatedly, it is not relevant for the quality or “objectivity” of qualitative research to separate those who recruited the study participants and collected and analysed the data. Experiences even show that it might be better to have the same person or team perform all of these tasks [ 20 ]. First, when researchers introduce themselves during recruitment this can enhance trust when the interview takes place days or weeks later with the same researcher. Second, when the audio-recording is transcribed for analysis, the researcher conducting the interviews will usually remember the interviewee and the specific interview situation during data analysis. This might be helpful in providing additional context information for interpretation of data, e.g. on whether something might have been meant as a joke [ 18 ].

Not being quantitative research

Being qualitative research instead of quantitative research should not be used as an assessment criterion if it is used irrespectively of the research problem at hand. Similarly, qualitative research should not be required to be combined with quantitative research per se – unless mixed methods research is judged as inherently better than single-method research. In this case, the same criterion should be applied for quantitative studies without a qualitative component.

The main take-away points of this paper are summarised in Table ​ Table1. 1 . We aimed to show that, if conducted well, qualitative research can answer specific research questions that cannot to be adequately answered using (only) quantitative designs. Seeing qualitative and quantitative methods as equal will help us become more aware and critical of the “fit” between the research problem and our chosen methods: I can conduct an RCT to determine the reasons for transportation delays of acute stroke patients – but should I? It also provides us with a greater range of tools to tackle a greater range of research problems more appropriately and successfully, filling in the blind spots on one half of the methodological spectrum to better address the whole complexity of neurological research and practice.

Take-away-points

Acknowledgements

Abbreviations, authors’ contributions.

LB drafted the manuscript; WW and CG revised the manuscript; all authors approved the final versions.

no external funding.

Availability of data and materials

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declare no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Banner

Academic Writing

  • Understanding Scholarly Text

Critical Analysis Diagram (text only to the right of the image)

Elements of the critical analysis, useful link: reading & writing critically.

  • Literature Review
  • Research Paper
  • Position Paper

Writing & Tutoring Help at Bowie

Smith vidal literacy & language center.

Location:  Martin Luther King Jr. Building, Room 251 Hours:  8:30 am – 5 pm Mon. - Fri.

Writing Center Contacts

A. Introduction - The introduction moves from general to specific. This is where you are:

open with a short orientation (introduce the topic area(s) with a general, broad opening sentence (or two);

answer the question with a thesis statement; and 

provide a summary or 'road map' of your essay (keep it brief, but mention all the main ideas).

B. Body - The body of the essay consists of paragraphs. Each is a building block in the construction of your argument. The body is where you:

  • answer the question by developing a discussion.
  • show your knowledge and grasp of material you have read.
  • offer exposition and evidence to develop your argument.
  • use relevant examples and authoritative quotes.

If your question has more than one part, structure the body into section that deal with each part of the question.

3. Conclusion - The conclusion moves from specific to general. It should:

  • restate your answer to the question;
  • re-summarize the main points and;
  • include a final, broad statement (about possible implication, future directions for research, to qualify the conclusion, etc.)

However, NEVER introduce new information or idea in the conclusion - its purpose is to round off your essay by summing up.

Because each section of a critical analysis builds on the section before it and supports the section to follow, the structure of this genre is usually fairly standard.  The introduction and summary set the stage and the analysis communicates the critic's views which are then summarized and restated in the conclusion. 

-- Text taken from The University of New South Wales. "Essay Writing: the Basics." Retrieved 17 August, 2012 from http://www.lc.unsw.edu.au/onlib/essay3.html.

Writing critically requires an author to engage on an analytical level with a written work, whether it is an article, a book, or a portion of a book.  In other words, to write critically is to present and explain an idea that one has had about someone else’s written work.  A critical analysis may  include supportive references like you would find in a research paper, but will generally have a much stronger emphasis on its author’s interpretation than you would find in an objective research paper. 

Introduction – will include general information about the work being analyzed and a statement of the critical writer’s viewpoint or evaluation of the larger work. 

Summarization – the thematic/background information that a reader will need to understand the critic’s analysis and the key point from the original work that is being addressed. 

Critical Analysis – a review of the original author’s argument within the critical context of the analysis, with supporting evidence from the original text.

Conclusion – a restatement of the critic’s thesis and the key points of the analysis.

Although the page linked below focuses on writing critically, it also features information on reading critically, an invaluable skill in identfying different types of academic writing. 

  • Writing a Critical Analysis (Critique) A guide to reading and writing critically. Document prepared by the Academic Skills Center of the Shoreline Community College.
  • << Previous: Understanding Scholarly Text
  • Next: Literature Review >>
  • Last Updated: Aug 15, 2023 4:05 PM
  • URL: https://bowiestate.libguides.com/academicwriting

Reference management. Clean and simple.

What is a research paper?

a research paper is analyzed at a

A research paper is a paper that makes an argument about a topic based on research and analysis.

Any paper requiring the writer to research a particular topic is a research paper. Unlike essays, which are often based largely on opinion and are written from the author's point of view, research papers are based in fact.

A research paper requires you to form an opinion on a topic, research and gain expert knowledge on that topic, and then back up your own opinions and assertions with facts found through your thorough research.

➡️ Read more about  different types of research papers .

What is the difference between a research paper and a thesis?

A thesis is a large paper, or multi-chapter work, based on a topic relating to your field of study.

A thesis is a document students of higher education write to obtain an academic degree or qualification. Usually, it is longer than a research paper and takes multiple years to complete.

Generally associated with graduate/postgraduate studies, it is carried out under the supervision of a professor or other academic of the university.

A major difference between a research paper and a thesis is that:

  • a research paper presents certain facts that have already been researched and explained by others
  • a thesis starts with a certain scholarly question or statement, which then leads to further research and new findings

This means that a thesis requires the author to input original work and their own findings in a certain field, whereas the research paper can be completed with extensive research only.

➡️ Getting ready to start a research paper or thesis? Take a look at our guides on how to start a research paper or how to come up with a topic for your thesis .

Frequently Asked Questions about research papers

Take a look at this list of the top 21 Free Online Journal and Research Databases , such as ScienceOpen , Directory of Open Access Journals , ERIC , and many more.

Mason Porter, Professor at UCLA, explains in this forum post the main reasons to write a research paper:

  • To create new knowledge and disseminate it.
  • To teach science and how to write about it in an academic style.
  • Some practical benefits: prestige, establishing credentials, requirements for grants or to help one get a future grant proposal, and so on.

Generally, people involved in the academia. Research papers are mostly written by higher education students and professional researchers.

Yes, a research paper is the same as a scientific paper. Both papers have the same purpose and format.

A major difference between a research paper and a thesis is that the former presents certain facts that have already been researched and explained by others, whereas the latter starts with a certain scholarly question or statement, which then leads to further research and new findings.

Related Articles

a research paper is analyzed at a

a research paper is analyzed at a

  • Master Your Homework
  • Do My Homework

Analyzing the Differences: Research Paper vs. Analysis Paper

This article seeks to analyze the differences between two types of writing – research papers and analysis papers. While both require a similar level of thought, each type requires a different approach when it comes to researching and presenting information. Through an examination of the respective characteristics that distinguish these forms of writing from one another, we can gain valuable insight into what factors make for effective written communication in either format. Furthermore, by considering how best to utilize these features within our own work, we can enhance its overall quality and effectiveness in conveying our ideas and messages accurately.

I. Introduction: Exploring the Distinction between a Research Paper and an Analysis Paper

Ii. understanding the purpose of a research paper, iii. defining elements of analysing in an analysis paper, iv. identifying common formats for writing each type of paper.

  • V. Assessing Sources Appropriate to Use for each Kind of Assignment
  • VI. Examining Strategies Used by Writers When Composing either Type of Document

VII. Conclusion: Analyzing the Key Differences Between A Research and An Analysis Paper

Understanding the Variance in Research and Analysis Papers

It is essential to understand how research papers and analysis papers differ, as many of their features can be easily confused. They are both academic documents used for assessment or scholarly communication, but they present information differently. The most notable distinction between them lies in the presentation of evidence: while a research paper relies on facts gathered from an extensive background search, an analysis paper takes this data further by exploring deeper implications that provide greater insight into the topic at hand.

The first step when writing either type of document is proper organization; structure is key to getting your point across accurately and effectively. When constructing a research paper you must maintain objectivity with clear explanations supported by accurate sources; conversely, an analysis involves interpretation rather than straightforward facts – so strong reasoning skills should take precedence here as well. In addition to providing reliable arguments based upon sound logic throughout your composition, there are other areas where these two forms vary substantially including content length and depth of discussion required around each issue addressed within them respectively.

  • Research Paper:
  • >May be longer (5-10 pages)

Research Papers vs Analysis Papers

At first glance, the terms research paper and analysis paper may appear interchangeable. However, these two types of writing projects have distinct purposes that must be understood before starting any project. A research paper involves a deep dive into a particular subject to uncover new facts or data while an analysis paper uses those facts and data in order to form an argument.

When conducting research for a research paper, it is important to source information from reliable sources such as academic journals and books written by professionals on the topic at hand. With this knowledge, authors are then able to generate their own original ideas regarding the researched material which can further inform their findings in additional ways than what was originally found through researching existing literature on said topics. This newfound understanding can provide insight into different interpretations of similar material which adds depth and understanding beyond simply recounting someone else’s work; it provides readers with various perspectives based off objective fact-finding methods rather than personal opinion or bias towards one side over another.

In contrast, when writing an analysis essay all of this prior contextual information serves only as evidence that informs your conclusion – not necessarily as primary content within your argument itself; meaning instead you should focus on organizing these pieces of evidence provided alongside relevant examples/data (elements like logos & ethos) with well structured statements designed around persuasively conveying your perspective(s). Additionally depending upon who you’re attempting to reach via said piece you should also seek out counterarguments along with rebuttals so that any audience reading feels both informed and engaged throughout each part of its composition without feeling bias coming through too strongly either way at times too – resulting in effective arguments more akin most closely resembling judicial decisions rather than complex philosophical musings about life!

Exploring the Different Types of Analysis Papers

When writing an analysis paper, it’s important to understand that there are two primary types: research papers and analytical papers. Research papers present information about a specific topic through investigation, while analytical papers focus more on exploring and breaking down a concept or idea into its components in order to explain how they work together. Each type serves different purposes depending upon the scope of the assignment; however, both share some common elements.

The defining elements for analyzing in an analysis paper include gathering relevant data related to the topic at hand, evaluating this data objectively with logical reasoning processes such as deductive thinking methods, researching evidence-based sources for further clarification and validation of points being made within the paper itself. Further understanding can be gained by constructing strong arguments based on supportive evidence that has been collected from reliable source material. Ultimately any conclusions should be drawn from these objective evaluations and supported with thorough research so as not to bias opinion when forming argumentative claims throughout one’s essay.

When writing papers, the formatting and content of each document may vary based on its purpose. To ensure your paper is correctly formatted, it’s important to consider which type you are creating. Here are two popular formats for different types of documents:

  • Research Papers:
  • Analysis Papers:

In conclusion, there are a number of key differences between research and analysis papers. Research focuses on investigating existing knowledge from primary and secondary sources while analysis centers around interpretation of the collected information to generate new ideas or draw specific conclusions. A research paper involves extensive literature review which helps build an understanding for further investigation into a topic, whereas an analysis paper requires one to delve deeper into data in order to dissect patterns that may exist within it.

When creating either type of document, researchers should be sure they approach the task with the right mindset: when researching ask “what has been said”; when analyzing ask “how does this change what we know?” To truly understand both concepts fully is paramount for successful outcomes – whether it is uncovering trends through statistical methods or writing compelling essays based on evidence found from credible sources.

The analysis of the differences between research papers and analysis papers has been explored in great detail, providing useful insights for readers. From outlining the characteristics of each type to highlighting the appropriate purpose for each paper, this article has provided a comprehensive look at how these two types of writing differ from one another. Furthermore, it is important that students recognize when an assignment calls for a research paper or an analysis paper so they can successfully meet their academic requirements. Ultimately, with all this information now available to them regarding analyzing the differences between research papers and analytical papers, students should be well-equipped to tackle any task ahead of them!

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 19 March 2024

TacticAI: an AI assistant for football tactics

  • Zhe Wang   ORCID: orcid.org/0000-0002-0748-5376 1   na1 ,
  • Petar Veličković   ORCID: orcid.org/0000-0002-2820-4692 1   na1 ,
  • Daniel Hennes   ORCID: orcid.org/0000-0002-3646-5286 1   na1 ,
  • Nenad Tomašev   ORCID: orcid.org/0000-0003-1624-0220 1 ,
  • Laurel Prince 1 ,
  • Michael Kaisers 1 ,
  • Yoram Bachrach 1 ,
  • Romuald Elie 1 ,
  • Li Kevin Wenliang 1 ,
  • Federico Piccinini 1 ,
  • William Spearman 2 ,
  • Ian Graham 3 ,
  • Jerome Connor 1 ,
  • Yi Yang 1 ,
  • Adrià Recasens 1 ,
  • Mina Khan 1 ,
  • Nathalie Beauguerlange 1 ,
  • Pablo Sprechmann 1 ,
  • Pol Moreno 1 ,
  • Nicolas Heess   ORCID: orcid.org/0000-0001-7876-9256 1 ,
  • Michael Bowling   ORCID: orcid.org/0000-0003-2960-8418 4 ,
  • Demis Hassabis 1 &
  • Karl Tuyls   ORCID: orcid.org/0000-0001-7929-1944 5  

Nature Communications volume  15 , Article number:  1906 ( 2024 ) Cite this article

20k Accesses

241 Altmetric

Metrics details

  • Computational science
  • Information technology

Identifying key patterns of tactics implemented by rival teams, and developing effective responses, lies at the heart of modern football. However, doing so algorithmically remains an open research challenge. To address this unmet need, we propose TacticAI, an AI football tactics assistant developed and evaluated in close collaboration with domain experts from Liverpool FC. We focus on analysing corner kicks, as they offer coaches the most direct opportunities for interventions and improvements. TacticAI incorporates both a predictive and a generative component, allowing the coaches to effectively sample and explore alternative player setups for each corner kick routine and to select those with the highest predicted likelihood of success. We validate TacticAI on a number of relevant benchmark tasks: predicting receivers and shot attempts and recommending player position adjustments. The utility of TacticAI is validated by a qualitative study conducted with football domain experts at Liverpool FC. We show that TacticAI’s model suggestions are not only indistinguishable from real tactics, but also favoured over existing tactics 90% of the time, and that TacticAI offers an effective corner kick retrieval system. TacticAI achieves these results despite the limited availability of gold-standard data, achieving data efficiency through geometric deep learning.

Similar content being viewed by others

a research paper is analyzed at a

Artificial intelligence and illusions of understanding in scientific research

Lisa Messeri & M. J. Crockett

a research paper is analyzed at a

Highly accurate protein structure prediction with AlphaFold

John Jumper, Richard Evans, … Demis Hassabis

a research paper is analyzed at a

Towards a general-purpose foundation model for computational pathology

Richard J. Chen, Tong Ding, … Faisal Mahmood

Introduction

Association football, or simply football or soccer, is a widely popular and highly professionalised sport, in which two teams compete to score goals against each other. As each football team comprises up to 11 active players at all times and takes place on a very large pitch (also known as a soccer field), scoring goals tends to require a significant degree of strategic team-play. Under the rules codified in the Laws of the Game 1 , this competition has nurtured an evolution of nuanced strategies and tactics, culminating in modern professional football leagues. In today’s play, data-driven insights are a key driver in determining the optimal player setups for each game and developing counter-tactics to maximise the chances of success 2 .

When competing at the highest level the margins are incredibly tight, and it is increasingly important to be able to capitalise on any opportunity for creating an advantage on the pitch. To that end, top-tier clubs employ diverse teams of coaches, analysts and experts, tasked with studying and devising (counter-)tactics before each game. Several recent methods attempt to improve tactical coaching and player decision-making through artificial intelligence (AI) tools, using a wide variety of data types from videos to tracking sensors and applying diverse algorithms ranging from simple logistic regression to elaborate neural network architectures. Such methods have been employed to help predict shot events from videos 3 , forecast off-screen movement from spatio-temporal data 4 , determine whether a match is in-play or interrupted 5 , or identify player actions 6 .

The execution of agreed-upon plans by players on the pitch is highly dynamic and imperfect, depending on numerous factors including player fitness and fatigue, variations in player movement and positioning, weather, the state of the pitch, and the reaction of the opposing team. In contrast, set pieces provide an opportunity to exert more control on the outcome, as the brief interruption in play allows the players to reposition according to one of the practiced and pre-agreed patterns, and make a deliberate attempt towards the goal. Examples of such set pieces include free kicks, corner kicks, goal kicks, throw-ins, and penalties 2 .

Among set pieces, corner kicks are of particular importance, as an improvement in corner kick execution may substantially modify game outcomes, and they lend themselves to principled, tactical and detailed analysis. This is because corner kicks tend to occur frequently in football matches (with ~10 corners on average taking place in each match 7 ), they are taken from a fixed, rigid position, and they offer an immediate opportunity for scoring a goal—no other set piece simultaneously satisfies all of the above. In practice, corner kick routines are determined well ahead of each match, taking into account the strengths and weaknesses of the opposing team and their typical tactical deployment. It is for this reason that we focus on corner kick analysis in particular, and propose TacticAI, an AI football assistant for supporting the human expert with set piece analysis, and the development and improvement of corner kick routines.

TacticAI is rooted in learning efficient representations of corner kick tactics from raw, spatio-temporal player tracking data. It makes efficient use of this data by representing each corner kick situation as a graph—a natural representation for modelling relationships between players (Fig.  1 A, Table  2 ), and these player relationships may be of higher importance than the absolute distances between them on the pitch 8 . Such a graph input is a natural candidate for graph machine learning models 9 , which we employ within TacticAI to obtain high-dimensional latent player representations. In the Supplementary Discussion section, we carefully contrast TacticAI against prior art in the area.

figure 1

A How corner kick situations are converted to a graph representation. Each player is treated as a node in a graph, with node, edge and graph features extracted as detailed in the main text. Then, a graph neural network operates over this graph by performing message passing; each node’s representation is updated using the messages sent to it from its neighbouring nodes. B How TacticAI processes a given corner kick. To ensure that TacticAI’s answers are robust in the face of horizontal or vertical reflections, all possible combinations of reflections are applied to the input corner, and these four views are then fed to the core TacticAI model, where they are able to interact with each other to compute the final player representations—each internal blue arrow corresponds to a single message passing layer from ( A ). Once player representations are computed, they can be used to predict the corner’s receiver, whether a shot has been taken, as well as assistive adjustments to player positions and velocities, which increase or decrease the probability of a shot being taken.

Uniquely, TacticAI takes advantage of geometric deep learning 10 to explicitly produce player representations that respect several symmetries of the football pitch (Fig.  1 B). As an illustrative example, we can usually safely assume that under a horizontal or vertical reflection of the pitch state, the game situation is equivalent. Geometric deep learning ensures that TacticAI’s player representations will be identically computed under such reflections, such that this symmetry does not have to be learnt from data. This proves to be a valuable addition, as high-quality tracking data is often limited—with only a few hundred matches played each year in every league. We provide an in-depth overview of how we employ geometric deep learning in TacticAI in the “Methods” section.

From these representations, TacticAI is then able to answer various predictive questions about the outcomes of a corner—for example, which player is most likely to make first contact with the ball, or whether a shot will take place. TacticAI can also be used as a retrieval system—for mining similar corner kick situations based on the similarity of player representations—and a generative recommendation system, suggesting adjustments to player positions and velocities to maximise or minimise the estimated shot probability. Through several experiments within a case study with domain expert coaches and analysts from Liverpool FC, the results of which we present in the next section, we obtain clear statistical evidence that TacticAI readily provides useful, realistic and accurate tactical suggestions.

To demonstrate the diverse qualities of our approach, we design TacticAI with three distinct predictive and generative components: receiver prediction, shot prediction, and tactic recommendation through guided generation, which also correspond to the benchmark tasks for quantitatively evaluating TacticAI. In addition to providing accurate quantitative insights for corner kick analysis with its predictive components, the interplay between TacticAI’s predictive and generative components allows coaches to sample alternative player setups for each routine of interest, and directly evaluate the possible outcomes of such alternatives.

We will first describe our quantitative analysis, which demonstrates that TacticAI’s predictive components are accurate at predicting corner kick receivers and shot situations on held-out test corners and that the proposed player adjustments do not strongly deviate from ground-truth situations. However, such an analysis only gives an indirect insight into how useful TacticAI would be once deployed. We tackle this question of utility head-on and conduct a comprehensive case study in collaboration with our partners at Liverpool FC—where we directly ask human expert raters to judge the utility of TacticAI’s predictions and player adjustments. The following sections expand on the specific results and analysis we have performed.

In what follows, we will describe TacticAI’s components at a minimal level necessary to understand our evaluation. We defer detailed descriptions of TacticAI’s components to the “Methods” section. Note that, all our error bars reported in this research are standard deviations.

Benchmarking TacticAI

We evaluate the three components of TacticAI on a relevant benchmark dataset of corner kicks. Our dataset consists of 7176 corner kicks from the 2020 to 2021 Premier League seasons, which we randomly shuffle and split into a training (80%) and a test set (20%). As previously mentioned, TacticAI operates on graphs. Accordingly, we represent each corner kick situation as a graph, where each node corresponds to a player. The features associated with each node encode the movements (velocities and positions) and simple profiles (heights and weights) of on-pitch players at the timestamp when the corresponding corner kick was being taken by the attacking kicker (see the “Methods” section), and no information of ball movement was encoded. The graphs are fully connected; that is, for every pair of players, we will include the edge connecting them in the graph. Each of these edges encodes a binary feature, indicating whether the two players are on opposing teams or not. For each task, we generated the relevant dataset of node/edge/graph features and corresponding labels (Tables  1 and 2 , see the “Methods” section). The components were then trained separately with their corresponding corner kick graphs. In particular, we only employ a minimal set of features to construct the corner kick graphs, without encoding the movements of the ball nor explicitly encoding the distances between players into the graphs. We used a consistent training-test split for all benchmark tasks, as this made it possible to benchmark not only the individual components but also their interactions.

Accurate receiver and shot prediction through geometric deep learning

One of TacticAI’s key predictive models forecasts the receiver out of the 22 on-pitch players. The receiver is defined as the first player touching the ball after the corner is taken. In our evaluation, all methods used the same set of features (see the “Receiver prediction” entry in Table  1 and the “Methods” section). We leveraged the receiver prediction task to benchmark several different TacticAI base models. Our best-performing model—achieving 0.782 ± 0.039 in top-3 test accuracy after 50,000 training steps—was a deep graph attention network 11 , 12 , leveraging geometric deep learning 10 through the use of D 2 group convolutions 13 . We supplement this result with a detailed ablation study, verifying that both our choice of base architecture and group convolution yielded significant improvements in the receiver prediction task (Supplementary Table  2 , see the subsection “Ablation study” in the “Methods” section). Considering that corner kick receiver prediction is a highly challenging task with many factors that are unseen by our model—including fatigue and fitness levels, and actual ball trajectory—we consider TacticAI’s top-3 accuracy to reflect a high level of predictive power, and keep the base TacticAI architecture fixed for subsequent studies. In addition to this quantitative evaluation with the evaluation dataset, we also evaluate the performance of TacticAI’s receiver prediction component in a case study with human raters. Please see the “Case study with expert raters” section for more details.

For shot prediction, we observe that reusing the base TacticAI architecture to directly predict shot events—i.e., directly modelling the probability \({\mathbb{P}}(\,{{\mbox{shot}}}| {{\mbox{corner}}}\,)\) —proved challenging, only yielding a test F 1 score of 0.52 ± 0.03, for a GATv2 base model. Note that here we use the F 1 score—the harmonic mean of precision and recall—as it is commonly used in binary classification problems over imbalanced datasets, such as shot prediction. However, given that we already have a potent receiver predictor, we decided to use its output to give us additional insight into whether or not a shot had been taken. Hence, we opted to decompose the probability of taking a shot as

where \({\mathbb{P}}(\,{{\mbox{receiver}}}| {{\mbox{corner}}}\,)\) are the probabilities computed by TacticAI’s receiver prediction system, and \({\mathbb{P}}(\,{{\mbox{shot}}}| {{\mbox{receiver}}},{{\mbox{corner}}}\,)\) models the conditional shot probability after a specific player makes first contact with the ball. This was implemented through providing an additional global feature to indicate the receiver in the corresponding corner kick (Table  1 ) while the architecture otherwise remained the same as that of receiver prediction (Supplementary Fig.  2 , see the “Methods” section). At training time, we feed the ground-truth receiver as input to the model—at inference time, we attempt every possible receiver, weighing their contributions using the probabilities given by TacticAI’s receiver predictor, as per Eq. ( 1 ). This two-phased approach yielded a final test F 1 score of 0.68 ± 0.04 for shot prediction, which encodes significantly more signal than the unconditional shot predictor, especially considering the many unobservables associated with predicting shot events. Just as for receiver prediction, this performance can be further improved using geometric deep learning; a conditional GATv2 shot predictor with D 2 group convolutions achieves an F 1 score of 0.71 ± 0.01.

Moreover, we also observe that, even just through predicting the receivers, without explicitly classifying any other salient features of corners, TacticAI learned generalisable representations of the data. Specifically, team setups with similar tactical patterns tend to cluster together in TacticAI’s latent space (Fig.  2 ). However, no clear clusters are observed in the raw input space (Supplementary Fig.  1 ). This indicates that TacticAI can be leveraged as a useful corner kick retrieval system, and we will present our evaluation of this hypothesis in the “Case study with expert raters” section.

figure 2

We visualise the latent representations of attacking and defending teams in 1024 corner kicks using t -SNE. A latent team embedding in one corner kick sample is the mean of the latent player representations on the same attacking ( A – C ) or defending ( D ) team. Given the reference corner kick sample ( A ), we retrieve another corner kick sample ( B ) with respect to the closest distance of their representations in the latent space. We observe that ( A ) and ( B ) are both out-swing corner kicks and share similar patterns of their attacking tactics, which are highlighted with rectangles having the same colours, although they bear differences with respect to the absolute positions and velocities of the players. All the while, the latent representation of an in-swing attack ( C ) is distant from both ( A ) and ( B ) in the latent space. The red arrows are only used to demonstrate the difference between in- and out-swing corner kicks, not the actual ball trajectories.

Lastly, it is worth emphasising that the utility of the shot predictor likely does not come from forecasting whether a shot event will occur—a challenging problem with many imponderables—but from analysing the difference in predicted shot probability across multiple corners. Indeed, in the following section, we will show how TacticAI’s generative tactic refinements can directly influence the predicted shot probabilities, which will then corresponds to highly favourable evaluation by our expert raters in the “Case study with expert raters” section.

Controlled tactic refinement using class-conditional generative models

Equipped with components that are able to potently relate corner kicks with their various outcomes (e.g. receivers and shot events), we can explore the use of TacticAI to suggest adjustments of tactics, in order to amplify or reduce the likelihood of certain outcomes.

Specifically, we aim to produce adjustments to the movements of players on one of the two teams, including their positions and velocities, which would maximise or minimise the probability of a shot event, conditioned on the initial corner setup, consisting of the movements of players on both teams and their heights and weights. In particular, although in real-world scenarios both teams may react simultaneously to the movements of each other, in our study, we focus on moderate adjustments to player movements, which help to detect players that are not responding to a tactic properly. Due to this reason, we simplify the process of tactic refinement through generating the adjustments for only one team while keeping the other fixed. The way we train a model for this task is through an auto-encoding objective: we feed the ground-truth shot outcome (a binary indicator) as an additional graph-level feature to TacticAI’s model (Table  1 ), and then have it learn to reconstruct a probability distribution of the input player coordinates (Fig.  1 B, also see the “Methods” section). As a consequence, our tactic adjustment system does not depend on the previously discussed shot predictor—although we can use the shot predictor to evaluate whether the adjustments make a measurable difference in shot probability.

This autoencoder-based generative model is an individual component that separates from TacticAI’s predictive systems. All three systems share the encoder architecture (without sharing parameters), but use different decoders (see the “Methods” section). At inference time, we can instead feed in a desired shot outcome for the given corner setup, and then sample new positions and velocities for players on one team using this probability distribution. This setup, in principle, allows for flexible downstream use, as human coaches can optimise corner kick setups through generating adjustments conditioned on the specific outcomes of their interest—e.g., increasing shot probability for the attacking team, decreasing it for the defending team (Fig.  3 ) or amplifying the chance that a particular striker receives the ball.

figure 3

TacticAI makes it possible for human coaches to redesign corner kick tactics in ways that help maximise the probability of a positive outcome for either the attacking or the defending team by identifying key players, as well as by providing temporally coordinated tactic recommendations that take all players into consideration. As demonstrated in the present example ( A ), for a corner kick in which there was a shot attempt in reality ( B ), TacticAI can generate a tactically-adjusted setting in which the shot probability has been reduced, by adjusting the positioning of the defenders ( D ). The suggested defender positions result in reduced receiver probability for attacking players 2–5 (see bottom row), while the receiver probability of Attacker 1, who is distant from the goalpost, has been increased ( C ). The model is capable of generating multiple such scenarios. Coaches can inspect the different options visually and additionally consult TacticAI’s quantitative analysis of the presented tactics.

We first evaluate the generated adjustments quantitatively, by verifying that they are indistinguishable from the original corner kick distribution using a classifier. To do this, we synthesised a dataset consisting of 200 corner kick samples and their corresponding conditionally generated adjustments. Specifically, for corners without a shot event, we generated adjustments for the attacking team by setting the shot event feature to 1, and vice-versa for the defending team when a shot event did happen. We found that the real and generated samples were not distinguishable by an MLP classifier, with an F 1 score of 0.53 ± 0.05, indicating random chance level accuracy. This result indicates that the adjustments produced by TacticAI are likely similar enough to real corner kicks that the MLP is unable to tell them apart. Note that, in spite of this similarity, TacticAI recommends player-level adjustments that are not negligible—in the following section we will illustrate several salient examples of this. To more realistically validate the practical indistinguishability of TacticAI’s adjustments from realistic corners, we also evaluated the realism of the adjustments in a case study with human experts, which we will present in the following section.

In addition, we leveraged our TacticAI shot predictor to estimate whether the proposed adjustments were effective. We did this by analysing 100 corner kick samples in which threatening shots occurred, and then, for each sample, generated one defensive refinement through setting the shot event feature to 0. We observed that the average shot probability significantly decreased, from 0.75 ± 0.14 for ground-truth corners to 0.69 ± 0.16 for adjustments ( z  = 2.62,  p  < 0.001). This observation was consistent when testing for attacking team refinements (shot probability increased from 0.18 ± 0.16 to 0.31 ± 0.26 ( z  = −4.46,  p  < 0.001)). Moving beyond this result, we also asked human raters to assess the utility of TacticAI’s proposed adjustments within our case study, which we detail next.

Case study with expert raters

Although quantitative evaluation with well-defined benchmark datasets was critical for the technical development of TacticAI, the ultimate test of TacticAI as a football tactic assistant is its practical downstream utility being recognised by professionals in the industry. To this end, we evaluated TacticAI through a case study with our partners at Liverpool FC (LFC). Specifically, we invited a group of five football experts: three data scientists, one video analyst, and one coaching assistant. Each of them completed four tasks in the case study, which evaluated the utility of TacticAI’s components from several perspectives; these include (1) the realism of TacticAI’s generated adjustments, (2) the plausibility of TacticAI’s receiver predictions, (3) effectiveness of TacticAI’s embeddings for retrieving similar corners, and (4) usefulness of TacticAI’s recommended adjustments. We provide an overview of our study’s results here and refer the interested reader to Supplementary Figs.  3 – 5 and the  Supplementary Methods for additional details.

We first simultaneously evaluated the realism of the adjusted corner kicks generated by TacticAI, and the plausibility of its receiver predictions. Going through a collection of 50 corner kick samples, we first asked the raters to classify whether a given sample was real or generated by TacticAI, and then they were asked to identify the most likely receivers in the corner kick sample (Supplementary Fig.  3 ).

On the task of classifying real and generated samples, first, we found that the raters’ average F 1 score of classifying the real vs. generated samples was only 0.60 ± 0.04, with individual F 1 scores ( \({F}_{1}^{A}=0.54,{F}_{1}^{B}=0.64,{F}_{1}^{C}=0.65,{F}_{1}^{D}=0.62,{F}_{1}^{E}=0.56\) ), indicating that the raters were, in many situations, unable to distinguish TacticAI’s adjustments from real corners.

The previous evaluation focused on analysing realism detection performance across raters. We also conduct a study that analyses realism detection across samples. Specifically, we assigned ratings for each sample—assigning +1 to a sample if it was identified as real by a human rater, and 0 otherwise—and computed the average rating for each sample across the five raters. Importantly, by studying the distribution of ratings, we found that there was no significant difference between the average ratings assigned to real and generated corners ( z  = −0.34,  p  > 0.05) (Fig.  4 A). Hence, the real and generated samples were assigned statistically indistinguishable average ratings by human raters.

figure 4

In task 1, we tested the statistical difference between the real corner kick samples and the synthetic ones generated by TacticAI from two aspects: ( A.1 ) the distributions of their assigned ratings, and ( A.2 ) the corresponding histograms of the rating values. Analogously, in task 2 (receiver prediction), ( B.1 ) we track the distributions of the top-3 accuracy of receiver prediction using those samples, and ( B.2 ) the corresponding histogram of the mean rating per sample. No statistical difference in the mean was observed in either cases (( A.1 ) ( z  = −0.34,  p  > 0.05), and ( B.1 ) ( z  = 0.97,  p  > 0.05)). Additionally, we observed a statistically significant difference between the ratings of different raters on receiver prediction, with three clear clusters emerging ( C ). Specifically, Raters A and E had similar ratings ( z  = 0.66,  p  > 0.05), and Raters B and D also rated in similar ways ( z  = −1.84,  p  > 0.05), while Rater C responded differently from all other raters. This suggests a good level of variety of the human raters with respect to their perceptions of corner kicks. In task 3—identifying similar corners retrieved in terms of salient strategic setups—there were no significant differences among the distributions of the ratings by different raters ( D ), suggesting a high level of agreement on the usefulness of TacticAI’s capability of retrieving similar corners ( F 1,4  = 1.01,  p  > 0.1). Finally, in task 4, we compared the ratings of TacticAI’s strategic refinements across the human raters ( E ) and found that the raters also agreed on the general effectiveness of the refinements recommended by TacticAI ( F 1,4  = 0.45,  p  > 0.05). Note that the violin plots used in B.1 and C – E model a continuous probability distribution and hence assign nonzero probabilities to values outside of the allowed ranges. We only label y -axis ticks for the possible set of ratings.

For the task of identifying receivers, we rated TacticAI’s predictions with respect to a rater as +1 if at least one of the receivers identified by the rater appeared in TacticAI’s top-3 predictions, and 0 otherwise. The average top-3 accuracy among the human raters was 0.79 ± 0.18; specifically, 0.81 ± 0.17 for the real samples, and 0.77 ± 0.21 for the generated ones. These scores closely line up with the accuracy of TacticAI in predicting receivers for held-out test corners, validating our quantitative study. Further, after averaging the ratings for receiver prediction sample-wise, we found no statistically significant difference between the average ratings of predicting receivers over the real and generated samples ( z  = 0.97,  p  > 0.05) (Fig.  4 B). This indicates that TacticAI was equally performant in predicting the receivers of real corners and TacticAI-generated adjustments, and hence may be leveraged for this purpose even in simulated scenarios.

There is a notably high variance in the average receiver prediction rating of TacticAI. We hypothesise that this is due to the fact that different raters may choose to focus on different salient features when evaluating the likely receivers (or even the amount of likely receivers). We set out to validate this hypothesis by testing the pair-wise similarity of the predictions by the human raters through running a one-away analysis of variance (ANOVA), followed by a Tukey test. We found that the distributions of the five raters’ predictions were significantly different ( F 1,4  = 14.46,  p  < 0.001) forming three clusters (Fig.  4 C). This result indicates that different human raters—as suggested by their various titles at LFC—may often use very different leads when suggesting plausible receivers. The fact that TacticAI manages to retain a high top-3 accuracy in such a setting suggests that it was able to capture the salient patterns of corner kick strategies, which broadly align with human raters’ preferences. We will further test this hypothesis in the third task—identifying similar corners.

For the third task, we asked the human raters to judge 50 pairs of corners for their similarity. Each pair consisted of a reference corner and a retrieved corner, where the retrieved corner was chosen either as the nearest-neighbour of the reference in terms of their TacticAI latent space representations, or—as a feature-level heuristic—the cosine similarities of their raw features (Supplementary Fig.  4 ) in our corner kick dataset. We score the raters’ judgement of a pair as +1 if they considered the corners presented in the case to be usefully similar, otherwise, the pair is scored with 0. We first computed, for each rater, the recall with which they have judged a baseline- or TacticAI-retrieved pair as usefully similar—see description of Task 3 in the  Supplementary Methods . For TacticAI retrievals, the average recall across all raters was 0.59 ± 0.09, and for the baseline system, the recall was 0.36 ± 0.10. Secondly, we assess the statistical difference between the results of the two methods by averaging the ratings for each reference–retrieval pair, finding that the average rating of TacticAI retrievals is significantly higher than the average rating of baseline method retrievals ( z  = 2.34,  p  < 0.05). These two results suggest that TacticAI significantly outperforms the feature-space baseline as a method for mining similar corners. This indicates that TacticAI is able to extract salient features from corners that are not trivial to extract from the input data alone, reinforcing it as a potent tool for discovering opposing team tactics from available data. Finally, we observed that this task exhibited a high level of inter-rater agreement for TacticAI-retrieved pairs ( F 1,4  = 1.01,  p  > 0.1) (Fig.  4 D), suggesting that human raters were largely in agreement with respect to their assessment of TacticAI’s performance.

Finally, we evaluated TacticAI’s player adjustment recommendations for their practical utility. Specifically, each rater was given 50 tactical refinements together with the corresponding real corner kick setups—see Supplementary Fig.  5 , and the “Case study design” section in the  Supplementary Methods . The raters were then asked to rate each refinement as saliently improving the tactics (+1), saliently making them worse (−1), or offering no salient differences (0). We calculated the average rating assigned by each of the raters (giving us a value in the range [− 1, 1] for each rater). The average of these values across all five raters was 0.7 ± 0.1. Further, for 45 of the 50 situations (90%), the human raters found TacticAI’s suggestion to be favourable on average (by majority voting). Both of these results indicate that TacticAI’s recommendations are salient and useful to a downstream football club practitioner, and we set out to validate this with statistical tests.

We performed statistical significance testing of the observed positive ratings. First, for each of the 50 situations, we averaged its ratings across all five raters and then ran a t -test to assess whether the mean rating was significantly larger than zero. Indeed, the statistical test indicated that the tactical adjustments recommended by TacticAI were constructive overall ( \({t}_{49}^{{{{{{{{\rm{avg}}}}}}}}}=9.20,\, p \, < \, 0.001\) ). Secondly, we verified that each of the five raters individually found TacticAI’s recommendations to be constructive, running a t -test on each of their ratings individually. For all of the five raters, their average ratings were found to be above zero with statistical significance ( \({t}_{49}^{A}=5.84,\, {p}^{A} \, < \, 0.001;{t}_{49}^{B}=7.88,\; {p}^{B} \, < \, 0.001;{t}_{49}^{C}=7.00,\; {p}^{C} \, < \, 0.001;{t}_{49}^{D}=6.04,\; {p}^{D} \, < \, 0.001;{t}_{49}^{E}=7.30,\, {p}^{E} \, < \, 0.001\) ). In addition, their ratings also shared a high level of inter-agreement ( F 1,4  = 0.45,  p  > 0.05) (Fig.  4 E), suggesting a level of practical usefulness that is generally recognised by human experts, even though they represent different backgrounds.

Taking all of these results together, we find TacticAI to possess strong components for prediction, retrieval, and tactical adjustments on corner kicks. To illustrate the kinds of salient recommendations by TacticAI, in Fig.  5 we present four examples with a high degree of inter-rater agreement.

figure 5

These examples are selected from our case study with human experts, to illustrate the breadth of tactical adjustments that TacticAI suggests to teams defending a corner. The density of the yellow circles coincides with the number of times that the corresponding change is recognised as constructive by human experts. Instead of optimising the movement of one specific player, TacticAI can recommend improvements for multiple players in one generation step through suggesting better positions to block the opposing players, or better orientations to track them more efficiently. Some specific comments from expert raters follow. In A , according to raters, TacticAI suggests more favourable positions for several defenders, and improved tracking runs for several others—further, the goalkeeper is positioned more deeply, which is also beneficial. In B , TacticAI suggests that the defenders furthest away from the corner make improved covering runs, which was unanimously deemed useful, with several other defenders also positioned more favourably. In C , TacticAI recommends improved covering runs for a central group of defenders in the penalty box, which was unanimously considered salient by our raters. And in D , TacticAI suggests substantially better tracking runs for two central defenders, along with a better positioning for two other defenders in the goal area.

We have demonstrated an AI assistant for football tactics and provided statistical evidence of its efficacy through a comprehensive case study with expert human raters from Liverpool FC. First, TacticAI is able to accurately predict the first receiver after a corner kick is taken as well as the probability of a shot as the direct result of the corner. Second, TacticAI has been shown to produce plausible tactical variations that improve outcomes in a salient way, while being indistinguishable from real scenarios by domain experts. And finally, the system’s latent player representations are a powerful means to retrieve similar set-piece tactics, allowing coaches to analyse relevant tactics and counter-tactics that have been successful in the past.

The broader scope of strategy modelling in football has previously been addressed from various individual angles, such as pass prediction 14 , 15 , 16 , shot prediction 3 or corner kick tactical classification 7 . However, to the best of our knowledge, our work stands out by combining and evaluating predictive and generative modelling of corner kicks for tactic development. It also stands out in its method of applying geometric deep learning, allowing for efficiently incorporating various symmetries of the football pitch for improved data efficiency. Our method incorporates minimal domain knowledge and does not rely on intricate feature engineering—though its factorised design naturally allows for more intricate feature engineering approaches when such features are available.

Our methodology requires the position and velocity estimates of all players at the time of execution of the corner and subsequent events. Here, we derive these from high-quality tracking and event data, with data availability from tracking providers limited to top leagues. Player tracking based on broadcast video would increase the reach and training data substantially, but would also likely result in noisier model inputs. While the attention mechanism of GATs would allow us to perform introspection of the most salient factors contributing to the model outcome, our method does not explicitly model exogenous (aleatoric) uncertainty, which would be valuable context for the football analyst.

While the empirical study of our method’s efficacy has been focused on corner kicks in association football, it readily generalises to other set pieces (such as throw-ins, which similarly benefit from similarity retrieval, pass and/or shot prediction) and other team sports with suspended play situations. The learned representations and overall framing of TacticAI also lay the ground for future research to integrate a natural language interface that enables domain-grounded conversations with the assistant, with the aim to retrieve particular situations of interest, make predictions for a given tactical variant, compare and contrast, and guide through an interactive process to derive tactical suggestions. It is thus our belief that TacticAI lays the groundwork for the next-generation AI assistant for football.

We devised TacticAI as a geometric deep learning pipeline, further expanded in this section. We process labelled spatio-temporal football data into graph representations, and train and evaluate on benchmarking tasks cast as classification or regression. These steps are presented in sequence, followed by details on the employed computational architecture.

Raw corner kick data

The raw dataset consisted of 9693 corner kicks collected from the 2020–21, 2021–22, and 2022–23 (up to January 2023) Premier League seasons. The dataset was provided by Liverpool FC and comprises four separate data sources, described below.

Our primary data source is spatio-temporal trajectory frames (tracking data), which tracked all on-pitch players and the ball, for each match, at 25 frames per second. In addition to player positions, their velocities are derived from position data through filtering. For each corner kick, we only used the frame in which the kick is being taken as input information.

Secondly, we also leverage event stream data, which annotated the events or actions (e.g., passes, shots and goals) that have occurred in the corresponding tracking frames.

Thirdly, the line-up data for the corresponding games, which recorded the players’ profiles, including their heights, weights and roles, is also used.

Lastly, we have access to miscellaneous game data, which contains the game days, stadium information, and pitch length and width in meters.

Graph representation and construction

We assumed that we were provided with an input graph \({{{{{{{\mathcal{G}}}}}}}}=({{{{{{{\mathcal{V}}}}}}}},\,{{{{{{{\mathcal{E}}}}}}}})\) with a set of nodes \({{{{{{{\mathcal{V}}}}}}}}\) and edges \({{{{{{{\mathcal{E}}}}}}}}\subseteq {{{{{{{\mathcal{V}}}}}}}}\times {{{{{{{\mathcal{V}}}}}}}}\) . Within the context of football games, we took \({{{{{{{\mathcal{V}}}}}}}}\) to be the set of 22 players currently on the pitch for both teams, and we set \({{{{{{{\mathcal{E}}}}}}}}={{{{{{{\mathcal{V}}}}}}}}\times {{{{{{{\mathcal{V}}}}}}}}\) ; that is, we assumed all pairs of players have the potential to interact. Further analyses, leveraging more specific choices of \({{{{{{{\mathcal{E}}}}}}}}\) , would be an interesting avenue for future work.

Additionally, we assume that the graph is appropriately featurised. Specifically, we provide a node feature matrix, \({{{{{{{\bf{X}}}}}}}}\in {{\mathbb{R}}}^{| {{{{{{{\mathcal{V}}}}}}}}| \times k}\) , an edge feature tensor, \({{{{{{{\bf{E}}}}}}}}\in {{\mathbb{R}}}^{| {{{{{{{\mathcal{V}}}}}}}}| \times | {{{{{{{\mathcal{V}}}}}}}}| \times l}\) , and a graph feature vector, \({{{{{{{\bf{g}}}}}}}}\in {{\mathbb{R}}}^{m}\) . The appropriate entries of these objects provide us with the input features for each node, edge, and graph. For example, \({{{{{{{{\bf{x}}}}}}}}}_{u}\in {{\mathbb{R}}}^{k}\) would provide attributes of an individual player \(u\in {{{{{{{\mathcal{V}}}}}}}}\) , such as position, height and weight, and \({{{{{{{{\bf{e}}}}}}}}}_{uv}\in {{\mathbb{R}}}^{l}\) would provide the attributes of a particular pair of players \((u,\, v)\in {{{{{{{\mathcal{E}}}}}}}}\) , such as their distance, and whether they belong to the same team. The graph feature vector, g , can be used to store global attributes of interest to the corner kick, such as the game time, current score, or ball position. For a simplified visualisation of how a graph neural network would process such an input, refer to Fig.  1 A.

To construct the input graphs, we first aligned the four data sources with respect to their game IDs and timestamps and filtered out 2517 invalid corner kicks, for which the alignment failed due to missing data, e.g., missing tracking frames or event labels. This filtering yielded 7176 valid corner kicks for training and evaluation. We summarised the exact information that was used to construct the input graphs in Table  2 . In particular, other than player heights (measured in centimeters (cm)) and weights (measured in kilograms (kg)), the players were anonymous in the model. For the cases in which the player profiles were missing, we set their heights and weights to 180 cm and 75 kg, respectively, as defaults. In total, we had 385 such occurrences out of a total of 213,246( = 22 × 9693) during data preprocessing. We downscaled the heights and weights by a factor of 100. Moreover, for each corner kick, we zero-centred the positions of on-pitch players and normalised them onto a 10 m × 10 m pitch, and their velocities were re-scaled accordingly. For the cases in which the pitch dimensions were missing, we used a standard pitch dimension of 110 m × 63 m as default.

We summarised the grouping of the features in Table  1 . The actual features used in different benchmark tasks may differ, and we will describe this in more detail in the next section. To focus on modelling the high-level tactics played by the attacking and defending teams, other than a binary indicator for ball possession—which is 1 for the corner kick taker and 0 for all other players—no information of ball movement, neither positions nor velocities, was used to construct the input graphs. Additionally, we do not have access to the player’s vertical movement, therefore only information on the two-dimensional movements of each player is provided in the data. We do however acknowledge that such information, when available, would be interesting to consider in a corner kick outcome predictor, considering the prevalence of aerial battles in corners.

Benchmark tasks construction

TacticAI consists of three predictive and generative models, which also correspond to three benchmark tasks implemented in this study. Specifically, (1) Receiver prediction, (2) Threatening shot prediction, and (3) Guided generation of team positions and velocities (Table  1 ). The graphs of all the benchmark tasks used the same feature space of nodes and edges, differing only in the global features.

For all three tasks, our models first transform the node features to a latent node feature matrix, \({{{{{{{\bf{H}}}}}}}}={f}_{{{{{{{{\mathcal{G}}}}}}}}}({{{{{{{\bf{X}}}}}}}},\, {{{{{{{\bf{E}}}}}}}},\, {{{{{{{\bf{g}}}}}}}})\) , from which we could answer queries: either about individual players—in which case we learned a relevant classifier or regressor over the h u vectors (the rows of H )—or about the occurrence of a global event (e.g. shot taken)—in which case we classified or regressed over the aggregated player vectors, ∑ u h u . In both cases, the classifiers were trained using stochastic gradient descent over an appropriately chosen loss function, such as categorical cross-entropy for classifiers, and mean squared error for regressors.

For different tasks, we extracted the corresponding ground-truth labels from either the event stream data or the tracking data. Specifically, (1) We modelled receiver prediction as a node classification task and labelled the first player to touch the ball after the corner was taken as the target node. This player could be either an attacking or defensive player. (2) Shot prediction was modelled as graph classification. In particular, we considered a next-ball-touch action by the attacking team as a shot if it was a direct corner, a goal, an aerial, hit on the goalposts, a shot attempt saved by the goalkeeper, or missing target. This yielded 1736 corners labelled as a shot being taken, and 5440 corners labelled as a shot not being taken. (3) For guided generation of player position and velocities, no additional label was needed, as this model relied on a self-supervised reconstruction objective.

The entire dataset was split into training and evaluation sets with an 80:20 ratio through random sampling, and the same splits were used for all tasks.

Graph neural networks

The central model of TacticAI is the graph neural network (GNN) 9 , which computes latent representations on a graph by repeatedly combining them within each node’s neighbourhood. Here we define a node’s neighbourhood, \({{{{{{{{\mathcal{N}}}}}}}}}_{u}\) , as the set of all first-order neighbours of node u , that is, \({{{{{{{{\mathcal{N}}}}}}}}}_{u}=\{v\,| \,(v,\, u)\in {{{{{{{\mathcal{E}}}}}}}}\}\) . A single GNN layer then transforms the node features by passing messages between neighbouring nodes 17 , following the notation of related work 10 , and the implementation of the CLRS-30 benchmark baselines 18 :

where \(\psi :{{\mathbb{R}}}^{k}\times {{\mathbb{R}}}^{k}\times {{\mathbb{R}}}^{l}\times {{\mathbb{R}}}^{m}\to {{\mathbb{R}}}^{{k}^{{\prime} }}\) and \(\phi :{{\mathbb{R}}}^{k}\times {{\mathbb{R}}}^{{k}^{{\prime} }}\to {{\mathbb{R}}}^{{k}^{{\prime} }}\) are two learnable functions (e.g. multilayer perceptrons), \({{{{{{{{\bf{h}}}}}}}}}_{u}^{(t)}\) are the features of node u after t GNN layers, and ⨁ is any permutation-invariant aggregator, such as sum, max, or average. By definition, we set \({{{{{{{{\bf{h}}}}}}}}}_{u}^{(0)}={{{{{{{{\bf{x}}}}}}}}}_{u}\) , and iterate Eq. ( 2 ) for T steps, where T is a hyperparameter. Then, we let \({{{{{{{\bf{H}}}}}}}}={f}_{{{{{{{{\mathcal{G}}}}}}}}}({{{{{{{\bf{X}}}}}}}},\, {{{{{{{\bf{E}}}}}}}},\, {{{{{{{\bf{g}}}}}}}})={{{{{{{{\bf{H}}}}}}}}}^{(T)}\) be the final node embeddings coming out of the GNN.

It is well known that Eq. ( 2 ) is remarkably general; it can be used to express popular models such as Transformers 19 as a special case, and it has been argued that all discrete deep learning models can be expressed in this form 20 , 21 . This makes GNNs a perfect framework for benchmarking various approaches to modelling player–player interactions in the context of football.

Different choices of ψ , ϕ and ⨁ yield different architectures. In our case, we utilise a message function that factorises into an attentional mechanism, \(a:{{\mathbb{R}}}^{k}\times {{\mathbb{R}}}^{k}\times {{\mathbb{R}}}^{l}\times {{\mathbb{R}}}^{m}\to {\mathbb{R}}\) :

yielding the graph attention network (GAT) architecture 12 . In our work, specifically, we use a two-layer multilayer perceptron for the attentional mechanism, as proposed by GATv2 11 :

where \({{{{{{{{\bf{W}}}}}}}}}_{1},\, {{{{{{{{\bf{W}}}}}}}}}_{2}\in {{\mathbb{R}}}^{k\times h}\) , \({{{{{{{{\bf{W}}}}}}}}}_{e}\in {{\mathbb{R}}}^{l\times h}\) , \({{{{{{{{\bf{W}}}}}}}}}_{g}\in {{\mathbb{R}}}^{m\times h}\) and \({{{{{{{\bf{a}}}}}}}}\in {{\mathbb{R}}}^{h}\) are the learnable parameters of the attentional mechanism, and LeakyReLU is the leaky rectified linear activation function. This mechanism computes coefficients of interaction (a single scalar value) for each pair of connected nodes ( u ,  v ), which are then normalised across all neighbours of u using the \({{{{{{{\rm{softmax}}}}}}}}\) function.

Through early-stage experimentation, we have ascertained that GATs are capable of matching the performance of more generic choices of ψ (such as the MPNN 17 ) while being more scalable. Hence, we focus our study on the GAT model in this work. More details can be found in the subsection “Ablation study” section.

Geometric deep learning

In spite of the power of Eq. ( 2 ), using it in its full generality is often prone to overfitting, given the large number of parameters contained in ψ and ϕ . This problem is exacerbated in the football analytics domain, where gold-standard data is generally very scarce—for example, in the English Premier League, only a few hundred games are played every season.

In order to tackle this issue, we can exploit the immense regularity of data arising from football games. Strategically equivalent game states are also called transpositions, and symmetries such as arriving at the same chess position through different move sequences have been exploited computationally since the 1960s 22 . Similarly, game rotations and reflections may yield equivalent strategic situations 23 . Using the blueprint of geometric deep learning (GDL) 10 , we can design specialised GNN architectures that exploit this regularity.

That is, geometric deep learning is a generic methodology for deriving mathematical constraints on neural networks, such that they will behave predictably when inputs are transformed in certain ways. In several important cases, these constraints can be directly resolved, directly informing neural network architecture design. For a comprehensive example of point clouds under 3D rotational symmetry, see Fuchs et al. 24 .

To elucidate several aspects of the GDL framework on a high level, let us assume that there exists a group of input data transformations (symmetries), \({\mathfrak{G}}\) under which the ground-truth label remains unchanged. Specifically, if we let y ( X ,  E ,  g ) be the label given to the graph featurised with X ,  E ,  g , then for every transformation \({\mathfrak{g}}\in {\mathfrak{G}}\) , the following property holds:

This condition is also referred to as \({\mathfrak{G}}\) -invariance. Here, by \({\mathfrak{g}}({{{{{{{\bf{X}}}}}}}})\) we denote the result of transforming X by \({\mathfrak{g}}\) —a concept also known as a group action. More generally, it is a function of the form \({\mathfrak{G}}\times {{{{{{{\mathcal{S}}}}}}}}\to {{{{{{{\mathcal{S}}}}}}}}\) for some state set \({{{{{{{\mathcal{S}}}}}}}}\) . Note that a single group element, \({\mathfrak{g}}\in {\mathfrak{G}}\) can easily produce different actions on different \({{{{{{{\mathcal{S}}}}}}}}\) —in this case, \({{{{{{{\mathcal{S}}}}}}}}\) could be \({{\mathbb{R}}}^{| {{{{{{{\mathcal{V}}}}}}}}| \times k}\) ( X ), \({{\mathbb{R}}}^{| {{{{{{{\mathcal{V}}}}}}}}| \times | {{{{{{{\mathcal{V}}}}}}}}| \times l}\) ( E ) and \({{\mathbb{R}}}^{m}\) ( g ).

It is worth noting that GNNs may also be derived using a GDL perspective if we set the symmetry group \({\mathfrak{G}}\) to \({S}_{| {{{{{{{\mathcal{V}}}}}}}}}|\) , the permutation group of \(| {{{{{{{\mathcal{V}}}}}}}}|\) objects. Owing to the design of Eq. ( 2 ), its outputs will not be dependent on the exact permutation of nodes in the input graph.

Frame averaging

A simple mechanism to enforce \({\mathfrak{G}}\) -invariance, given any predictor \({f}_{{{{{{{{\mathcal{G}}}}}}}}}({{{{{{{\bf{X}}}}}}}},\, {{{{{{{\bf{E}}}}}}}},\, {{{{{{{\bf{g}}}}}}}})\) , performs frame averaging across all \({\mathfrak{G}}\) -transformed inputs:

This ensures that all \({\mathfrak{G}}\) -transformed versions of a particular input (also known as that input’s orbit) will have exactly the same output, satisfying Eq. ( 5 ). A variant of this approach has also been applied in the AlphaGo architecture 25 to encode symmetries of a Go board.

In our specific implementation, we set \({\mathfrak{G}}={D}_{2}=\{{{{{{{{\rm{id}}}}}}}},\leftrightarrow,\updownarrow,\leftrightarrow \updownarrow \}\) , the dihedral group. Exploiting D 2 -invariance allows us to encode quadrant symmetries. Each element of the D 2 group encodes the presence of vertical or horizontal reflections of the input football pitch. Under these transformations, the pitch is assumed completely symmetric, and hence many predictions, such as which player receives the corner kick, or takes a shot from it, can be safely assumed unchanged. As an example of how to compute transformed features in Eq. ( 6 ), ↔( X ) horizontally reflects all positional features of players in X (e.g. the coordinates of the player), and negates the x -axis component of their velocity.

Group convolutions

While the frame averaging approach of Eq. ( 6 ) is a powerful way to restrict GNNs to respect input symmetries, it arguably misses an opportunity for the different \({\mathfrak{G}}\) -transformed views to interact while their computations are being performed. For small groups such as D 2 , a more fine-grained approach can be assumed, operating over a single GNN layer in Eq. ( 2 ), which we will write shortly as \({{{{{{{{\bf{H}}}}}}}}}^{(t)}={g}_{{{{{{{{\mathcal{G}}}}}}}}}({{{{{{{{\bf{H}}}}}}}}}^{(t-1)},\, {{{{{{{\bf{E}}}}}}}},\, {{{{{{{\bf{g}}}}}}}})\) . The condition that we need a symmetry-respecting GNN layer to satisfy is as follows, for all transformations \({\mathfrak{g}}\in {\mathfrak{G}}\) :

that is, it does not matter if we apply \({\mathfrak{g}}\) it to the input or the output of the function \({g}_{{{{{{{{\mathcal{G}}}}}}}}}\) —the final answer is the same. This condition is also referred to as \({\mathfrak{G}}\) -equivariance, and it has recently proved to be a potent paradigm for developing powerful GNNs over biochemical data 24 , 26 .

To satisfy D 2 -equivariance, we apply the group convolution approach 13 . Therein, views of the input are allowed to directly interact with their \({\mathfrak{G}}\) -transformed variants, in a manner very similar to grid convolutions (which is, indeed, a special case of group convolutions, setting \({\mathfrak{G}}\) to be the translation group). We use \({{{{{{{{\bf{H}}}}}}}}}_{{\mathfrak{g}}}^{(t)}\) to denote the \({\mathfrak{g}}\) -transformed view of the latent node features at layer t . Omitting E and g inputs for brevity, and using our previously designed layer \({g}_{{{{{{{{\mathcal{G}}}}}}}}}\) as a building block, we can perform a group convolution as follows:

Here, ∥ is the concatenation operation, joining the two node feature matrices column-wise; \({{\mathfrak{g}}}^{-1}\) is the inverse transformation to \({\mathfrak{g}}\) (which must exist as \({\mathfrak{G}}\) is a group); and \({{\mathfrak{g}}}^{-1}{\mathfrak{h}}\) is the composition of the two transformations.

Effectively, Eq. ( 8 ) implies our D 2 -equivariant GNN needs to maintain a node feature matrix \({{{{{{{{\bf{H}}}}}}}}}_{{\mathfrak{g}}}^{(t)}\) for every \({\mathfrak{G}}\) -transformation of the current input, and these views are recombined by invoking \({g}_{{{{{{{{\mathcal{G}}}}}}}}}\) on all pairs related together by applying a transformation \({\mathfrak{h}}\) . Note that all reflections are self-inverses, hence, in D 2 , \({\mathfrak{g}}={{\mathfrak{g}}}^{-1}\) .

It is worth noting that both the frame averaging in Eq. ( 6 ) and group convolution in Eq. ( 8 ) are similar in spirit to data augmentation. However, whereas standard data augmentation would only show one view at a time to the model, a frame averaging/group convolution architecture exhaustively generates all views and feeds them to the model all at once. Further, group convolutions allow these views to explicitly interact in a way that does not break symmetries. Here lies the key difference between the two approaches: frame averaging and group convolutions rigorously enforce the symmetries in \({\mathfrak{G}}\) , whereas data augmentation only provides implicit hints to the model about satisfying them. As a consequence of the exhaustive generation, Eqs. ( 6 ) and ( 8 ) are only feasible for small groups like D 2 . For larger groups, approaches like Steerable CNNs 27 may be employed.

Network architectures

While the three benchmark tasks we are performing have minor differences in the global features available to the model, the neural network models designed for them all have the same encoder–decoder architecture. The encoder has the same structure in all tasks, while the decoder model is tailored to produce appropriately shaped outputs for each benchmark task.

Given an input graph, TacticAI’s model first generates all relevant D 2 -transformed versions of it, by appropriately reflecting the player coordinates and velocities. We refer to the original input graph as the identity view, and the remaining three D 2 -transformed graphs as reflected views.

Once the views are prepared, we apply four group convolutional layers (Eq. ( 8 )) with a GATv2 base model (Eqs. ( 3 ) and ( 4 )) as the \({g}_{{{{{{{{\mathcal{G}}}}}}}}}\) function. Specifically, this means that, in Eqs. ( 3 ) and ( 4 ), every instance of \({{{{{{{{\bf{h}}}}}}}}}_{u}^{(t-1)}\) is replaced by the concatenation of \({({{{{{{{{\bf{h}}}}}}}}}_{{\mathfrak{h}}}^{(t-1)})}_{u}\parallel {({{{{{{{{\bf{h}}}}}}}}}_{{{\mathfrak{g}}}^{-1}{\mathfrak{h}}}^{(t-1)})}_{u}\) . Each GATv2 layer has eight attention heads and computes four latent features overall per player. Accordingly, once the four group convolutions are performed, we have a representation of \({{{{{{{\bf{H}}}}}}}}\in {{\mathbb{R}}}^{4\times 22\times 4}\) , where the first dimension corresponds to the four views ( \({{{{{{{{\bf{H}}}}}}}}}_{{{{{{{{\rm{id}}}}}}}}},\, {{{{{{{{\bf{H}}}}}}}}}_{\leftrightarrow },\, {{{{{{{{\bf{H}}}}}}}}}_{\updownarrow },\, {{{{{{{{\bf{H}}}}}}}}}_{\leftrightarrow \updownarrow }\in {{\mathbb{R}}}^{22\times 4}\) ), the second dimension corresponds to the players (eleven on each team), and the third corresponds to the 4-dimensional latent vector for each player node in this particular view. How this representation is used by the decoder depends on the specific downstream task, as we detail below.

For receiver prediction, which is a fully invariant function (i.e. reflections do not change the receiver), we perform simple frame averaging across all views, arriving at

and then learn a node-wise classifier over the rows of \({{{{{{{{\bf{H}}}}}}}}}^{{{{{{{{\rm{node}}}}}}}}}\in {{\mathbb{R}}}^{22\times 4}\) . We further decode H node into a logit vector \({{{{{{{\bf{O}}}}}}}}\in {{\mathbb{R}}}^{22}\) with a linear layer before computing the corresponding softmax cross entropy loss.

For shot prediction, which is once again fully invariant (i.e. reflections do not change the probability of a shot), we can further average the frame-averaged features across all players to get a global graph representation:

and then learn a binary classifier over \({{{{{{{{\bf{h}}}}}}}}}^{{{{{{{{\rm{graph}}}}}}}}}\in {{\mathbb{R}}}^{4}\) . Specifically, we decode the hidden vector into a single logit with a linear layer and compute the sigmoid binary cross-entropy loss with the corresponding label.

For guided generation (position/velocity adjustments), we generate the player positions and velocities with respect to a particular outcome of interest for the human coaches, predicted over the rows of the hidden feature matrix. For example, the model may adjust the defensive setup to decrease the shot probability by the attacking team. The model output is now equivariant rather than invariant—reflecting the pitch appropriately reflects the predicted positions and velocity vectors. As such, we cannot perform frame averaging, and take only the identity view’s features, \({{{{{{{{\bf{H}}}}}}}}}_{{{{{{{{\rm{id}}}}}}}}}\in {{\mathbb{R}}}^{22\times 4}\) . From this latent feature matrix, we can then learn a conditional distribution from each row, which models the positions or velocities of the corresponding player. To do this, we extend the backbone encoder with conditional variational autoencoder (CVAE 28 , 29 ). Specifically, for the u -th row of H id , h u , we first map its latent embedding to the parameters of a two-dimensional Gaussian distribution \({{{{{{{\mathcal{N}}}}}}}}({\mu }_{u}| {\sigma }_{u})\) , and then sample the coordinates and velocities from this distribution. At training time, we can efficiently propagate gradients through this sampling operation using the reparameterisation trick 28 : sample a random value \({\epsilon }_{u} \sim {{{{{{{\mathcal{N}}}}}}}}(0,1)\) for each player from the unit Gaussian distribution, and then treat μ u  +  σ u ϵ u as the sample for this player. In what follows, we omit edge features for brevity. For each corner kick sample X with the corresponding outcome o (e.g. a binary value indicating a shot event), we extend the standard VAE loss 28 , 29 to our case of outcome-conditional guided generation as

where h u is the player embedding corresponding to the u th row of H id , and \({\mathbb{KL}}\) is Kullback–Leibler (KL) divergence. Specifically, the first term is the generation loss between the real player input x u and the reconstructed sample decoded from h u with the decoder p ϕ . Using the KL term, the distribution of the latent embedding h u is regularised towards p ( h u ∣ o ), which is a multivariate Gaussian in our case.

A complete high-level summary of the generic encoder–decoder equivariant architecture employed by TacticAI can be summarised in Supplementary Fig.  2 . In the following section, we will provide empirical evidence for justifying these architectural decisions. This will be done through targeted ablation studies on our predictive benchmarks (receiver prediction and shot prediction).

Ablation study

We leveraged the receiver prediction task as a way to evaluate various base model architectures, and directly quantitatively assess the contributions of geometric deep learning in this context. We already see that the raw corner kick data can be better represented through geometric deep learning, yielding separable clusters in the latent space that could correspond to different attacking or defending tactics (Fig.  2 ). In addition, we hypothesise that these representations can also yield better performance on the task of receiver prediction. Accordingly, we ablate several design choices using deep learning on this task, as illustrated by the following four questions:

Does a factorised graph representation help? To assess this, we compare it against a convolutional neural network (CNN 30 ) baseline, which does not leverage a graph representation.

Does a graph structure help? To assess this, we compare against a Deep Sets 31 baseline, which only models each node in isolation without considering adjacency information—equivalently, setting each neighbourhood \({{{{{{{{\mathcal{N}}}}}}}}}_{u}\) to a singleton set { u }.

Are attentional GNNs a good strategy? To assess this, we compare against a message passing neural network 32 , MPNN baseline, which uses the fully potent GNN layer from Eq. ( 2 ) instead of the GATv2.

Does accounting for symmetries help? To assess this, we compare our geometric GATv2 baseline against one which does not utilise D 2 group convolutions but utilises D 2 frame averaging, and one which does not explicitly utilise any aspect of D 2 symmetries at all.

Each of these models has been trained for a fixed budget of 50,000 training steps. The test top- k receiver prediction accuracies of the trained models are provided in Supplementary Table  2 . As already discussed in the section “Results”, there is a clear advantage to using a full graph structure, as well as directly accounting for reflection symmetry. Further, the usage of the MPNN layer leads to slight overfitting compared to the GATv2, illustrating how attentional GNNs strike a good balance of expressivity and data efficiency for this task. Our analysis highlights the quantitative benefits of both graph representation learning and geometric deep learning for football analytics from tracking data. We also provide a brief ablation study for the shot prediction task in Supplementary Table  3 .

Training details

We train each of TacticAI’s models in isolation, using NVIDIA Tesla P100 GPUs. To minimise overfitting, each model’s learning objective is regularised with an L 2 norm penalty with respect to the network parameters. During training, we use the Adam stochastic gradient descent optimiser 33 over the regularised loss.

All models, including baselines, have been given an equal hyperparameter tuning budget, spanning the number of message passing steps ({1, 2, 4}), initial learning rate ({0.0001, 0.00005}), batch size ({128, 256}) and L 2 regularisation coefficient ({0.01, 0.005, 0.001, 0.0001, 0}). We summarise the chosen hyperparameters of each TacticAI model in Supplementary Table  1 .

Data availability

The data collected in the human experiments in this study have been deposited in the Zenodo database under accession code https://zenodo.org/records/10557063 , and the processed data which is used in the statistical analysis and to generate the relevant figures in the main text are available under the same accession code. The input and output data generated and/or analysed during the current study are protected and are not available due to data privacy laws and licensing restrictions. However, contact details of the input data providers are available from the corresponding authors on reasonable request.

Code availability

All the core models described in this research were built with the Graph Neural Network processors provided by the CLRS Algorithmic Reasoning Benchmark 18 , and their source code is available at https://github.com/google-deepmind/clrs . We are unable to release our code for this work as it was developed in a proprietary context; however, the corresponding authors are open to answer specific questions concerning re-implementations on request. For general data analysis, we used the following freely available packages: numpy v1.25.2 , pandas v1.5.3 , matplotlib v3.6.1 , seaborn v0.12.2 and scipy v1.9.3 . Specifically, the code of the statistical analysis conducted in this study is available at https://zenodo.org/records/10557063 .

The International Football Association Board (IFAB). Laws of the Game (The International Football Association Board, 2023).

Tuyls, K. et al. Game plan: what AI can do for football, and what football can do for AI. J. Artif. Intell. Res. 71 , 41–88 (2021).

Article   Google Scholar  

Goka, R., Moroto, Y., Maeda, K., Ogawa, T. & Haseyama, M. Prediction of shooting events in soccer videos using complete bipartite graphs and players’ spatial–temporal relations. Sensors 23 , 4506 (2023).

Article   ADS   PubMed   PubMed Central   Google Scholar  

Omidshafiei, S. et al. Multiagent off-screen behavior prediction in football. Sci. Rep. 12 , 8638 (2022).

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Lang, S., Wild, R., Isenko, A. & Link, D. Predicting the in-game status in soccer with machine learning using spatiotemporal player tracking data. Sci. Rep. 12 , 16291 (2022).

Baccouche, M., Mamalet, F., Wolf, C., Garcia, C. & Baskurt, A. Action classification in soccer videos with long short-term memory recurrent neural networks. In International Conference on Artificial Neural Networks (eds Diamantaras, K., Duch, W. & Iliadis, L. S.) pages 154–159 (Springer, 2010).

Shaw, L. & Gopaladesikan, S. Routine inspection: a playbook for corner kicks. In Machine Learning and Data Mining for Sports Analytics: 7th International Workshop, MLSA 2020, Co-located with ECML/PKDD 2020 , Proceedings, Ghent, Belgium, September 14–18, 2020, Vol . 7 , 3–16 (Springer, 2020).

Araújo, D. & Davids, K. Team synergies in sport: theory and measures. Front. Psychol. 7 , 1449 (2016).

Article   PubMed   PubMed Central   Google Scholar  

Veličković, P. Everything is connected: graph neural networks. Curr. Opin. Struct. Biol. 79 , 102538 (2023).

Article   PubMed   Google Scholar  

Bronstein, M. M., Bruna, J., Cohen, T. & Veličković, P. Geometric deep learning: grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478 (2021).

Brody, S., Alon, U. & Yahav, E. How attentive are graph attention networks? In International Conference on Learning Representations (ICLR, 2022). https://openreview.net/forum?id=F72ximsx7C1 .

Veličković, P. et al. Graph attention networks. In International Conference on Learning Representations (ICLR, 2018). https://openreview.net/forum?id=rJXMpikCZ .

Cohen, T. & Welling, M. Group equivariant convolutional networks. In International Conference on Machine Learning (eds Balcan, M. F. & Weinberger, K. Q.) 2990–2999 (PMLR, 2016).

Honda, Y., Kawakami, R., Yoshihashi, R., Kato, K. & Naemura, T. Pass receiver prediction in soccer using video and players’ trajectories. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 3502–3511 (2022). https://ieeexplore.ieee.org/document/9857310 .

Hubáček, O., Sourek, G. & Železný, F. Deep learning from spatial relations for soccer pass prediction. In MLSA@PKDD/ECML (eds Brefeld, U., Davis, J., Van Haaren, J. & Zimmermann, A.) Vol. 11330, (Lecture Notes in Computer Science, Springer, Cham, 2018).

Sanyal, S. Who will receive the ball? Predicting pass recipient in soccer videos. J Visual Commun. Image Represent. 78 , 103190 (2021).

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In International Conference on Machine Learning (Precup, D. & Teh, Y. W.) 1263–1272 (PMLR, 2017).

Veličković, P. et al. The CLRS algorithmic reasoning benchmark. In International Conference on Machine Learning (eds Chaudhuri, K. et al.) 22084–22102 (PMLR, 2022).

Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems (eds Guyon, I. et al.) Vol. 30 (Curran Associates, Inc., 2017).

Veličković, P. Message passing all the way up. In ICLR 2022 Workshop on Geometrical and Topological Representation Learning (GTRL, 2022). https://openreview.net/forum?id=Bc8GiEZkTe5 .

Baranwal, A., Kimon, F. & Aukosh, J. Optimality of message-passing architectures for sparse graphs. In Thirty-seventh Conference on Neural Information Processing Systems (2023). https://papers.nips.cc/paper_files/paper/2023/hash/7e991aa4cd2fdf0014fba2f000f542d0-Abstract-Conference.html .

Greenblatt, R. D., Eastlake III, D. E. & Crocker, S. D. The Greenblatt chess program. In Proc. Fall Joint Computer Conference , 14–16 , 801–810 (Association for Computing Machinery, 1967). https://dl.acm.org/doi/10.1145/1465611.1465715 .

Schijf, M., Allis, L. V. & Uiterwijk, J. W. Proof-number search and transpositions. ICGA J. 17 , 63–74 (1994).

Fuchs, F., Worrall, D., Fischer, V. & Welling, M. SE(3)-transformers: 3D roto-translation equivariant attention networks. Adv. Neural Inf. Process. Syst. 33 , 1970–1981 (2020).

Google Scholar  

Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529 , 484–489 (2016).

Article   ADS   CAS   PubMed   Google Scholar  

Satorras, V. G., Hoogeboom, E. & Welling, M. E ( n ) equivariant graph neural networks. In International Conference on Machine Learning (eds Meila, M. & Zhang, T.) 9323–9332 (PMLR, 2021).

Cohen, T. S. & Welling, M. Steerable CNNs. In International Conference on Learning Representations (ICLR, 2017). https://openreview.net/forum?id=rJQKYt5ll .

Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. In 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014, Conference Track Proceedings (ICLR, 2014). https://openreview.net/forum?id=33X9fd2-9FyZd .

Sohn, K., Lee, H. & Yan, X. Learning structured output representation using deep conditional generative models. In Advances in Neural Information Processing Systems (eds Cortes, C, Lawrence, N., Lee, D., Sugiyama, M. & Garnett, R.) Vol. 28 (Curran Associates, Inc., 2015).

Fernández, J. & Bornn, L. Soccermap: a deep learning architecture for visually-interpretable analysis in soccer. In Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track: European Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part V (eds Dong, Y., Ifrim, G., Mladenić, D., Saunders, C. & Van Hoecke, S.) 491–506 (Springer, 2021).

Zaheer, M. et al. Deep sets. In Advances in Neural Information Processing Systems Vol. 30 (eds Guyon, I., et al.) (Curran Associates, Inc., 2017).

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In Proc. 34th International Conference on Machine Learning , Vol. 70 of Proceedings of Machine Learning Research, 6–11 Aug 2017 (eds Precup, D. & Whye Teh, Y) 1263–1272 (PMLR, 2017).

Kingma, G. E. & Ba, J. Adam: a method for stochastic optimization. In ICLR (Poster) , (eds Bengio, Y. & LeCun, Y.) (International Conference of Learning Representations (ICLR), 2015). https://openreview.net/forum?id=8gmWwjFyLj .

Download references

Acknowledgements

We gratefully acknowledge the support of James French, Timothy Waskett, Hans Leitert and Benjamin Hervey for their extensive efforts in analysing TacticAI’s outputs. Further, we are thankful to Kevin McKee, Sherjil Ozair and Beatrice Bevilacqua for useful technical discussions, and Marc Lanctôt and Satinder Singh for reviewing the paper prior to submission.

Author information

These authors contributed equally: Zhe Wang, Petar Veličković, Daniel Hennes.

Authors and Affiliations

Google DeepMind, 6-8 Handyside Street, London, N1C 4UZ, UK

Zhe Wang, Petar Veličković, Daniel Hennes, Nenad Tomašev, Laurel Prince, Michael Kaisers, Yoram Bachrach, Romuald Elie, Li Kevin Wenliang, Federico Piccinini, Jerome Connor, Yi Yang, Adrià Recasens, Mina Khan, Nathalie Beauguerlange, Pablo Sprechmann, Pol Moreno, Nicolas Heess & Demis Hassabis

Liverpool FC, AXA Training Centre, Simonswood Lane, Kirkby, Liverpool, L33 5XB, UK

William Spearman

Liverpool FC, Kirkby, UK

University of Alberta, Amii, Edmonton, AB, T6G 2E8, Canada

Michael Bowling

Google DeepMind, London, UK

You can also search for this author in PubMed   Google Scholar

Contributions

Z.W., D. Hennes, L.P. and K.T. coordinated and organised the research effort leading to this paper. P.V. and Z.W. developed the core TacticAI models. Z.W., W.S. and I.G. prepared the Premier League corner kick dataset used for training and evaluating these models. P.V., Z.W., D. Hennes and N.T. designed the case study with human experts and Z.W. and P.V. performed the qualitative evaluation and statistical analysis of its outcomes. Z.W., P.V., D. Hennes, N.T., L.P., M. Kaisers, Y.B., R.E., L.K.W., F.P., W.S., I.G., N.H., M.B., D. Hassabis and K.T. contributed to writing the paper and providing feedback on the final manuscript. J.C., Y.Y., A.R., M. Khan, N.B., P.S. and P.M. contributed valuable technical and implementation discussions throughout the work’s development.

Corresponding authors

Correspondence to Zhe Wang , Petar Veličković or Karl Tuyls .

Ethics declarations

Competing interests.

The authors declare no competing interests but the following competing interests: TacticAI was developed during the course of the Authors’ employment at Google DeepMind and Liverpool Football Club, as applicable to each Author.

Peer review

Peer review information.

Nature Communications thanks Rui Luo and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information, peer review file, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Wang, Z., Veličković, P., Hennes, D. et al. TacticAI: an AI assistant for football tactics. Nat Commun 15 , 1906 (2024). https://doi.org/10.1038/s41467-024-45965-x

Download citation

Received : 13 October 2023

Accepted : 08 February 2024

Published : 19 March 2024

DOI : https://doi.org/10.1038/s41467-024-45965-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

a research paper is analyzed at a

Help | Advanced Search

Computer Science > Computer Vision and Pattern Recognition

Title: mm1: methods, analysis & insights from multimodal llm pre-training.

Abstract: In this work, we discuss building performant Multimodal Large Language Models (MLLMs). In particular, we study the importance of various architecture components and data choices. Through careful and comprehensive ablations of the image encoder, the vision language connector, and various pre-training data choices, we identified several crucial design lessons. For example, we demonstrate that for large-scale multimodal pre-training using a careful mix of image-caption, interleaved image-text, and text-only data is crucial for achieving state-of-the-art (SOTA) few-shot results across multiple benchmarks, compared to other published pre-training results. Further, we show that the image encoder together with image resolution and the image token count has substantial impact, while the vision-language connector design is of comparatively negligible importance. By scaling up the presented recipe, we build MM1, a family of multimodal models up to 30B parameters, including both dense models and mixture-of-experts (MoE) variants, that are SOTA in pre-training metrics and achieve competitive performance after supervised fine-tuning on a range of established multimodal benchmarks. Thanks to large-scale pre-training, MM1 enjoys appealing properties such as enhanced in-context learning, and multi-image reasoning, enabling few-shot chain-of-thought prompting.

Submission history

Access paper:.

  • Download PDF
  • Other Formats

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

Intermittent fasting linked to higher risk of cardiovascular death, research suggests

Intermittent fasting, a diet pattern that involves alternating between periods of fasting and eating, can lower blood pressure and help some people lose weight , past research has indicated.

But an analysis presented Monday at the American Heart Association’s scientific sessions in Chicago challenges the notion that intermittent fasting is good for heart health. Instead, researchers from Shanghai Jiao Tong University School of Medicine in China found that people who restricted food consumption to less than eight hours per day had a 91% higher risk of dying from cardiovascular disease over a median period of eight years, relative to people who ate across 12 to 16 hours.

It’s some of the first research investigating the association between time-restricted eating (a type of intermittent fasting) and the risk of death from cardiovascular disease.

The analysis — which has not yet been peer-reviewed or published in an academic journal — is based on data from the Centers for Disease Control and Prevention’s National Health and Nutrition Examination Survey collected between 2003 and 2018. The researchers analyzed responses from around 20,000 adults who recorded what they ate for at least two days, then looked at who had died from cardiovascular disease after a median follow-up period of eight years.

However, Victor Wenze Zhong, a co-author of the analysis, said it’s too early to make specific recommendations about intermittent fasting based on his research alone.

“Practicing intermittent fasting for a short period such as 3 months may likely lead to benefits on reducing weight and improving cardiometabolic health,” Zhong said via email. But he added that people “should be extremely cautious” about intermittent fasting for longer periods of time, such as years.

Intermittent fasting regimens vary widely. A common schedule is to restrict eating to a period of six to eight hours per day, which can lead people to consume fewer calories, though some eat the same amount in a shorter time. Another popular schedule is the "5:2 diet," which involves eating 500 to 600 calories on two nonconsecutive days of the week but eating normally for the other five.

A fixed rhythm for meals helps against unwanted kilos on the scales.

Zhong said it’s not clear why his research found an association between time-restricted eating and a risk of death from cardiovascular disease. He offered an observation, though: People who limited their eating to fewer than eight hours per day had less lean muscle mass than those who ate for 12 to 16 hours. Low lean muscle mass has been linked to a higher risk of cardiovascular death .

Cardiovascular and nutrition experts who were not involved in the analysis offered several theories about what might explain the results.

Dr. Benjamin Horne, a research professor at Intermountain Health in Salt Lake City, said fasting can increase stress hormones such as cortisol and adrenaline, since the body doesn’t know when to expect food next and goes into survival mode. That added stress may raise the short-term risk of heart problems among vulnerable groups, he said, particularly elderly people or those with chronic health conditions.

Horne’s research has shown that fasting twice a week for four weeks, then once a week for 22 weeks may increase a person’s risk of dying after one year but decrease their 10-year risk of chronic disease.

“In the long term, what it does is reduces those risk factors for heart disease and reduces the risk factors for diabetes and so forth — but in the short term, while you’re actually doing it, your body is in a state where it’s at a higher risk of having problems,” he said.

Even so, Horne added, the analysis “doesn’t change my perspective that there are definite benefits from fasting, but it’s a cautionary tale that we need to be aware that there are definite, potentially major, adverse effects.” 

Intermittent fasting gained popularity about a decade ago, when the 5:2 diet was touted as a weight loss strategy in the U.K. In the years to follow, several celebrities espoused the benefits of an eight-hour eating window for weight loss, while some Silicon Valley tech workers believed that extreme periods of fasting boosted productivity . Some studies have also suggested that intermittent fasting might help extend people’s lifespans by warding off disease .

However, a lot of early research on intermittent fasting involved animals. In the last seven years or so, various clinical trials have investigated potential benefits for humans, including for heart health.

“The purpose of intermittent fasting is to cut calories, lose weight,” said Penny Kris-Etherton, emeritus professor of nutritional sciences at Penn State University and a member of the American Heart Association nutrition committee. “It’s really how intermittent fasting is implemented that’s going to explain a lot of the benefits or adverse associations.”

Dr. Francisco Lopez-Jimenez, a cardiologist at Mayo Clinic, said the timing of when people eat may influence the effects they see. 

“I haven’t met a single person or patient that has been practicing intermittent fasting by skipping dinner,” he said, noting that people more often skip breakfast, a schedule associated with an increased risk of heart disease and death .

The new research comes with limitations: It relies on people’s memories of what they consumed over a 24-hour period and doesn’t consider the nutritional quality of the food they ate or how many calories they consumed during an eating window.

So some experts found the analysis too narrow.

“It’s a retrospective study looking at two days’ worth of data, and drawing some very big conclusions from a very limited snapshot into a person’s lifestyle habits,” said Dr. Pam Taub, a cardiologist at UC San Diego Health.

Taub said her patients have seen “incredible benefits” from fasting regimens.

“I would continue doing it,” she said. “For people that do intermittent fasting, their individual results speak for themselves. Most people that do intermittent fasting, the reason they continue it is they see a decrease in their weight. They see a decrease in blood pressure. They see an improvement in their LDL cholesterol.” 

Kris-Etherton, however, urged caution: “Maybe consider a pause in intermittent fasting until we have more information or until the results of the study can be better explained,” she said.

a research paper is analyzed at a

Aria Bendix is the breaking health reporter for NBC News Digital.

Silicon Valley is pricing academics out of AI research

With eye-popping salaries and access to costly computing power, ai companies are draining academia of talent.

Fei-Fei Li, the “godmother of artificial intelligence,” delivered an urgent plea to President Biden in the glittering ballroom of San Francisco’s Fairmont Hotel in June.

The Stanford professor asked Biden to fund a national warehouse of computing power and data sets — part of a “moonshot investment” allowing the country’s top AI researchers to keep up with tech giants.

She elevated the ask Thursday at Biden’s State of the Union address, which Li attended as a guest of Rep. Anna G. Eshoo (D-Calif.) to promote a bill to fund a national AI repository.

Li is at the forefront of a growing chorus of academics, policymakers and former employees who argue that the sky-high cost of working with AI models is boxing researchers out of the field, compromising independent study of the burgeoning technology.

As such tech behemoths as Meta, Google and Microsoft funnel billions of dollars into AI, a massive resources gap is building with even the country’s richest universities. Meta aims to procure 350,000 of the specialized computer chips — called GPUs — that are essential to run the gargantuan calculations needed for AI models. In contrast, Stanford’s Natural Language Processing Group has 68 GPUs for all of its work.

After attending State of the Union speech #SOTU tonight, I had a brief exchange w/ President Biden @POTUS . Me: “Mr. President, you gave a historical speech by mentioning AI in the SOTU speech for the first time in history.” @POTUS (smiling): “Yes! And keep it safe”. 1/ pic.twitter.com/cJ7vs440fx — Fei-Fei Li (@drfeifei) March 8, 2024

To obtain the expensive computing power and data required to research AI systems, scholars frequently partner with tech employees. Meanwhile, tech firms’ eye-popping salaries are draining academia of star talent.

Big tech companies now dominate breakthroughs in the field. In 2022, the tech industry created 32 significant machine learning models, while academics produced three, a significant reversal from 2014, when the majority of AI breakthroughs originated in universities, according to a Stanford report .

Researchers say this lopsided power dynamic is shaping the field in subtle ways, pushing AI scholars to tailor their research for commercial use. Last month, Meta CEO Mark Zuckerberg announced that the company’s independent AI research lab would move closer to its product team, ensuring “some level of alignment” between the groups, he said.

“The public sector is now significantly lagging in resources and talent compared to that of industry,” said Li, a former Google employee and the co-director of the Stanford Institute for Human-Centered AI. “This will have profound consequences because industry is focused on developing technology that is profit-driven, whereas public-sector AI goals are focused on creating public goods.”

This agency is tasked with keeping AI safe. Its offices are crumbling.

Some are pushing for new sources of funding. Li has been making the rounds in Washington, huddling with White House Office of Science and Technology Policy Director Arati Prabhakar, dining with the political press at a swanky seafood and steak restaurant and visiting Capitol Hill for meetings with lawmakers working on AI, including Sens. Martin Heinrich (D-N.M.), Mike Rounds (R-S.D.) and Todd Young (R-Ind.).

Large tech companies have contributed computing resources to the National AI Research Resource, the national warehouse project, including a $20 million donation in computing credits from Microsoft.

“We have long embraced the importance of sharing knowledge and compute resources with our colleagues within academia,” Microsoft Chief Scientific Officer Eric Horvitz said in a statement.

Policymakers are taking some steps to address the funding gaps. Last year, the National Science Foundation announced a $140 million investment to launch seven university-led National AI Research Institutes to examine how AI could mitigate the effects of climate change and improve education, among other topics.

Eshoo said she hopes to pass the Create AI Act, which has bipartisan backing in the House and the Senate, by the end of the year, when she is scheduled to retire. The legislation “essentially democratizes AI,” Eshoo said.

But scholars say this infusion may not come quickly enough.

As Silicon Valley races to build chatbots and image generators, it is drawing would-be computer science professors with high salaries and the chance to work on interesting AI problems. Nearly 70 percent of people with PhDs in AI end up in private industry compared with 21 percent of graduates two decades ago, according to a 2023 report .

Amid explosive demand, America is running out of power

Big Tech’s AI boom has pushed the salaries for the best researchers to new heights. Median compensation packages for AI research scientists at Meta climbed from $256,000 in 2020 to $335,250 in 2023, according to Levels.fyi , a salary-tracking website. True stars can attract even more cash: AI engineers with a PhD and several years of experience building AI models can command compensation as high as $20 million over four years, said Ali Ghodsi, who as CEO of AI start-up Databricks is regularly competing to hire AI talent.

“The compensation is through the roof. It’s ridiculous,” he said. “It’s not an uncommon number to hear, roughly.”

University academics often have little choice but to work with industry researchers , with the companies footing the bill for computing power and offering data. Nearly 40 percent of papers presented at leading AI conferences in 2020 had at least one tech employee author, according to the 2023 report . And industry grants often fund PhD students to perform research, said Mohamed Abdalla, a scientist at the Canada-based Institute for Better Health at Trillium Health Partners and incoming assistant professor at the University of Alberta, who has conducted research on the effect of industry on academics’ AI research.

“It was like a running joke that, like, everyone is getting hired by them,” Abdalla said. “And the people that were remaining, they were funded by them — so, in a way, hired by them.”

Google believes private companies and universities should work together to develop the science behind AI, said Jane Park, a spokesperson for the company. Google still routinely publishes its research publicly to benefit the broader AI community, Park said.

David Harris, a former research manager for Meta’s responsible AI team, said corporate labs may not censor the outcome of research but may influence which projects get tackled.

“Anytime you see a mix of authors who are employed by a company and authors who work at a university, you should really scrutinize the motives of the company for contributing to that work,” said Harris, who is now a chancellor’s public scholar at the University of California at Berkeley. “We used to look at people employed in academia to be neutral scholars, motivated only by the pursuit of truth and the interest of society.”

These fake images reveal how AI amplifies our worst stereotypes

Tech giants procure huge amounts of computing power through data centers and have access to GPUs. These resources are expensive: A recent report from Stanford University researchers estimated that Google DeepMind’s large language model, Chinchilla, cost $2.1 million to develop. More than 100 top artificial intelligence researchers on Tuesday urged generative AI companies to offer a legal and technical safe harbor to researchers so they can scrutinize their products without the fear that internet platforms will suspend their accounts or threaten legal action.

The necessity for advanced computing power is likely to only grow as AI scientists crunch more data to improve the performance of their models, said Neil Thompson, director of the FutureTech research project at MIT’s Computer Science and Artificial Intelligence Laboratory, which studies progress in computing.

“To keep getting better, [what] you expect to need is more and more money, more and more computers, more and more data,” Thompson said. “What that’s going to mean is that people who do not have as much compute [and] who do not have as many resources are going to stop being able to participate.”

Tech companies, including Meta and Google, have historically run their AI research labs to resemble universities where scientists decide what projects to pursue to advance the state of research, according to people familiar with the subject who spoke on the condition of anonymity to discuss private company matters.

Those workers were largely isolated from teams focused on building products or generating revenue, the people said. They were judged on influential papers they published or notable breakthroughs — similar to metrics used for their university peers, the people said. Top AI Meta scientists Yann LeCun and Joelle Pineau hold dual appointments at New York University and McGill University, blurring the lines between industry and academia.

Top AI researchers say OpenAI, Meta and more hinder independent evaluations

In an increasingly competitive market for generative AI products , research freedom inside companies could wane. In April, Google announced it was merging two of its AI research groups — DeepMind, which it acquired in 2014, and the Brain team from Google Research — into one department called Google DeepMind. Last year, Google started to take more advantage of its own AI discoveries, sharing research papers only after the lab work had been turned into products, The Washington Post has reported .

Meta has also reshuffled its research teams. The company placed its Fundamental AI Research team, known as FAIR, under the helm of its virtual-reality division, Reality Labs, in 2022 and last year reassigned some of the group’s researchers to a new generative AI product team. Last month, Zuckerberg told investors that FAIR would work “closer together” with the generative AI product team, arguing that while the two groups would still conduct research on “different time horizons,” it was helpful to the company “to have some level of alignment” between them.

“In a lot of tech companies right now, they hired research scientists that knew something about AI and maybe set certain expectations about how much freedom they would have to set their own schedule and set their own research agenda,” Harris said. “That’s changing, especially for the companies that are moving frantically right now to ship these products.”

A previous version of this article incorrectly said that Google acquired DeepMind in 2010. Google acquired the AI start-up in 2014. The article has been corrected.

a research paper is analyzed at a

Read our research on: TikTok | Podcasts | Election 2024

Regions & Countries

5 facts about religion and americans’ views of donald trump.

Faith leaders pray over then-President Donald Trump during an "Evangelicals for Trump" campaign event held at the King Jesus International Ministry on Jan. 3, 2020, in Miami. (Joe Raedle/Getty Images)

For most of the last decade, observers have been trying to understand why so many highly religious Americans have a favorable view of Donald Trump, asking how values voters can support a candidate who has been divorced twice, married three times and found liable for sexual abuse . Is Trump viewed most positively by those who might be described as “Christians in name only” – people who identify as Christians but aren’t actually religious?

The latest Pew Research Center survey sheds light on these and related questions. Here are five facts about religion and views of Trump, based on our survey of 12,693 U.S. adults conducted Feb. 13-25.

Pew Research Center conducted this analysis to explore the connection between religion and views of Donald Trump.

For this analysis, we surveyed 12,693 respondents from Feb. 13 to 25, 2024. Most of the respondents (10,642) are members of the Center’s American Trends Panel, an online survey panel recruited through national random sampling of residential addresses, which gives nearly all U.S. adults a chance of selection.

The remaining respondents (2,051) are members of three other panels, the Ipsos KnowledgePanel, the NORC AmeriSpeak panel and the SSRS opinion panel. All three are national survey panels recruited through random sampling (not “opt-in” polls). We used these additional panels to ensure that the survey would have enough Jewish and Muslim respondents to be able to report on their views.

The survey is weighted to be representative of the U.S. adult population by gender, race, ethnicity, partisan affiliation, education, religious affiliation and other categories.

For more, refer to the ATP’s methodology and the methodology for this survey .

Among religious groups, White evangelical Protestants continue to have the most positive opinion of Trump. Overall, two-thirds of White evangelical Protestants say they have a favorable view of the former president, including 30% who have a very favorable opinion of him.

A diverging bar chart showing that two-thirds of White evangelicals see Trump favorably.

Roughly half of White Catholics (51%) express positive views of Trump, as do 47% of White nonevangelical Protestants and 45% of Hispanic Protestants.

But in every other U.S. religious group large enough to be analyzed in this survey, large majorities have unfavorable opinions of Trump, including:  

  • 88% of atheists
  • 82% of agnostics
  • 80% of Black Protestants
  • 79% of Jewish Americans

These religious patterns largely reflect partisan differences . Most White evangelicals tend to vote for Republicans, as do smaller majorities of White Catholics and White nonevangelical Protestants. By contrast, most atheists, agnostics, Black Protestants and Jews tend to vote for Democrats.

Trump’s favorability rating is similar among Christians who attend church regularly and those who don’t. Some observers have pointed out that Trump’s political base consists largely of people who call themselves Christians but don’t go to church. However, our survey shows that Christians who regularly go to church express equally favorable views of Trump as those who don’t often attend religious services.

A diverging bar chart showing that Christians who attend church regularly and those who don't have similar views of Trump.

Among Christians as a whole, 47% of those who attend church at least monthly say they have a favorable view of the former president. That’s on par with the 46% of non-church-attending Christians who say the same.

Among White evangelical Protestants, 68% of regular churchgoers have a positive view of Trump – similar to the 64% among White evangelicals who don’t attend church regularly.

The only exception to this pattern is among White Protestants who do not identify as born-again or evangelical. In this group, Trump is viewed more favorably by those who don’t attend church regularly than by those who do (52% vs. 32%).

Many of the people who view Trump favorably don’t go to religious services regularly – but very few are nonreligious. Overall, 64% of respondents who have a favorable view of Trump say they attend religious services a few times a year or less often, while 35% say they go to services at least once or twice a month. (Among all respondents, 69% say they attend religious services a few times a year or less, while 30% go at least monthly.)

Table comparing those who have a favorable view of Donald Trump by level of religious commitment. 23% of U.S. adults with a favorable view of Trump are highly religious, including 11% who are highly religious White evangelical Protestants.

Religious attendance is just one way of looking at religious commitment. Another common way we measure it is to combine survey questions about attendance at religious services, how often people pray and how important religion is to them.

U.S. adults who attend religious services at least weekly, pray daily and say religion is very important in their lives are categorized as highly religious. Those who seldom or never attend services, seldom or never pray and say religion is not too important or not at all important in their lives are counted as having low religious commitment. Everyone else is counted as having medium religious commitment.

Looked at this way, 23% of U.S. adults with a favorable view of Trump are highly religious, including 11% who are highly religious White evangelical Protestants.

Another 62% of Americans with a favorable view of Trump have medium levels of religious commitment, including 13% who are White evangelicals.

Just 15% of people with a favorable view of Trump have low levels of religious commitment. By far the biggest subgroup within this category is religious “nones” – people who describe their religious identity as atheist, agnostic or “nothing in particular.” Overall, 18% of people with a positive view of Trump are religious “nones,” including 10% who are “nones” with low levels of religiousness.

Very few of the people who have a positive view of Trump are White evangelical Protestants with a low level of religiousness. Indeed, self-described White evangelical Protestants who are not religiously observant account for less than 1% of the overall U.S. population. Even if a candidate wanted to form a coalition rooted in support from nonreligious evangelicals, there just aren’t enough of them to be a national political base.

Most people who view Trump positively don’t think he is especially religious himself. But many think he stands up for people with religious beliefs like theirs. Just 8% of people who have a positive view of Trump think he is very religious, while 51% think he is somewhat religious and 38% say he is not too or not at all religious .

But 51% of those with a favorable view of Trump think he stands up for people with religious beliefs like their own, including 24% who think he does this a great deal and 27% who say he does this quite a bit.

Among White evangelical Protestants with a favorable view of Trump, just 9% view him as very religious. But roughly two-thirds think he does a great deal (32%) or quite a bit (35%) to stand up for people with religious beliefs like theirs.

Table showing that among Americans who like Donald Trump, just 8% say he is very religious himself – but 51% say he does a great deal or quite a bit to stand up for people with religious beliefs like theirs

Religious “nones” who are culturally Christian view Trump a bit more positively than religious “nones” who aren’t.

A diverging bar chart showing that, among religious 'nones, cultural Christians are modestly more favorable toward Trump.

One way to measure for differences between “cultural” and “practicing” Christians is to compare Christians who do and don’t do go to church regularly, as we did above. Another is to look at religiously unaffiliated respondents, or “nones” – people who describe themselves, religiously, as atheist, agnostic, or “nothing in particular.” In our new survey, we asked these Americans whether they think of themselves as Christians “aside from religion … for example ethnically, culturally or because of your family’s background.”

Religious “nones” who identify as culturally Christian have a modestly more favorable opinion of Trump than “nones” who do not identify as Christian in any way. Still, large majorities in both groups express negative views of the former president.

a research paper is analyzed at a

Sign up for our weekly newsletter

Fresh data delivered Saturday mornings

Two-thirds of Republicans want Trump to retain major political role; 44% want him to run again in 2024

A partisan chasm in views of trump’s legacy, how america changed during donald trump’s presidency, trump’s approval ratings so far are unusually stable – and deeply partisan, most americans don’t see trump as religious; fewer than half say they think he’s christian, most popular.

About Pew Research Center Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of The Pew Charitable Trusts .

IMAGES

  1. How to Write a Research Paper in APA Format

    a research paper is analyzed at a

  2. PPT

    a research paper is analyzed at a

  3. Analysis In A Research Paper

    a research paper is analyzed at a

  4. How to Write an Analytical Research Paper Guide

    a research paper is analyzed at a

  5. How to Write a Research Paper Fast in 9 Steps

    a research paper is analyzed at a

  6. How to Write a Research Paper

    a research paper is analyzed at a

VIDEO

  1. Choosing A Research Topic

  2. Finding HIGH-Impact Research Topics

  3. Contribution in research paper

  4. Qualitative Psychological Research

  5. Master these questions and you're guaranteed an A* for pure 1 maths

  6. Research Paper Methodology

COMMENTS

  1. Research Paper

    Definition: Research Paper is a written document that presents the author's original research, analysis, and interpretation of a specific topic or issue. It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new ...

  2. Analyzing a Scholarly Journal Article

    A journal article analysis paper should be written in paragraph format and include an instruction to the study, your analysis of the research, and a conclusion that provides an overall assessment of the author's work, along with an explanation of what you believe is the study's overall impact and significance.

  3. PDF Summary and Analysis of Scientific Research Articles

    The analysis shows that you can evaluate the evidence presented in the research and explain why the research could be important. Summary. The summary portion of the paper should be written with enough detail so that a reader would not have to look at the original research to understand all the main points. At the same time, the summary section ...

  4. Learning to Do Qualitative Data Analysis: A Starting Point

    For many researchers unfamiliar with qualitative research, determining how to conduct qualitative analyses is often quite challenging. Part of this challenge is due to the seemingly limitless approaches that a qualitative researcher might leverage, as well as simply learning to think like a qualitative researcher when analyzing data. From framework analysis (Ritchie & Spencer, 1994) to content ...

  5. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  6. PDF Analyzing Research Articles

    Analyzing Research Articles: A Guide for Readers and Writers1 Sam Mathews, Ph.D. Department of Psychology The University of West Florida The critical reader of a research report expects the writer to provide logical and coherent rationales for conducting the study, concrete descriptions of methods, procedures, design, and analyses, accurate and clear reports of the findings, and plausible ...

  7. How to Write a Research Paper

    A research paper is a piece of academic writing that provides analysis, interpretation, and argument based on in-depth independent research. Research papers are similar to academic essays , but they are usually longer and more detailed assignments, designed to assess not only your writing skills but also your skills in scholarly research.

  8. PDF The Structure of an Academic Paper

    The paper opens at its widest point; the introduction makes broad connections to the reader's interests, ... yourself, or the research and writing of others. Analysis You should never present evidence without some form of analysis, or explaining the meaning of what you have shown us. Even if the quote, idea, or statistic seems to speak for ...

  9. Analysis in Research Papers

    Analysis in Research Papers. To analyze means to break a topic or concept down into its parts in order to inspect and understand it, and to restructure those parts in a way that makes sense to you. In an analytical research paper, you do research to become an expert on a topic so that you can restructure and present the parts of the topic from ...

  10. How to Write a Research Paper

    By refining your focus, you can produce a thoughtful and engaging paper that effectively communicates your ideas to your readers. 5. Write a thesis statement. A thesis statement is a one-to-two-sentence summary of your research paper's main argument or direction.

  11. Research Paper Analysis: How to Analyze a Research Article + Example

    Save the word count for the "meat" of your paper — that is, for the analysis. 2. Summarize the Article. Now, you should write a brief and focused summary of the scientific article. It should be shorter than your analysis section and contain all the relevant details about the research paper.

  12. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  13. Analysis

    Analysis is a type of primary research that involves finding and interpreting patterns in data, classifying those patterns, and generalizing the results. It is useful when looking at actions, events, or occurrences in different texts, media, or publications. Analysis can usually be done without considering most of the ethical issues discussed ...

  14. Research Paper v Analysis Paper: What's the Difference?

    I. Introduction. To begin the journey of analyzing a research paper, one must first understand the difference between a research paper and an analysis paper. In general, a research paper involves discovering new information through empirical study while an analysis paper, on the other hand, is typically focused more on assessing existing data ...

  15. 8.5 Writing Process: Creating an Analytical Report

    12.7 Evaluation: Effectiveness of Research Paper; 12.8 Spotlight on … Bias in Language and Research; 12.9 Portfolio: Why Facts Matter in Research Argumentation; Further Reading; ... evidence, and analysis: The point is the central idea of the paragraph, usually given in a topic sentence stated in your own words at or toward the beginning of ...

  16. 13.5 Research Process: Making Notes, Synthesizing ...

    Analyze and make informed decisions about intellectual property based on the concepts that motivate them. ... As you gather source material for your argumentative research paper, keep in mind that the research is intended to support original thinking. That is, you are not writing an informational report in which you simply supply facts to ...

  17. How to use and assess qualitative research methods

    Abstract. This paper aims to provide an overview of the use and assessment of qualitative research methods in the health sciences. Qualitative research can be defined as the study of the nature of phenomena and is especially appropriate for answering questions of why something is (not) observed, assessing complex multi-component interventions ...

  18. Critical Analysis

    Elements of the Critical Analysis. Introduction - will include general information about the work being analyzed and a statement of the critical writer's viewpoint or evaluation of the larger work. Summarization - the thematic/background information that a reader will need to understand the critic's analysis and the key point from the ...

  19. Research vs Analysis: Paper Perspectives

    When considering how research and analysis function together within a framework of study, it is important to note the differences between a research paper and an analysis paper. Research papers are written from data collected by observation or experimentation; they look at existing facts in order to answer questions related to those facts ...

  20. What is a research paper?

    Definition. A research paper is a paper that makes an argument about a topic based on research and analysis. Any paper requiring the writer to research a particular topic is a research paper. Unlike essays, which are often based largely on opinion and are written from the author's point of view, research papers are based in fact.

  21. How to Write a Research Paper

    Here are 7 steps on how to write a research paper, plus two optional steps on creating a title page and an abstract: Step 1: Understand your instructor's expectations for how to write a research paper. Step 2: Brainstorm research paper ideas. Step 3: Conduct research. Step 4: Define your thesis statement.

  22. Analyzing the Differences: Research Paper vs. Analysis Paper

    At first glance, the terms research paper and analysis paper may appear interchangeable. However, these two types of writing projects have distinct purposes that must be understood before starting any project. A research paper involves a deep dive into a particular subject to uncover new facts or data while an analysis paper uses those facts ...

  23. Millions of research papers at risk of disappearing from the Internet

    An analysis of DOIs suggests that digital preservation is not keeping up with burgeoning scholarly knowledge.

  24. 8-hour time-restricted eating linked to a 91% higher risk of

    CHICAGO, March 18, 2024 — An analysis of over 20,000 U.S. adults found that people who limited their eating across less than 8 hours per day, a time-restricted eating plan, were more likely to die from cardiovascular disease compared to people who ate across 12-16 hours per day, according to preliminary research presented at the American ...

  25. Uni-SMART: Universal Science Multimodal Analysis and Research Transformer

    In scientific research and its application, scientific literature analysis is crucial as it allows researchers to build on the work of others. However, the fast growth of scientific knowledge has led to a massive increase in scholarly articles, making in-depth literature analysis increasingly challenging and time-consuming. The emergence of Large Language Models (LLMs) has offered a new way to ...

  26. TacticAI: an AI assistant for football tactics

    In modern football games, data-driven analysis serves as a key driver in determining tactics. Wang, Veličković, Hennes et al. develop a geometric deep learning algorithm, named TacticAI, to ...

  27. MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training

    Download a PDF of the paper titled MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training, by Brandon McKinzie and 30 other authors. Download PDF Abstract: In this work, we discuss building performant Multimodal Large Language Models (MLLMs). In particular, we study the importance of various architecture components and data choices.

  28. Intermittent fasting linked to risk of cardiovascular death

    A new analysis challenges that idea, contradicting past research. A new analysis challenges the notion that restricting eating to a limited window of time is good for heart health.

  29. Silicon Valley is pricing academics out of AI research

    Big Tech's AI boom has pushed the salaries for the best researchers to new heights. Median compensation packages for AI research scientists at Meta climbed from $256,000 in 2020 to $335,250 in ...

  30. 5 facts about religion and Americans' views of Donald Trump

    Pew Research Center conducted this analysis to explore the connection between religion and views of Donald Trump. For this analysis, we surveyed 12,693 respondents from Feb. 13 to 25, 2024. Most of the respondents (10,642) are members of the Center's American Trends Panel, an online survey panel recruited through national random sampling of ...