helpful professor logo

10 Real-Life Experimental Research Examples

10 Real-Life Experimental Research Examples

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

Learn about our Editorial Process

experimental reseasrch examples and definition, explained below

Experimental research is research that involves using a scientific approach to examine research variables.

Below are some famous experimental research examples. Some of these studies were conducted quite a long time ago. Some were so controversial that they would never be attempted today. And some were so unethical that they would never be permitted again.

A few of these studies have also had very practical implications for modern society involving criminal investigations, the impact of television and the media, and the power of authority figures.

Examples of Experimental Research

1. pavlov’s dog: classical conditioning.

Dr. Ivan Pavlov was a physiologist studying animal digestive systems in the 1890s. In one study, he presented food to a dog and then collected its salivatory juices via a tube attached to the inside of the animal’s mouth.

As he was conducting his experiments, an annoying thing kept happening; every time his assistant would enter the lab with a bowl of food for the experiment, the dog would start to salivate at the sound of the assistant’s footsteps.

Although this disrupted his experimental procedures, eventually, it dawned on Pavlov that something else was to be learned from this problem.

Pavlov learned that animals could be conditioned into responding on a physiological level to various stimuli, such as food, or even the sound of the assistant bringing the food down the hall.

Hence, the creation of the theory of classical conditioning. One of the most influential theories in psychology still to this day.

2. Bobo Doll Experiment: Observational Learning

Dr. Albert Bandura conducted one of the most influential studies in psychology in the 1960s at Stanford University.

His intention was to demonstrate that cognitive processes play a fundamental role in learning. At the time, Behaviorism was the predominant theoretical perspective, which completely rejected all inferences to constructs not directly observable .

So, Bandura made two versions of a video. In version #1, an adult behaved aggressively with a Bobo doll by throwing it around the room and striking it with a wooden mallet. In version #2, the adult played gently with the doll by carrying it around to different parts of the room and pushing it gently.

After showing children one of the two versions, they were taken individually to a room that had a Bobo doll. Their behavior was observed and the results indicated that children that watched version #1 of the video were far more aggressive than those that watched version #2.

Not only did Bandura’s Bobo doll study form the basis of his social learning theory, it also helped start the long-lasting debate about the harmful effects of television on children.

Worth Checking Out: What’s the Difference between Experimental and Observational Studies?

3. The Asch Study: Conformity  

Dr. Solomon Asch was interested in conformity and the power of group pressure. His study was quite simple. Different groups of students were shown lines of varying lengths and asked, “which line is longest.”

However, out of each group, only one was an actual participant. All of the others in the group were working with Asch and instructed to say that one of the shorter lines was actually the longest.

Nearly every time, the real participant gave an answer that was clearly wrong, but the same as the rest of the group.

The study is one of the most famous in psychology because it demonstrated the power of social pressure so clearly.  

4. Car Crash Experiment: Leading Questions

In 1974, Dr. Elizabeth Loftus and her undergraduate student John Palmer designed a study to examine how fallible human judgement is under certain conditions.

They showed groups of research participants videos that depicted accidents between two cars. Later, the participants were asked to estimate the rate of speed of the cars.

Here’s the interesting part. All participants were asked the same question with the exception of a single word: “How fast were the two cars going when they ______into each other?” The word in the blank varied in its implied severity.

Participants’ estimates were completely affected by the word in the blank. When the word “smashed” was used, participants estimated the cars were going much faster than when the word “contacted” was used. 

This line of research has had a huge impact on law enforcement interrogation practices, line-up procedures, and the credibility of eyewitness testimony .

5. The 6 Universal Emotions

The research by Dr. Paul Ekman has been influential in the study of emotions. His early research revealed that all human beings, regardless of culture, experience the same 6 basic emotions: happiness, sadness, disgust, fear, surprise, and anger.

In the late 1960s, Ekman traveled to Papua New Guinea. He approached a tribe of people that were extremely isolated from modern culture. With the help of a guide, he would describe different situations to individual members and take a photo of their facial expressions.

The situations included: if a good friend had come; their child had just died; they were about to get into a fight; or had just stepped on a dead pig.

The facial expressions of this highly isolated tribe were nearly identical to those displayed by people in his studies in California.

6. The Little Albert Study: Development of Phobias  

Dr. John Watson and Dr. Rosalie Rayner sought to demonstrate how irrational fears were developed.

Their study involved showing a white rat to an infant. Initially, the child had no fear of the rat. However, the researchers then began to create a loud noise each time they showed the child the rat by striking a steel bar with a hammer.

Eventually, the child started to cry and feared the white rat. The child also developed a fear of other white, furry objects such as white rabbits and a Santa’s beard.

This study is famous because it demonstrated one way in which phobias are developed in humans, and also because it is now considered highly unethical for its mistreatment of children, lack of study debriefing , and intent to instil fear.  

7. A Class Divided: Discrimination

Perhaps one of the most famous psychological experiments of all time was not conducted by a psychologist. In 1968, third grade teacher Jane Elliott conducted one of the most famous studies on discrimination in history. It took place shortly after the assassination of Dr. Martin Luther King, Jr.

She divided her class into two groups: brown-eyed and blue-eyed students. On the first day of the experiment, she announced the blue-eyed group as superior. They received extra privileges and were told not to intermingle with the brown-eyed students.

They instantly became happier, more self-confident, and started performing better academically.

The next day, the roles were reversed. The brown-eyed students were announced as superior and given extra privileges. Their behavior changed almost immediately and exhibited the same patterns as the other group had the day before.

This study was a remarkable demonstration of the harmful effects of discrimination.

8. The Milgram Study: Obedience to Authority

Dr. Stanley Milgram conducted one of the most influential experiments on authority and obedience in 1961 at Yale University.

Participants were told they were helping study the effects of punishment on learning. Their job was to administer an electric shock to another participant each time they made an error on a test. The other participant was actually an actor in another room that only pretended to be shocked.

However, each time a mistake was made, the level of shock was supposed to increase, eventually reaching quite high voltage levels. When the real participants expressed reluctance to administer the next level of shock, the experimenter, who served as the authority figure in the room, pressured the participant to deliver the next level of shock.

The results of this study were truly astounding. A surprisingly high percentage of participants continued to deliver the shocks to the highest level possible despite the very strong objections by the “other participant.”

This study demonstrated the power of authority figures.

9. The Marshmallow Test: Delay of Gratification

The Marshmallow Test was designed by Dr. Walter Mischel to examine the role of delay of gratification and academic success.

Children ages 4-6 years old were seated at a table with one marshmallow placed in front of them. The experimenter explained that if they did not eat the marshmallow, they would receive a second one. They could then eat both.

The children that were able to delay gratification the longest were rated as significantly more competent later in life and earned higher SAT scores than children that could not withstand the temptation.  

The study has since been conceptually replicated by other researchers that have revealed additional factors involved in delay of gratification and academic achievement.

10. Stanford Prison Study: Deindividuation

Dr. Philip Zimbardo conducted one of the most famous psychological studies of all time in 1971. The purpose of the study was to investigate how the power structure in some situations can lead people to behave in ways highly uncharacteristic of their usual behavior.

College students were recruited to participate in the study. Some were randomly assigned to play the role of prison guard. The others were actually “arrested” by real police officers. They were blindfolded and taken to the basement of the university’s psychology building which had been converted to look like a prison.

Although the study was supposed to last 2 weeks, it had to be halted due to the abusive actions of the guards.

The study demonstrated that people will behave in ways they never thought possible when placed in certain roles and power structures. Although the Stanford Prison Study is so well-known for what it revealed about human nature, it is also famous because of the numerous violations of ethical principles.

The studies above are varied and focused on many different aspects of human behavior . However, each example of experimental research listed above has had a lasting impact on society. Some have had tremendous sway in how very practical matters are conducted, such as criminal investigations and legal proceedings.

Psychology is a field of study that is often not fully understood by the general public. When most people hear the term “psychology,” they think of a therapist that listens carefully to the revealing statements of a patient. The therapist then tries to help their patient learn to cope with many of life’s challenges. Nothing wrong with that.

In reality however, most psychologists are researchers. They spend most of their time designing and conducting experiments to enhance our understanding of the human condition.

Asch SE. (1956). Studies of independence and conformity: I. A minority of one against a unanimous majority . Psychological Monographs: General and Applied, 70 (9),1-70. https://doi.org/doi:10.1037/h0093718

Bandura A. (1965). Influence of models’ reinforcement contingencies on the acquisition of imitative responses. Journal of Personality and Social Psychology, 1 (6), 589-595. https://doi.org/doi:10.1037/h0022070

Beck, H. P., Levinson, S., & Irons, G. (2009). Finding little Albert: A journey to John B. Watson’s infant laboratory.  American Psychologist, 64(7),  605-614.

Ekman, P. & Friesen, W. V. (1971).  Constants Across Cultures in the Face and motion .  Journal of Personality and Social Psychology, 17(2) , 124-129.

Loftus, E. F., & Palmer, J. C. (1974). Reconstruction of automobile destruction: An example of

the interaction between language and memory. Journal of Verbal Learning and Verbal

Behavior, 13 (5), 585–589.

Milgram S (1965). Some Conditions of Obedience and Disobedience to Authority. Human Relations, 18(1), 57–76.

Mischel, W., & Ebbesen, E. B. (1970). Attention in delay of gratification . Journal of Personality and Social Psychology, 16 (2), 329-337.

Pavlov, I.P. (1927). Conditioned Reflexes . London: Oxford University Press.

Watson, J. & Rayner, R. (1920). Conditioned emotional reactions.  Journal of Experimental Psychology, 3 , 1-14. Zimbardo, P., Haney, C., Banks, W. C., & Jaffe, D. (1971). The Stanford Prison Experiment: A simulation study of the psychology of imprisonment . Stanford University, Stanford Digital Repository, Stanford.

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 19 Top Cognitive Psychology Theories (Explained)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 119 Bloom’s Taxonomy Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ All 6 Levels of Understanding (on Bloom’s Taxonomy)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Self-Actualization Examples (Maslow's Hierarchy)

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

  • - Google Chrome

Intended for healthcare professionals

  • My email alerts
  • BMA member login
  • Username * Password * Forgot your log in details? Need to activate BMA Member Log In Log in via OpenAthens Log in via your institution

Home

Search form

  • Advanced search
  • Search responses
  • Search blogs
  • Beauty sleep:...

Beauty sleep: experimental study on the perceived health and attractiveness of sleep deprived people

  • Related content
  • Peer review
  • John Axelsson , researcher 1 2 ,
  • Tina Sundelin , research assistant and MSc student 2 ,
  • Michael Ingre , statistician and PhD student 3 ,
  • Eus J W Van Someren , researcher 4 ,
  • Andreas Olsson , researcher 2 ,
  • Mats Lekander , researcher 1 3
  • 1 Osher Center for Integrative Medicine, Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
  • 2 Division for Psychology, Department of Clinical Neuroscience, Karolinska Institutet
  • 3 Stress Research Institute, Stockholm University, Stockholm
  • 4 Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, and VU Medical Center, Amsterdam, Netherlands
  • Correspondence to: J Axelsson john.axelsson{at}ki.se
  • Accepted 22 October 2010

Objective To investigate whether sleep deprived people are perceived as less healthy, less attractive, and more tired than after a normal night’s sleep.

Design Experimental study.

Setting Sleep laboratory in Stockholm, Sweden.

Participants 23 healthy, sleep deprived adults (age 18-31) who were photographed and 65 untrained observers (age 18-61) who rated the photographs.

Intervention Participants were photographed after a normal night’s sleep (eight hours) and after sleep deprivation (31 hours of wakefulness after a night of reduced sleep). The photographs were presented in a randomised order and rated by untrained observers.

Main outcome measure Difference in observer ratings of perceived health, attractiveness, and tiredness between sleep deprived and well rested participants using a visual analogue scale (100 mm).

Results Sleep deprived people were rated as less healthy (visual analogue scale scores, mean 63 (SE 2) v 68 (SE 2), P<0.001), more tired (53 (SE 3) v 44 (SE 3), P<0.001), and less attractive (38 (SE 2) v 40 (SE 2), P<0.001) than after a normal night’s sleep. The decrease in rated health was associated with ratings of increased tiredness and decreased attractiveness.

Conclusion Our findings show that sleep deprived people appear less healthy, less attractive, and more tired compared with when they are well rested. This suggests that humans are sensitive to sleep related facial cues, with potential implications for social and clinical judgments and behaviour. Studies are warranted for understanding how these effects may affect clinical decision making and can add knowledge with direct implications in a medical context.

Introduction

The recognition [of the case] depends in great measure on the accurate and rapid appreciation of small points in which the diseased differs from the healthy state Joseph Bell (1837-1911)

Good clinical judgment is an important skill in medical practice. This is well illustrated in the quote by Joseph Bell, 1 who demonstrated impressive observational and deductive skills. Bell was one of Sir Arthur Conan Doyle’s teachers and served as a model for the fictitious detective Sherlock Holmes. 2 Generally, human judgment involves complex processes, whereby ingrained, often less consciously deliberated responses from perceptual cues are mixed with semantic calculations to affect decision making. 3 Thus all social interactions, including diagnosis in clinical practice, are influenced by reflexive as well as reflective processes in human cognition and communication.

Sleep is an essential homeostatic process with well established effects on an individual’s physiological, cognitive, and behavioural functionality 4 5 6 7 and long term health, 8 but with only anecdotal support of a role in social perception, such as that underlying judgments of attractiveness and health. As illustrated by the common expression “beauty sleep,” an individual’s sleep history may play an integral part in the perception and judgments of his or her attractiveness and health. To date, the concept of beauty sleep has lacked scientific support, but the biological importance of sleep may have favoured a sensitivity to perceive sleep related cues in others. It seems warranted to explore such sensitivity, as sleep disorders and disturbed sleep are increasingly common in today’s 24 hour society and often coexist with some of the most common health problems, such as hypertension 9 10 and inflammatory conditions. 11

To describe the relation between sleep deprivation and perceived health and attractiveness we asked untrained observers to rate the faces of people who had been photographed after a normal night’s sleep and after a night of sleep deprivation. We chose facial photographs as the human face is the primary source of information in social communication. 12 A perceiver’s response to facial cues, signalling the bearer’s emotional state, intentions, and potential mate value, serves to guide actions in social contexts and may ultimately promote survival. 13 14 15 We hypothesised that untrained observers would perceive sleep deprived people as more tired, less healthy, and less attractive compared with after a normal night’s sleep.

Using an experimental design we photographed the faces of 23 adults (mean age 23, range 18-31 years, 11 women) between 14.00 and 15.00 under two conditions in a balanced design: after a normal night’s sleep (at least eight hours of sleep between 23.00-07.00 and seven hours of wakefulness) and after sleep deprivation (sleep 02.00-07.00 and 31 hours of wakefulness). We advertised for participants at four universities in the Stockholm area. Twenty of 44 potentially eligible people were excluded. Reasons for exclusion were reported sleep disturbances, abnormal sleep requirements (for example, sleep need out of the 7-9 hour range), health problems, or availability on study days (the main reason). We also excluded smokers and those who had consumed alcohol within two days of the protocol. One woman failed to participate in both conditions. Overall, we enrolled 12 women and 12 men.

The participants slept in their own homes. Sleep times were confirmed with sleep diaries and text messages. The sleep diaries (Karolinska sleep diary) included information on sleep latency, quality, duration, and sleepiness. Participants sent a text message to the research assistant by mobile phone (SMS) at bedtime and when they got up on the night before sleep deprivation. They had been instructed not to nap. During the normal sleep condition the participants’ mean duration of sleep, estimated from sleep diaries, was 8.45 (SE 0.20) hours. The sleep deprivation condition started with a restriction of sleep to five hours in bed; the participants sent text messages (SMS) when they went to sleep and when they woke up. The mean duration of sleep during this night, estimated from sleep diaries and text messages, was 5.06 (SE 0.04) hours. For the following night of total sleep deprivation, the participants were monitored in the sleep laboratory at all times. Thus, for the sleep deprivation condition, participants came to the laboratory at 22.00 (after 15 hours of wakefulness) to be monitored, and stayed awake for a further 16 hours. We therefore did not observe the participants during the first 15 hours of wakefulness, when they had had a slightly restricted sleep, but had good control over the last 16 hours of wakefulness when sleepiness increased in magnitude. For the sleep condition, participants came to the laboratory at 12.00 (after five hours of wakefulness). They were kept indoors two hours before being photographed to avoid the effects of exposure to sunlight and the weather. We had a series of five or six photographs (resolution 3872×2592 pixels) taken in a well lit room, with a constant white balance (×900l; colour temperature 4200 K, Nikon D80; Nikon, Tokyo). The white balance was differently set during the two days of the study and affected seven photographs (four taken during sleep deprivation and three during a normal night’s sleep). Removing these participants from the analyses did not affect the results. The distance from camera to head was fixed, as was the focal length, within 14 mm (between 44 and 58 mm). To ensure a fixed surface area of each face on the photograph, the focal length was adapted to the head size of each participant.

For the photo shoot, participants wore no makeup, had their hair loose (combed backwards if long), underwent similar cleaning or shaving procedures for both conditions, and were instructed to “sit with a straight back and look straight into the camera with a neutral, relaxed facial expression.” Although the photographer was not blinded to the sleep conditions, she followed a highly standardised procedure during each photo shoot, including minimal interaction with the participants. A blinded rater chose the most typical photograph from each series of photographs. This process resulted in 46 photographs; two (one from each sleep condition) of each of the 23 participants. This part of the study took place between June and September 2007.

In October 2007 the photographs were presented at a fixed interval of six seconds in a randomised order to 65 observers (mainly students at the Karolinska Institute, mean age 30 (range 18-61) years, 40 women), who were unaware of the conditions of the study. They rated the faces for attractiveness (very unattractive to very attractive), health (very sick to very healthy), and tiredness (not at all tired to very tired) on a 100 mm visual analogue scale. After every 23 photographs a brief intermission was allowed, including a working memory task lasting 23 seconds to prevent the faces being memorised. To ensure that the observers were not primed to tiredness when rating health and attractiveness they rated the photographs for attractiveness and health in the first two sessions and tiredness in the last. To avoid the influence of possible order effects we presented the photographs in a balanced order between conditions for each session.

Statistical analyses

Data were analysed using multilevel mixed effects linear regression, with two crossed independent random effects accounting for random variation between observers and participants using the xtmixed procedure in Stata 9.2. We present the effect of condition as a percentage of change from the baseline condition as the reference using the absolute value in millimetres (rated on the visual analogue scale). No data were missing in the analyses.

Sixty five observers rated each of the 46 photographs for attractiveness, health, and tiredness: 138 ratings by each observer and 2990 ratings for each of the three factors rated. When sleep deprived, people were rated as less healthy (visual analogue scale scores, mean 63 (SE 2) v 68 (SE 2)), more tired (53 (SE 3) v 44 (SE 3)), and less attractive (38 (SE 2) v 40 (SE 2); P<0.001 for all) than after a normal night’s sleep (table 1 ⇓ ). Compared with the normal sleep condition, perceptions of health and attractiveness in the sleep deprived condition decreased on average by 6% and 4% and tiredness increased by 19%.

 Multilevel mixed effects regression on effect of how sleep deprived people are perceived with respect to attractiveness, health, and tiredness

  • View inline

A 10 mm increase in tiredness was associated with a −3.0 mm change in health, a 10 mm increase in health increased attractiveness by 2.4 mm, and a 10 mm increase in tiredness reduced attractiveness by 1.2 mm (table 2 ⇓ ). These findings were also presented as correlation, suggesting that faces with perceived attractiveness are positively associated with perceived health (r=0.42, fig 1 ⇓ ) and negatively with perceived tiredness (r=−0.28, fig 1). In addition, the average decrease (for each face) in attractiveness as a result of deprived sleep was associated with changes in tiredness (−0.53, n=23, P=0.03) and in health (0.50, n=23, P=0.01). Moreover, a strong negative association was found between the respective perceptions of tiredness and health (r=−0.54, fig 1). Figure 2 ⇓ shows an example of observer rated faces.

 Associations between health, tiredness, and attractiveness

Fig 1  Relations between health, tiredness, and attractiveness of 46 photographs (two each of 23 participants) rated by 65 observers on 100 mm visual analogue scales, with variation between observers removed using empirical Bayes’ estimates

  • Download figure
  • Open in new tab
  • Download powerpoint

Fig 2  Participant after a normal night’s sleep (left) and after sleep deprivation (right). Faces were presented in a counterbalanced order

To evaluate the mediation effects of sleep loss on attractiveness and health, tiredness was added to the models presented in table 1 following recommendations. 16 The effect of sleep loss was significantly mediated by tiredness on both health (P<0.001) and attractiveness (P<0.001). When tiredness was added to the model (table 1) with an estimated coefficient of −2.9 (SE 0.1; P<0.001) the independent effect of sleep loss on health decreased from −4.2 to −1.8 (SE 0.5; P<0.001). The effect of sleep loss on attractiveness decreased from −1.6 (table 1) to −0.62 (SE 0.4; P=0.133), with tiredness estimated at −1.1 (SE 0.1; P<0.001). The same approach applied to the model of attractiveness and health (table 2), with a decrease in the association from 2.4 to 2.1 (SE 0.1; P<0.001) with tiredness estimated at −0.56 (SE 0.1; P<0.001).

Sleep deprived people are perceived as less attractive, less healthy, and more tired compared with when they are well rested. Apparent tiredness was strongly related to looking less healthy and less attractive, which was also supported by the mediating analyses, indicating that a large part of the found effects and relations on appearing healthy and attractive were mediated by looking tired. The fact that untrained observers detected the effects of sleep loss in others not only provides evidence for a perceptual ability not previously subjected to experimental control, but also supports the notion that sleep history gives rise to socially relevant signals that provide information about the bearer. The adaptiveness of an ability to detect sleep related facial cues resonates well with other research, showing that small deviations from the average sleep duration in the long term are associated with an increased risk of health problems and with a decreased longevity. 8 17 Indeed, even a few hours of sleep deprivation inflict an array of physiological changes, including neural, endocrinological, immunological, and cellular functioning, that if sustained are relevant for long term health. 7 18 19 20 Here, we show that such physiological changes are paralleled by detectable facial changes.

These results are related to photographs taken in an artificial setting and presented to the observers for only six seconds. It is likely that the effects reported here would be larger in real life person to person situations, when overt behaviour and interactions add further information. Blink interval and blink duration are known to be indicators of sleepiness, 21 and trained observers are able to evaluate reliably the drowsiness of drivers by watching their videotaped faces. 22 In addition, a few of the people were perceived as healthier, less tired, and more attractive during the sleep deprived condition. It remains to be evaluated in follow-up research whether this is due to random error noise in judgments, or associated with specific characteristics of observers or the sleep deprived people they judge. Nevertheless, we believe that the present findings can be generalised to a wide variety of settings, but further studies will have to investigate the impact on clinical studies and other social situations.

Importantly, our findings suggest a prominent role of sleep history in several domains of interpersonal perception and judgment, in which sleep history has previously not been considered of importance, such as in clinical judgment. In addition, because attractiveness motivates sexual behaviour, collaboration, and superior treatment, 13 sleep loss may have consequences in other social contexts. For example, it has been proposed that facial cues perceived as attractive are signals of good health and that this recognition has been selected evolutionarily to guide choice of mate and successful transmission of genes. 13 The fact that good sleep supports a healthy look and poor sleep the reverse may be of particular relevance in the medical setting, where health estimates are an essential part. It is possible that people with sleep disturbances, clinical or otherwise, would be judged as more unhealthy, whereas those who have had an unusually good night’s sleep may be perceived as rather healthy. Compared with the sleep deprivation used in the present investigation, further studies are needed to investigate the effects of less drastic acute reductions of sleep as well as long term clinical effects.

Conclusions

People are capable of detecting sleep loss related facial cues, and these cues modify judgments of another’s health and attractiveness. These conclusions agree well with existing models describing a link between sleep and good health, 18 23 as well as a link between attractiveness and health. 13 Future studies should focus on the relevance of these facial cues in clinical settings. These could investigate whether clinicians are better than the average population at detecting sleep or health related facial cues, and whether patients with a clinical diagnosis exhibit more tiredness and are less healthy looking than healthy people. Perhaps the more successful doctors are those who pick up on these details and act accordingly.

Taken together, our results provide important insights into judgments about health and attractiveness that are reminiscent of the anecdotal wisdom harboured in Bell’s words, and in the colloquial notion of “beauty sleep.”

What is already known on this topic

Short or disturbed sleep and fatigue constitute major risk factors for health and safety

Complaints of short or disturbed sleep are common among patients seeking healthcare

The human face is the main source of information for social signalling

What this study adds

The facial cues of sleep deprived people are sufficient for others to judge them as more tired, less healthy, and less attractive, lending the first scientific support to the concept of “beauty sleep”

By affecting doctors’ general perception of health, the sleep history of a patient may affect clinical decisions and diagnostic precision

Cite this as: BMJ 2010;341:c6614

We thank B Karshikoff for support with data acquisition and M Ingvar for comments on an earlier draft of the manuscript, both without compensation and working at the Department for Clinical Neuroscience, Karolinska Institutet, Sweden.

Contributors: JA designed the data collection, supervised and monitored data collection, wrote the statistical analysis plan, carried out the statistical analyses, obtained funding, drafted and revised the manuscript, and is guarantor. TS designed and carried out the data collection, cleaned the data, drafted, revised the manuscript, and had final approval of the manuscript. JA and TS contributed equally to the work. MI wrote the statistical analysis plan, carried out the statistical analyses, drafted the manuscript, and critically revised the manuscript. EJWVS provided statistical advice, advised on data handling, and critically revised the manuscript. AO provided advice on the methods and critically revised the manuscript. ML provided administrative support, drafted the manuscript, and critically revised the manuscript. All authors approved the final version of the manuscript.

Funding: This study was funded by the Swedish Society for Medical Research, Rut and Arvid Wolff’s Memory Fund, and the Osher Center for Integrative Medicine.

Competing interests: All authors have completed the Unified Competing Interest form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare: no support from any company for the submitted work; no financial relationships with any companies that might have an interest in the submitted work in the previous 3 years; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: This study was approved by the Karolinska Institutet’s ethical committee. Participants were compensated for their participation.

Participant consent: Participant’s consent obtained.

Data sharing: Statistical code and dataset of ratings are available from the corresponding author at john.axelsson{at}ki.se .

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/2.0/ and http://creativecommons.org/licenses/by-nc/2.0/legalcode .

  • ↵ Deten A, Volz HC, Clamors S, Leiblein S, Briest W, Marx G, et al. Hematopoietic stem cells do not repair the infarcted mouse heart. Cardiovasc Res 2005 ; 65 : 52 -63. OpenUrl Abstract / FREE Full Text
  • ↵ Doyle AC. The case-book of Sherlock Holmes: selected stories. Wordsworth, 1993.
  • ↵ Lieberman MD, Gaunt R, Gilbert DT, Trope Y. Reflection and reflexion: a social cognitive neuroscience approach to attributional inference. Adv Exp Soc Psychol 2002 ; 34 : 199 -249. OpenUrl CrossRef
  • ↵ Drummond SPA, Brown GG, Gillin JC, Stricker JL, Wong EC, Buxton RB. Altered brain response to verbal learning following sleep deprivation. Nature 2000 ; 403 : 655 -7. OpenUrl CrossRef PubMed
  • ↵ Harrison Y, Horne JA. The impact of sleep deprivation on decision making: a review. J Exp Psychol Appl 2000 ; 6 : 236 -49. OpenUrl CrossRef PubMed Web of Science
  • ↵ Huber R, Ghilardi MF, Massimini M, Tononi G. Local sleep and learning. Nature 2004 ; 430 : 78 -81. OpenUrl CrossRef PubMed Web of Science
  • ↵ Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet 1999 ; 354 : 1435 -9. OpenUrl CrossRef PubMed Web of Science
  • ↵ Kripke DF, Garfinkel L, Wingard DL, Klauber MR, Marler MR. Mortality associated with sleep duration and insomnia. Arch Gen Psychiatry 2002 ; 59 : 131 -6. OpenUrl CrossRef PubMed Web of Science
  • ↵ Olson LG, Ambrogetti A. Waking up to sleep disorders. Br J Hosp Med (Lond) 2006 ; 67 : 118 , 20. OpenUrl PubMed
  • ↵ Rajaratnam SM, Arendt J. Health in a 24-h society. Lancet 2001 ; 358 : 999 -1005. OpenUrl CrossRef PubMed Web of Science
  • ↵ Ranjbaran Z, Keefer L, Stepanski E, Farhadi A, Keshavarzian A. The relevance of sleep abnormalities to chronic inflammatory conditions. Inflamm Res 2007 ; 56 : 51 -7. OpenUrl CrossRef PubMed Web of Science
  • ↵ Haxby JV, Hoffman EA, Gobbini MI. The distributed human neural system for face perception. Trends Cogn Sci 2000 ; 4 : 223 -33. OpenUrl CrossRef PubMed Web of Science
  • ↵ Rhodes G. The evolutionary psychology of facial beauty. Annu Rev Psychol 2006 ; 57 : 199 -226. OpenUrl CrossRef PubMed Web of Science
  • ↵ Todorov A, Mandisodza AN, Goren A, Hall CC. Inferences of competence from faces predict election outcomes. Science 2005 ; 308 : 1623 -6. OpenUrl Abstract / FREE Full Text
  • ↵ Willis J, Todorov A. First impressions: making up your mind after a 100-ms exposure to a face. Psychol Sci 2006 ; 17 : 592 -8. OpenUrl Abstract / FREE Full Text
  • ↵ Krull JL, MacKinnon DP. Multilevel modeling of individual and group level mediated effects. Multivariate Behav Res 2001 ; 36 : 249 -77. OpenUrl CrossRef Web of Science
  • ↵ Ayas NT, White DP, Manson JE, Stampfer MJ, Speizer FE, Malhotra A, et al. A prospective study of sleep duration and coronary heart disease in women. Arch Intern Med 2003 ; 163 : 205 -9. OpenUrl CrossRef PubMed Web of Science
  • ↵ Bryant PA, Trinder J, Curtis N. Sick and tired: does sleep have a vital role in the immune system. Nat Rev Immunol 2004 ; 4 : 457 -67. OpenUrl CrossRef PubMed Web of Science
  • ↵ Cirelli C. Cellular consequences of sleep deprivation in the brain. Sleep Med Rev 2006 ; 10 : 307 -21. OpenUrl CrossRef PubMed Web of Science
  • ↵ Irwin MR, Wang M, Campomayor CO, Collado-Hidalgo A, Cole S. Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation. Arch Intern Med 2006 ; 166 : 1756 -62. OpenUrl CrossRef PubMed Web of Science
  • ↵ Schleicher R, Galley N, Briest S, Galley L. Blinks and saccades as indicators of fatigue in sleepiness warnings: looking tired? Ergonomics 2008 ; 51 : 982 -1010. OpenUrl CrossRef PubMed Web of Science
  • ↵ Wierwille WW, Ellsworth LA. Evaluation of driver drowsiness by trained raters. Accid Anal Prev 1994 ; 26 : 571 -81. OpenUrl CrossRef PubMed Web of Science
  • ↵ Horne J. Why we sleep—the functions of sleep in humans and other mammals. Oxford University Press, 1988.

example of an experimental research paper

Purdue Online Writing Lab Purdue OWL® College of Liberal Arts

Writing the Experimental Report: Overview, Introductions, and Literature Reviews

OWL logo

Welcome to the Purdue OWL

This page is brought to you by the OWL at Purdue University. When printing this page, you must include the entire legal notice.

Copyright ©1995-2018 by The Writing Lab & The OWL at Purdue and Purdue University. All rights reserved. This material may not be published, reproduced, broadcast, rewritten, or redistributed without permission. Use of this site constitutes acceptance of our terms and conditions of fair use.

Experimental reports (also known as "lab reports") are reports of empirical research conducted by their authors. You should think of an experimental report as a "story" of your research in which you lead your readers through your experiment. As you are telling this story, you are crafting an argument about both the validity and reliability of your research, what your results mean, and how they fit into other previous work.

These next two sections provide an overview of the experimental report in APA format. Always check with your instructor, advisor, or journal editor for specific formatting guidelines.

General-specific-general format

Experimental reports follow a general to specific to general pattern. Your report will start off broadly in your introduction and discussion of the literature; the report narrows as it leads up to your specific hypotheses, methods, and results. Your discussion transitions from talking about your specific results to more general ramifications, future work, and trends relating to your research.

Experimental reports in APA format have a title page. Title page formatting is as follows:

  • A running head and page number in the upper right corner (right aligned)
  • A definition of running head in IN ALL CAPS below the running head (left aligned)
  • Vertically and horizontally centered paper title, followed by author and affiliation

Please see our sample APA title page .

Crafting your story

Before you begin to write, carefully consider your purpose in writing: what is it that you discovered, would like to share, or would like to argue? You can see report writing as crafting a story about your research and your findings. Consider the following.

  • What is the story you would like to tell?
  • What literature best speaks to that story?
  • How do your results tell the story?
  • How can you discuss the story in broad terms?

During each section of your paper, you should be focusing on your story. Consider how each sentence, each paragraph, and each section contributes to your overall purpose in writing. Here is a description of one student's process.

Briel is writing an experimental report on her results from her experimental psychology lab class. She was interested in looking at the role gender plays in persuading individuals to take financial risks. After her data analysis, she finds that men are more easily persuaded by women to take financial risks and that men are generally willing to take more financial risks.

When Briel begins to write, she focuses her introduction on financial risk taking and gender, focusing on male behaviors. She then presents relevant literature on financial risk taking and gender that help illuminate her own study, but also help demonstrate the need for her own work. Her introduction ends with a study overview that directly leads from the literature review. Because she has already broadly introduced her study through her introduction and literature review, her readers can anticipate where she is going when she gets to her study overview. Her methods and results continue that story. Finally, her discussion concludes that story, discussing her findings, implications of her work, and the need for more research in the area of gender and financial risk taking.

The abstract gives a concise summary of the contents of the report.

  • Abstracts should be brief (about 100 words)
  • Abstracts should be self-contained and provide a complete picture of what the study is about
  • Abstracts should be organized just like your experimental report—introduction, literature review, methods, results and discussion
  • Abstracts should be written last during your drafting stage

Introduction

The introduction in an experimental article should follow a general to specific pattern, where you first introduce the problem generally and then provide a short overview of your own study. The introduction includes three parts: opening statements, literature review, and study overview.

Opening statements: Define the problem broadly in plain English and then lead into the literature review (this is the "general" part of the introduction). Your opening statements should already be setting the stage for the story you are going to tell.

Literature review: Discusses literature (previous studies) relevant to your current study in a concise manner. Keep your story in mind as you organize your lit review and as you choose what literature to include. The following are tips when writing your literature review.

  • You should discuss studies that are directly related to your problem at hand and that logically lead to your own hypotheses.
  • You do not need to provide a complete historical overview nor provide literature that is peripheral to your own study.
  • Studies should be presented based on themes or concepts relevant to your research, not in a chronological format.
  • You should also consider what gap in the literature your own research fills. What hasn't been examined? What does your work do that others have not?

Study overview: The literature review should lead directly into the last section of the introduction—your study overview. Your short overview should provide your hypotheses and briefly describe your method. The study overview functions as a transition to your methods section.

You should always give good, descriptive names to your hypotheses that you use consistently throughout your study. When you number hypotheses, readers must go back to your introduction to find them, which makes your piece more difficult to read. Using descriptive names reminds readers what your hypotheses were and allows for better overall flow.

In our example above, Briel had three different hypotheses based on previous literature. Her first hypothesis, the "masculine risk-taking hypothesis" was that men would be more willing to take financial risks overall. She clearly named her hypothesis in the study overview, and then referred back to it in her results and discussion sections.

Thais and Sanford (2000) recommend the following organization for introductions.

  • Provide an introduction to your topic
  • Provide a very concise overview of the literature
  • State your hypotheses and how they connect to the literature
  • Provide an overview of the methods for investigation used in your research

Bem (2006) provides the following rules of thumb for writing introductions.

  • Write in plain English
  • Take the time and space to introduce readers to your problem step-by-step; do not plunge them into the middle of the problem without an introduction
  • Use examples to illustrate difficult or unfamiliar theories or concepts. The more complicated the concept or theory, the more important it is to have clear examples
  • Open with a discussion about people and their behavior, not about psychologists and their research

19+ Experimental Design Examples (Methods + Types)

practical psychology logo

Ever wondered how scientists discover new medicines, psychologists learn about behavior, or even how marketers figure out what kind of ads you like? Well, they all have something in common: they use a special plan or recipe called an "experimental design."

Imagine you're baking cookies. You can't just throw random amounts of flour, sugar, and chocolate chips into a bowl and hope for the best. You follow a recipe, right? Scientists and researchers do something similar. They follow a "recipe" called an experimental design to make sure their experiments are set up in a way that the answers they find are meaningful and reliable.

Experimental design is the roadmap researchers use to answer questions. It's a set of rules and steps that researchers follow to collect information, or "data," in a way that is fair, accurate, and makes sense.

experimental design test tubes

Long ago, people didn't have detailed game plans for experiments. They often just tried things out and saw what happened. But over time, people got smarter about this. They started creating structured plans—what we now call experimental designs—to get clearer, more trustworthy answers to their questions.

In this article, we'll take you on a journey through the world of experimental designs. We'll talk about the different types, or "flavors," of experimental designs, where they're used, and even give you a peek into how they came to be.

What Is Experimental Design?

Alright, before we dive into the different types of experimental designs, let's get crystal clear on what experimental design actually is.

Imagine you're a detective trying to solve a mystery. You need clues, right? Well, in the world of research, experimental design is like the roadmap that helps you find those clues. It's like the game plan in sports or the blueprint when you're building a house. Just like you wouldn't start building without a good blueprint, researchers won't start their studies without a strong experimental design.

So, why do we need experimental design? Think about baking a cake. If you toss ingredients into a bowl without measuring, you'll end up with a mess instead of a tasty dessert.

Similarly, in research, if you don't have a solid plan, you might get confusing or incorrect results. A good experimental design helps you ask the right questions ( think critically ), decide what to measure ( come up with an idea ), and figure out how to measure it (test it). It also helps you consider things that might mess up your results, like outside influences you hadn't thought of.

For example, let's say you want to find out if listening to music helps people focus better. Your experimental design would help you decide things like: Who are you going to test? What kind of music will you use? How will you measure focus? And, importantly, how will you make sure that it's really the music affecting focus and not something else, like the time of day or whether someone had a good breakfast?

In short, experimental design is the master plan that guides researchers through the process of collecting data, so they can answer questions in the most reliable way possible. It's like the GPS for the journey of discovery!

History of Experimental Design

Around 350 BCE, people like Aristotle were trying to figure out how the world works, but they mostly just thought really hard about things. They didn't test their ideas much. So while they were super smart, their methods weren't always the best for finding out the truth.

Fast forward to the Renaissance (14th to 17th centuries), a time of big changes and lots of curiosity. People like Galileo started to experiment by actually doing tests, like rolling balls down inclined planes to study motion. Galileo's work was cool because he combined thinking with doing. He'd have an idea, test it, look at the results, and then think some more. This approach was a lot more reliable than just sitting around and thinking.

Now, let's zoom ahead to the 18th and 19th centuries. This is when people like Francis Galton, an English polymath, started to get really systematic about experimentation. Galton was obsessed with measuring things. Seriously, he even tried to measure how good-looking people were ! His work helped create the foundations for a more organized approach to experiments.

Next stop: the early 20th century. Enter Ronald A. Fisher , a brilliant British statistician. Fisher was a game-changer. He came up with ideas that are like the bread and butter of modern experimental design.

Fisher invented the concept of the " control group "—that's a group of people or things that don't get the treatment you're testing, so you can compare them to those who do. He also stressed the importance of " randomization ," which means assigning people or things to different groups by chance, like drawing names out of a hat. This makes sure the experiment is fair and the results are trustworthy.

Around the same time, American psychologists like John B. Watson and B.F. Skinner were developing " behaviorism ." They focused on studying things that they could directly observe and measure, like actions and reactions.

Skinner even built boxes—called Skinner Boxes —to test how animals like pigeons and rats learn. Their work helped shape how psychologists design experiments today. Watson performed a very controversial experiment called The Little Albert experiment that helped describe behaviour through conditioning—in other words, how people learn to behave the way they do.

In the later part of the 20th century and into our time, computers have totally shaken things up. Researchers now use super powerful software to help design their experiments and crunch the numbers.

With computers, they can simulate complex experiments before they even start, which helps them predict what might happen. This is especially helpful in fields like medicine, where getting things right can be a matter of life and death.

Also, did you know that experimental designs aren't just for scientists in labs? They're used by people in all sorts of jobs, like marketing, education, and even video game design! Yes, someone probably ran an experiment to figure out what makes a game super fun to play.

So there you have it—a quick tour through the history of experimental design, from Aristotle's deep thoughts to Fisher's groundbreaking ideas, and all the way to today's computer-powered research. These designs are the recipes that help people from all walks of life find answers to their big questions.

Key Terms in Experimental Design

Before we dig into the different types of experimental designs, let's get comfy with some key terms. Understanding these terms will make it easier for us to explore the various types of experimental designs that researchers use to answer their big questions.

Independent Variable : This is what you change or control in your experiment to see what effect it has. Think of it as the "cause" in a cause-and-effect relationship. For example, if you're studying whether different types of music help people focus, the kind of music is the independent variable.

Dependent Variable : This is what you're measuring to see the effect of your independent variable. In our music and focus experiment, how well people focus is the dependent variable—it's what "depends" on the kind of music played.

Control Group : This is a group of people who don't get the special treatment or change you're testing. They help you see what happens when the independent variable is not applied. If you're testing whether a new medicine works, the control group would take a fake pill, called a placebo , instead of the real medicine.

Experimental Group : This is the group that gets the special treatment or change you're interested in. Going back to our medicine example, this group would get the actual medicine to see if it has any effect.

Randomization : This is like shaking things up in a fair way. You randomly put people into the control or experimental group so that each group is a good mix of different kinds of people. This helps make the results more reliable.

Sample : This is the group of people you're studying. They're a "sample" of a larger group that you're interested in. For instance, if you want to know how teenagers feel about a new video game, you might study a sample of 100 teenagers.

Bias : This is anything that might tilt your experiment one way or another without you realizing it. Like if you're testing a new kind of dog food and you only test it on poodles, that could create a bias because maybe poodles just really like that food and other breeds don't.

Data : This is the information you collect during the experiment. It's like the treasure you find on your journey of discovery!

Replication : This means doing the experiment more than once to make sure your findings hold up. It's like double-checking your answers on a test.

Hypothesis : This is your educated guess about what will happen in the experiment. It's like predicting the end of a movie based on the first half.

Steps of Experimental Design

Alright, let's say you're all fired up and ready to run your own experiment. Cool! But where do you start? Well, designing an experiment is a bit like planning a road trip. There are some key steps you've got to take to make sure you reach your destination. Let's break it down:

  • Ask a Question : Before you hit the road, you've got to know where you're going. Same with experiments. You start with a question you want to answer, like "Does eating breakfast really make you do better in school?"
  • Do Some Homework : Before you pack your bags, you look up the best places to visit, right? In science, this means reading up on what other people have already discovered about your topic.
  • Form a Hypothesis : This is your educated guess about what you think will happen. It's like saying, "I bet this route will get us there faster."
  • Plan the Details : Now you decide what kind of car you're driving (your experimental design), who's coming with you (your sample), and what snacks to bring (your variables).
  • Randomization : Remember, this is like shuffling a deck of cards. You want to mix up who goes into your control and experimental groups to make sure it's a fair test.
  • Run the Experiment : Finally, the rubber hits the road! You carry out your plan, making sure to collect your data carefully.
  • Analyze the Data : Once the trip's over, you look at your photos and decide which ones are keepers. In science, this means looking at your data to see what it tells you.
  • Draw Conclusions : Based on your data, did you find an answer to your question? This is like saying, "Yep, that route was faster," or "Nope, we hit a ton of traffic."
  • Share Your Findings : After a great trip, you want to tell everyone about it, right? Scientists do the same by publishing their results so others can learn from them.
  • Do It Again? : Sometimes one road trip just isn't enough. In the same way, scientists often repeat their experiments to make sure their findings are solid.

So there you have it! Those are the basic steps you need to follow when you're designing an experiment. Each step helps make sure that you're setting up a fair and reliable way to find answers to your big questions.

Let's get into examples of experimental designs.

1) True Experimental Design

notepad

In the world of experiments, the True Experimental Design is like the superstar quarterback everyone talks about. Born out of the early 20th-century work of statisticians like Ronald A. Fisher, this design is all about control, precision, and reliability.

Researchers carefully pick an independent variable to manipulate (remember, that's the thing they're changing on purpose) and measure the dependent variable (the effect they're studying). Then comes the magic trick—randomization. By randomly putting participants into either the control or experimental group, scientists make sure their experiment is as fair as possible.

No sneaky biases here!

True Experimental Design Pros

The pros of True Experimental Design are like the perks of a VIP ticket at a concert: you get the best and most trustworthy results. Because everything is controlled and randomized, you can feel pretty confident that the results aren't just a fluke.

True Experimental Design Cons

However, there's a catch. Sometimes, it's really tough to set up these experiments in a real-world situation. Imagine trying to control every single detail of your day, from the food you eat to the air you breathe. Not so easy, right?

True Experimental Design Uses

The fields that get the most out of True Experimental Designs are those that need super reliable results, like medical research.

When scientists were developing COVID-19 vaccines, they used this design to run clinical trials. They had control groups that received a placebo (a harmless substance with no effect) and experimental groups that got the actual vaccine. Then they measured how many people in each group got sick. By comparing the two, they could say, "Yep, this vaccine works!"

So next time you read about a groundbreaking discovery in medicine or technology, chances are a True Experimental Design was the VIP behind the scenes, making sure everything was on point. It's been the go-to for rigorous scientific inquiry for nearly a century, and it's not stepping off the stage anytime soon.

2) Quasi-Experimental Design

So, let's talk about the Quasi-Experimental Design. Think of this one as the cool cousin of True Experimental Design. It wants to be just like its famous relative, but it's a bit more laid-back and flexible. You'll find quasi-experimental designs when it's tricky to set up a full-blown True Experimental Design with all the bells and whistles.

Quasi-experiments still play with an independent variable, just like their stricter cousins. The big difference? They don't use randomization. It's like wanting to divide a bag of jelly beans equally between your friends, but you can't quite do it perfectly.

In real life, it's often not possible or ethical to randomly assign people to different groups, especially when dealing with sensitive topics like education or social issues. And that's where quasi-experiments come in.

Quasi-Experimental Design Pros

Even though they lack full randomization, quasi-experimental designs are like the Swiss Army knives of research: versatile and practical. They're especially popular in fields like education, sociology, and public policy.

For instance, when researchers wanted to figure out if the Head Start program , aimed at giving young kids a "head start" in school, was effective, they used a quasi-experimental design. They couldn't randomly assign kids to go or not go to preschool, but they could compare kids who did with kids who didn't.

Quasi-Experimental Design Cons

Of course, quasi-experiments come with their own bag of pros and cons. On the plus side, they're easier to set up and often cheaper than true experiments. But the flip side is that they're not as rock-solid in their conclusions. Because the groups aren't randomly assigned, there's always that little voice saying, "Hey, are we missing something here?"

Quasi-Experimental Design Uses

Quasi-Experimental Design gained traction in the mid-20th century. Researchers were grappling with real-world problems that didn't fit neatly into a laboratory setting. Plus, as society became more aware of ethical considerations, the need for flexible designs increased. So, the quasi-experimental approach was like a breath of fresh air for scientists wanting to study complex issues without a laundry list of restrictions.

In short, if True Experimental Design is the superstar quarterback, Quasi-Experimental Design is the versatile player who can adapt and still make significant contributions to the game.

3) Pre-Experimental Design

Now, let's talk about the Pre-Experimental Design. Imagine it as the beginner's skateboard you get before you try out for all the cool tricks. It has wheels, it rolls, but it's not built for the professional skatepark.

Similarly, pre-experimental designs give researchers a starting point. They let you dip your toes in the water of scientific research without diving in head-first.

So, what's the deal with pre-experimental designs?

Pre-Experimental Designs are the basic, no-frills versions of experiments. Researchers still mess around with an independent variable and measure a dependent variable, but they skip over the whole randomization thing and often don't even have a control group.

It's like baking a cake but forgetting the frosting and sprinkles; you'll get some results, but they might not be as complete or reliable as you'd like.

Pre-Experimental Design Pros

Why use such a simple setup? Because sometimes, you just need to get the ball rolling. Pre-experimental designs are great for quick-and-dirty research when you're short on time or resources. They give you a rough idea of what's happening, which you can use to plan more detailed studies later.

A good example of this is early studies on the effects of screen time on kids. Researchers couldn't control every aspect of a child's life, but they could easily ask parents to track how much time their kids spent in front of screens and then look for trends in behavior or school performance.

Pre-Experimental Design Cons

But here's the catch: pre-experimental designs are like that first draft of an essay. It helps you get your ideas down, but you wouldn't want to turn it in for a grade. Because these designs lack the rigorous structure of true or quasi-experimental setups, they can't give you rock-solid conclusions. They're more like clues or signposts pointing you in a certain direction.

Pre-Experimental Design Uses

This type of design became popular in the early stages of various scientific fields. Researchers used them to scratch the surface of a topic, generate some initial data, and then decide if it's worth exploring further. In other words, pre-experimental designs were the stepping stones that led to more complex, thorough investigations.

So, while Pre-Experimental Design may not be the star player on the team, it's like the practice squad that helps everyone get better. It's the starting point that can lead to bigger and better things.

4) Factorial Design

Now, buckle up, because we're moving into the world of Factorial Design, the multi-tasker of the experimental universe.

Imagine juggling not just one, but multiple balls in the air—that's what researchers do in a factorial design.

In Factorial Design, researchers are not satisfied with just studying one independent variable. Nope, they want to study two or more at the same time to see how they interact.

It's like cooking with several spices to see how they blend together to create unique flavors.

Factorial Design became the talk of the town with the rise of computers. Why? Because this design produces a lot of data, and computers are the number crunchers that help make sense of it all. So, thanks to our silicon friends, researchers can study complicated questions like, "How do diet AND exercise together affect weight loss?" instead of looking at just one of those factors.

Factorial Design Pros

This design's main selling point is its ability to explore interactions between variables. For instance, maybe a new study drug works really well for young people but not so great for older adults. A factorial design could reveal that age is a crucial factor, something you might miss if you only studied the drug's effectiveness in general. It's like being a detective who looks for clues not just in one room but throughout the entire house.

Factorial Design Cons

However, factorial designs have their own bag of challenges. First off, they can be pretty complicated to set up and run. Imagine coordinating a four-way intersection with lots of cars coming from all directions—you've got to make sure everything runs smoothly, or you'll end up with a traffic jam. Similarly, researchers need to carefully plan how they'll measure and analyze all the different variables.

Factorial Design Uses

Factorial designs are widely used in psychology to untangle the web of factors that influence human behavior. They're also popular in fields like marketing, where companies want to understand how different aspects like price, packaging, and advertising influence a product's success.

And speaking of success, the factorial design has been a hit since statisticians like Ronald A. Fisher (yep, him again!) expanded on it in the early-to-mid 20th century. It offered a more nuanced way of understanding the world, proving that sometimes, to get the full picture, you've got to juggle more than one ball at a time.

So, if True Experimental Design is the quarterback and Quasi-Experimental Design is the versatile player, Factorial Design is the strategist who sees the entire game board and makes moves accordingly.

5) Longitudinal Design

pill bottle

Alright, let's take a step into the world of Longitudinal Design. Picture it as the grand storyteller, the kind who doesn't just tell you about a single event but spins an epic tale that stretches over years or even decades. This design isn't about quick snapshots; it's about capturing the whole movie of someone's life or a long-running process.

You know how you might take a photo every year on your birthday to see how you've changed? Longitudinal Design is kind of like that, but for scientific research.

With Longitudinal Design, instead of measuring something just once, researchers come back again and again, sometimes over many years, to see how things are going. This helps them understand not just what's happening, but why it's happening and how it changes over time.

This design really started to shine in the latter half of the 20th century, when researchers began to realize that some questions can't be answered in a hurry. Think about studies that look at how kids grow up, or research on how a certain medicine affects you over a long period. These aren't things you can rush.

The famous Framingham Heart Study , started in 1948, is a prime example. It's been studying heart health in a small town in Massachusetts for decades, and the findings have shaped what we know about heart disease.

Longitudinal Design Pros

So, what's to love about Longitudinal Design? First off, it's the go-to for studying change over time, whether that's how people age or how a forest recovers from a fire.

Longitudinal Design Cons

But it's not all sunshine and rainbows. Longitudinal studies take a lot of patience and resources. Plus, keeping track of participants over many years can be like herding cats—difficult and full of surprises.

Longitudinal Design Uses

Despite these challenges, longitudinal studies have been key in fields like psychology, sociology, and medicine. They provide the kind of deep, long-term insights that other designs just can't match.

So, if the True Experimental Design is the superstar quarterback, and the Quasi-Experimental Design is the flexible athlete, then the Factorial Design is the strategist, and the Longitudinal Design is the wise elder who has seen it all and has stories to tell.

6) Cross-Sectional Design

Now, let's flip the script and talk about Cross-Sectional Design, the polar opposite of the Longitudinal Design. If Longitudinal is the grand storyteller, think of Cross-Sectional as the snapshot photographer. It captures a single moment in time, like a selfie that you take to remember a fun day. Researchers using this design collect all their data at one point, providing a kind of "snapshot" of whatever they're studying.

In a Cross-Sectional Design, researchers look at multiple groups all at the same time to see how they're different or similar.

This design rose to popularity in the mid-20th century, mainly because it's so quick and efficient. Imagine wanting to know how people of different ages feel about a new video game. Instead of waiting for years to see how opinions change, you could just ask people of all ages what they think right now. That's Cross-Sectional Design for you—fast and straightforward.

You'll find this type of research everywhere from marketing studies to healthcare. For instance, you might have heard about surveys asking people what they think about a new product or political issue. Those are usually cross-sectional studies, aimed at getting a quick read on public opinion.

Cross-Sectional Design Pros

So, what's the big deal with Cross-Sectional Design? Well, it's the go-to when you need answers fast and don't have the time or resources for a more complicated setup.

Cross-Sectional Design Cons

Remember, speed comes with trade-offs. While you get your results quickly, those results are stuck in time. They can't tell you how things change or why they're changing, just what's happening right now.

Cross-Sectional Design Uses

Also, because they're so quick and simple, cross-sectional studies often serve as the first step in research. They give scientists an idea of what's going on so they can decide if it's worth digging deeper. In that way, they're a bit like a movie trailer, giving you a taste of the action to see if you're interested in seeing the whole film.

So, in our lineup of experimental designs, if True Experimental Design is the superstar quarterback and Longitudinal Design is the wise elder, then Cross-Sectional Design is like the speedy running back—fast, agile, but not designed for long, drawn-out plays.

7) Correlational Design

Next on our roster is the Correlational Design, the keen observer of the experimental world. Imagine this design as the person at a party who loves people-watching. They don't interfere or get involved; they just observe and take mental notes about what's going on.

In a correlational study, researchers don't change or control anything; they simply observe and measure how two variables relate to each other.

The correlational design has roots in the early days of psychology and sociology. Pioneers like Sir Francis Galton used it to study how qualities like intelligence or height could be related within families.

This design is all about asking, "Hey, when this thing happens, does that other thing usually happen too?" For example, researchers might study whether students who have more study time get better grades or whether people who exercise more have lower stress levels.

One of the most famous correlational studies you might have heard of is the link between smoking and lung cancer. Back in the mid-20th century, researchers started noticing that people who smoked a lot also seemed to get lung cancer more often. They couldn't say smoking caused cancer—that would require a true experiment—but the strong correlation was a red flag that led to more research and eventually, health warnings.

Correlational Design Pros

This design is great at proving that two (or more) things can be related. Correlational designs can help prove that more detailed research is needed on a topic. They can help us see patterns or possible causes for things that we otherwise might not have realized.

Correlational Design Cons

But here's where you need to be careful: correlational designs can be tricky. Just because two things are related doesn't mean one causes the other. That's like saying, "Every time I wear my lucky socks, my team wins." Well, it's a fun thought, but those socks aren't really controlling the game.

Correlational Design Uses

Despite this limitation, correlational designs are popular in psychology, economics, and epidemiology, to name a few fields. They're often the first step in exploring a possible relationship between variables. Once a strong correlation is found, researchers may decide to conduct more rigorous experimental studies to examine cause and effect.

So, if the True Experimental Design is the superstar quarterback and the Longitudinal Design is the wise elder, the Factorial Design is the strategist, and the Cross-Sectional Design is the speedster, then the Correlational Design is the clever scout, identifying interesting patterns but leaving the heavy lifting of proving cause and effect to the other types of designs.

8) Meta-Analysis

Last but not least, let's talk about Meta-Analysis, the librarian of experimental designs.

If other designs are all about creating new research, Meta-Analysis is about gathering up everyone else's research, sorting it, and figuring out what it all means when you put it together.

Imagine a jigsaw puzzle where each piece is a different study. Meta-Analysis is the process of fitting all those pieces together to see the big picture.

The concept of Meta-Analysis started to take shape in the late 20th century, when computers became powerful enough to handle massive amounts of data. It was like someone handed researchers a super-powered magnifying glass, letting them examine multiple studies at the same time to find common trends or results.

You might have heard of the Cochrane Reviews in healthcare . These are big collections of meta-analyses that help doctors and policymakers figure out what treatments work best based on all the research that's been done.

For example, if ten different studies show that a certain medicine helps lower blood pressure, a meta-analysis would pull all that information together to give a more accurate answer.

Meta-Analysis Pros

The beauty of Meta-Analysis is that it can provide really strong evidence. Instead of relying on one study, you're looking at the whole landscape of research on a topic.

Meta-Analysis Cons

However, it does have some downsides. For one, Meta-Analysis is only as good as the studies it includes. If those studies are flawed, the meta-analysis will be too. It's like baking a cake: if you use bad ingredients, it doesn't matter how good your recipe is—the cake won't turn out well.

Meta-Analysis Uses

Despite these challenges, meta-analyses are highly respected and widely used in many fields like medicine, psychology, and education. They help us make sense of a world that's bursting with information by showing us the big picture drawn from many smaller snapshots.

So, in our all-star lineup, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, the Factorial Design is the strategist, the Cross-Sectional Design is the speedster, and the Correlational Design is the scout, then the Meta-Analysis is like the coach, using insights from everyone else's plays to come up with the best game plan.

9) Non-Experimental Design

Now, let's talk about a player who's a bit of an outsider on this team of experimental designs—the Non-Experimental Design. Think of this design as the commentator or the journalist who covers the game but doesn't actually play.

In a Non-Experimental Design, researchers are like reporters gathering facts, but they don't interfere or change anything. They're simply there to describe and analyze.

Non-Experimental Design Pros

So, what's the deal with Non-Experimental Design? Its strength is in description and exploration. It's really good for studying things as they are in the real world, without changing any conditions.

Non-Experimental Design Cons

Because a non-experimental design doesn't manipulate variables, it can't prove cause and effect. It's like a weather reporter: they can tell you it's raining, but they can't tell you why it's raining.

The downside? Since researchers aren't controlling variables, it's hard to rule out other explanations for what they observe. It's like hearing one side of a story—you get an idea of what happened, but it might not be the complete picture.

Non-Experimental Design Uses

Non-Experimental Design has always been a part of research, especially in fields like anthropology, sociology, and some areas of psychology.

For instance, if you've ever heard of studies that describe how people behave in different cultures or what teens like to do in their free time, that's often Non-Experimental Design at work. These studies aim to capture the essence of a situation, like painting a portrait instead of taking a snapshot.

One well-known example you might have heard about is the Kinsey Reports from the 1940s and 1950s, which described sexual behavior in men and women. Researchers interviewed thousands of people but didn't manipulate any variables like you would in a true experiment. They simply collected data to create a comprehensive picture of the subject matter.

So, in our metaphorical team of research designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, and Meta-Analysis is the coach, then Non-Experimental Design is the sports journalist—always present, capturing the game, but not part of the action itself.

10) Repeated Measures Design

white rat

Time to meet the Repeated Measures Design, the time traveler of our research team. If this design were a player in a sports game, it would be the one who keeps revisiting past plays to figure out how to improve the next one.

Repeated Measures Design is all about studying the same people or subjects multiple times to see how they change or react under different conditions.

The idea behind Repeated Measures Design isn't new; it's been around since the early days of psychology and medicine. You could say it's a cousin to the Longitudinal Design, but instead of looking at how things naturally change over time, it focuses on how the same group reacts to different things.

Imagine a study looking at how a new energy drink affects people's running speed. Instead of comparing one group that drank the energy drink to another group that didn't, a Repeated Measures Design would have the same group of people run multiple times—once with the energy drink, and once without. This way, you're really zeroing in on the effect of that energy drink, making the results more reliable.

Repeated Measures Design Pros

The strong point of Repeated Measures Design is that it's super focused. Because it uses the same subjects, you don't have to worry about differences between groups messing up your results.

Repeated Measures Design Cons

But the downside? Well, people can get tired or bored if they're tested too many times, which might affect how they respond.

Repeated Measures Design Uses

A famous example of this design is the "Little Albert" experiment, conducted by John B. Watson and Rosalie Rayner in 1920. In this study, a young boy was exposed to a white rat and other stimuli several times to see how his emotional responses changed. Though the ethical standards of this experiment are often criticized today, it was groundbreaking in understanding conditioned emotional responses.

In our metaphorical lineup of research designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, and Non-Experimental Design is the journalist, then Repeated Measures Design is the time traveler—always looping back to fine-tune the game plan.

11) Crossover Design

Next up is Crossover Design, the switch-hitter of the research world. If you're familiar with baseball, you'll know a switch-hitter is someone who can bat both right-handed and left-handed.

In a similar way, Crossover Design allows subjects to experience multiple conditions, flipping them around so that everyone gets a turn in each role.

This design is like the utility player on our team—versatile, flexible, and really good at adapting.

The Crossover Design has its roots in medical research and has been popular since the mid-20th century. It's often used in clinical trials to test the effectiveness of different treatments.

Crossover Design Pros

The neat thing about this design is that it allows each participant to serve as their own control group. Imagine you're testing two new kinds of headache medicine. Instead of giving one type to one group and another type to a different group, you'd give both kinds to the same people but at different times.

Crossover Design Cons

What's the big deal with Crossover Design? Its major strength is in reducing the "noise" that comes from individual differences. Since each person experiences all conditions, it's easier to see real effects. However, there's a catch. This design assumes that there's no lasting effect from the first condition when you switch to the second one. That might not always be true. If the first treatment has a long-lasting effect, it could mess up the results when you switch to the second treatment.

Crossover Design Uses

A well-known example of Crossover Design is in studies that look at the effects of different types of diets—like low-carb vs. low-fat diets. Researchers might have participants follow a low-carb diet for a few weeks, then switch them to a low-fat diet. By doing this, they can more accurately measure how each diet affects the same group of people.

In our team of experimental designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, and Repeated Measures Design is the time traveler, then Crossover Design is the versatile utility player—always ready to adapt and play multiple roles to get the most accurate results.

12) Cluster Randomized Design

Meet the Cluster Randomized Design, the team captain of group-focused research. In our imaginary lineup of experimental designs, if other designs focus on individual players, then Cluster Randomized Design is looking at how the entire team functions.

This approach is especially common in educational and community-based research, and it's been gaining traction since the late 20th century.

Here's how Cluster Randomized Design works: Instead of assigning individual people to different conditions, researchers assign entire groups, or "clusters." These could be schools, neighborhoods, or even entire towns. This helps you see how the new method works in a real-world setting.

Imagine you want to see if a new anti-bullying program really works. Instead of selecting individual students, you'd introduce the program to a whole school or maybe even several schools, and then compare the results to schools without the program.

Cluster Randomized Design Pros

Why use Cluster Randomized Design? Well, sometimes it's just not practical to assign conditions at the individual level. For example, you can't really have half a school following a new reading program while the other half sticks with the old one; that would be way too confusing! Cluster Randomization helps get around this problem by treating each "cluster" as its own mini-experiment.

Cluster Randomized Design Cons

There's a downside, too. Because entire groups are assigned to each condition, there's a risk that the groups might be different in some important way that the researchers didn't account for. That's like having one sports team that's full of veterans playing against a team of rookies; the match wouldn't be fair.

Cluster Randomized Design Uses

A famous example is the research conducted to test the effectiveness of different public health interventions, like vaccination programs. Researchers might roll out a vaccination program in one community but not in another, then compare the rates of disease in both.

In our metaphorical research team, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, and Crossover Design is the utility player, then Cluster Randomized Design is the team captain—always looking out for the group as a whole.

13) Mixed-Methods Design

Say hello to Mixed-Methods Design, the all-rounder or the "Renaissance player" of our research team.

Mixed-Methods Design uses a blend of both qualitative and quantitative methods to get a more complete picture, just like a Renaissance person who's good at lots of different things. It's like being good at both offense and defense in a sport; you've got all your bases covered!

Mixed-Methods Design is a fairly new kid on the block, becoming more popular in the late 20th and early 21st centuries as researchers began to see the value in using multiple approaches to tackle complex questions. It's the Swiss Army knife in our research toolkit, combining the best parts of other designs to be more versatile.

Here's how it could work: Imagine you're studying the effects of a new educational app on students' math skills. You might use quantitative methods like tests and grades to measure how much the students improve—that's the 'numbers part.'

But you also want to know how the students feel about math now, or why they think they got better or worse. For that, you could conduct interviews or have students fill out journals—that's the 'story part.'

Mixed-Methods Design Pros

So, what's the scoop on Mixed-Methods Design? The strength is its versatility and depth; you're not just getting numbers or stories, you're getting both, which gives a fuller picture.

Mixed-Methods Design Cons

But, it's also more challenging. Imagine trying to play two sports at the same time! You have to be skilled in different research methods and know how to combine them effectively.

Mixed-Methods Design Uses

A high-profile example of Mixed-Methods Design is research on climate change. Scientists use numbers and data to show temperature changes (quantitative), but they also interview people to understand how these changes are affecting communities (qualitative).

In our team of experimental designs, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, Crossover Design is the utility player, and Cluster Randomized Design is the team captain, then Mixed-Methods Design is the Renaissance player—skilled in multiple areas and able to bring them all together for a winning strategy.

14) Multivariate Design

Now, let's turn our attention to Multivariate Design, the multitasker of the research world.

If our lineup of research designs were like players on a basketball court, Multivariate Design would be the player dribbling, passing, and shooting all at once. This design doesn't just look at one or two things; it looks at several variables simultaneously to see how they interact and affect each other.

Multivariate Design is like baking a cake with many ingredients. Instead of just looking at how flour affects the cake, you also consider sugar, eggs, and milk all at once. This way, you understand how everything works together to make the cake taste good or bad.

Multivariate Design has been a go-to method in psychology, economics, and social sciences since the latter half of the 20th century. With the advent of computers and advanced statistical software, analyzing multiple variables at once became a lot easier, and Multivariate Design soared in popularity.

Multivariate Design Pros

So, what's the benefit of using Multivariate Design? Its power lies in its complexity. By studying multiple variables at the same time, you can get a really rich, detailed understanding of what's going on.

Multivariate Design Cons

But that complexity can also be a drawback. With so many variables, it can be tough to tell which ones are really making a difference and which ones are just along for the ride.

Multivariate Design Uses

Imagine you're a coach trying to figure out the best strategy to win games. You wouldn't just look at how many points your star player scores; you'd also consider assists, rebounds, turnovers, and maybe even how loud the crowd is. A Multivariate Design would help you understand how all these factors work together to determine whether you win or lose.

A well-known example of Multivariate Design is in market research. Companies often use this approach to figure out how different factors—like price, packaging, and advertising—affect sales. By studying multiple variables at once, they can find the best combination to boost profits.

In our metaphorical research team, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, Crossover Design is the utility player, Cluster Randomized Design is the team captain, and Mixed-Methods Design is the Renaissance player, then Multivariate Design is the multitasker—juggling many variables at once to get a fuller picture of what's happening.

15) Pretest-Posttest Design

Let's introduce Pretest-Posttest Design, the "Before and After" superstar of our research team. You've probably seen those before-and-after pictures in ads for weight loss programs or home renovations, right?

Well, this design is like that, but for science! Pretest-Posttest Design checks out what things are like before the experiment starts and then compares that to what things are like after the experiment ends.

This design is one of the classics, a staple in research for decades across various fields like psychology, education, and healthcare. It's so simple and straightforward that it has stayed popular for a long time.

In Pretest-Posttest Design, you measure your subject's behavior or condition before you introduce any changes—that's your "before" or "pretest." Then you do your experiment, and after it's done, you measure the same thing again—that's your "after" or "posttest."

Pretest-Posttest Design Pros

What makes Pretest-Posttest Design special? It's pretty easy to understand and doesn't require fancy statistics.

Pretest-Posttest Design Cons

But there are some pitfalls. For example, what if the kids in our math example get better at multiplication just because they're older or because they've taken the test before? That would make it hard to tell if the program is really effective or not.

Pretest-Posttest Design Uses

Let's say you're a teacher and you want to know if a new math program helps kids get better at multiplication. First, you'd give all the kids a multiplication test—that's your pretest. Then you'd teach them using the new math program. At the end, you'd give them the same test again—that's your posttest. If the kids do better on the second test, you might conclude that the program works.

One famous use of Pretest-Posttest Design is in evaluating the effectiveness of driver's education courses. Researchers will measure people's driving skills before and after the course to see if they've improved.

16) Solomon Four-Group Design

Next up is the Solomon Four-Group Design, the "chess master" of our research team. This design is all about strategy and careful planning. Named after Richard L. Solomon who introduced it in the 1940s, this method tries to correct some of the weaknesses in simpler designs, like the Pretest-Posttest Design.

Here's how it rolls: The Solomon Four-Group Design uses four different groups to test a hypothesis. Two groups get a pretest, then one of them receives the treatment or intervention, and both get a posttest. The other two groups skip the pretest, and only one of them receives the treatment before they both get a posttest.

Sound complicated? It's like playing 4D chess; you're thinking several moves ahead!

Solomon Four-Group Design Pros

What's the pro and con of the Solomon Four-Group Design? On the plus side, it provides really robust results because it accounts for so many variables.

Solomon Four-Group Design Cons

The downside? It's a lot of work and requires a lot of participants, making it more time-consuming and costly.

Solomon Four-Group Design Uses

Let's say you want to figure out if a new way of teaching history helps students remember facts better. Two classes take a history quiz (pretest), then one class uses the new teaching method while the other sticks with the old way. Both classes take another quiz afterward (posttest).

Meanwhile, two more classes skip the initial quiz, and then one uses the new method before both take the final quiz. Comparing all four groups will give you a much clearer picture of whether the new teaching method works and whether the pretest itself affects the outcome.

The Solomon Four-Group Design is less commonly used than simpler designs but is highly respected for its ability to control for more variables. It's a favorite in educational and psychological research where you really want to dig deep and figure out what's actually causing changes.

17) Adaptive Designs

Now, let's talk about Adaptive Designs, the chameleons of the experimental world.

Imagine you're a detective, and halfway through solving a case, you find a clue that changes everything. You wouldn't just stick to your old plan; you'd adapt and change your approach, right? That's exactly what Adaptive Designs allow researchers to do.

In an Adaptive Design, researchers can make changes to the study as it's happening, based on early results. In a traditional study, once you set your plan, you stick to it from start to finish.

Adaptive Design Pros

This method is particularly useful in fast-paced or high-stakes situations, like developing a new vaccine in the middle of a pandemic. The ability to adapt can save both time and resources, and more importantly, it can save lives by getting effective treatments out faster.

Adaptive Design Cons

But Adaptive Designs aren't without their drawbacks. They can be very complex to plan and carry out, and there's always a risk that the changes made during the study could introduce bias or errors.

Adaptive Design Uses

Adaptive Designs are most often seen in clinical trials, particularly in the medical and pharmaceutical fields.

For instance, if a new drug is showing really promising results, the study might be adjusted to give more participants the new treatment instead of a placebo. Or if one dose level is showing bad side effects, it might be dropped from the study.

The best part is, these changes are pre-planned. Researchers lay out in advance what changes might be made and under what conditions, which helps keep everything scientific and above board.

In terms of applications, besides their heavy usage in medical and pharmaceutical research, Adaptive Designs are also becoming increasingly popular in software testing and market research. In these fields, being able to quickly adjust to early results can give companies a significant advantage.

Adaptive Designs are like the agile startups of the research world—quick to pivot, keen to learn from ongoing results, and focused on rapid, efficient progress. However, they require a great deal of expertise and careful planning to ensure that the adaptability doesn't compromise the integrity of the research.

18) Bayesian Designs

Next, let's dive into Bayesian Designs, the data detectives of the research universe. Named after Thomas Bayes, an 18th-century statistician and minister, this design doesn't just look at what's happening now; it also takes into account what's happened before.

Imagine if you were a detective who not only looked at the evidence in front of you but also used your past cases to make better guesses about your current one. That's the essence of Bayesian Designs.

Bayesian Designs are like detective work in science. As you gather more clues (or data), you update your best guess on what's really happening. This way, your experiment gets smarter as it goes along.

In the world of research, Bayesian Designs are most notably used in areas where you have some prior knowledge that can inform your current study. For example, if earlier research shows that a certain type of medicine usually works well for a specific illness, a Bayesian Design would include that information when studying a new group of patients with the same illness.

Bayesian Design Pros

One of the major advantages of Bayesian Designs is their efficiency. Because they use existing data to inform the current experiment, often fewer resources are needed to reach a reliable conclusion.

Bayesian Design Cons

However, they can be quite complicated to set up and require a deep understanding of both statistics and the subject matter at hand.

Bayesian Design Uses

Bayesian Designs are highly valued in medical research, finance, environmental science, and even in Internet search algorithms. Their ability to continually update and refine hypotheses based on new evidence makes them particularly useful in fields where data is constantly evolving and where quick, informed decisions are crucial.

Here's a real-world example: In the development of personalized medicine, where treatments are tailored to individual patients, Bayesian Designs are invaluable. If a treatment has been effective for patients with similar genetics or symptoms in the past, a Bayesian approach can use that data to predict how well it might work for a new patient.

This type of design is also increasingly popular in machine learning and artificial intelligence. In these fields, Bayesian Designs help algorithms "learn" from past data to make better predictions or decisions in new situations. It's like teaching a computer to be a detective that gets better and better at solving puzzles the more puzzles it sees.

19) Covariate Adaptive Randomization

old person and young person

Now let's turn our attention to Covariate Adaptive Randomization, which you can think of as the "matchmaker" of experimental designs.

Picture a soccer coach trying to create the most balanced teams for a friendly match. They wouldn't just randomly assign players; they'd take into account each player's skills, experience, and other traits.

Covariate Adaptive Randomization is all about creating the most evenly matched groups possible for an experiment.

In traditional randomization, participants are allocated to different groups purely by chance. This is a pretty fair way to do things, but it can sometimes lead to unbalanced groups.

Imagine if all the professional-level players ended up on one soccer team and all the beginners on another; that wouldn't be a very informative match! Covariate Adaptive Randomization fixes this by using important traits or characteristics (called "covariates") to guide the randomization process.

Covariate Adaptive Randomization Pros

The benefits of this design are pretty clear: it aims for balance and fairness, making the final results more trustworthy.

Covariate Adaptive Randomization Cons

But it's not perfect. It can be complex to implement and requires a deep understanding of which characteristics are most important to balance.

Covariate Adaptive Randomization Uses

This design is particularly useful in medical trials. Let's say researchers are testing a new medication for high blood pressure. Participants might have different ages, weights, or pre-existing conditions that could affect the results.

Covariate Adaptive Randomization would make sure that each treatment group has a similar mix of these characteristics, making the results more reliable and easier to interpret.

In practical terms, this design is often seen in clinical trials for new drugs or therapies, but its principles are also applicable in fields like psychology, education, and social sciences.

For instance, in educational research, it might be used to ensure that classrooms being compared have similar distributions of students in terms of academic ability, socioeconomic status, and other factors.

Covariate Adaptive Randomization is like the wise elder of the group, ensuring that everyone has an equal opportunity to show their true capabilities, thereby making the collective results as reliable as possible.

20) Stepped Wedge Design

Let's now focus on the Stepped Wedge Design, a thoughtful and cautious member of the experimental design family.

Imagine you're trying out a new gardening technique, but you're not sure how well it will work. You decide to apply it to one section of your garden first, watch how it performs, and then gradually extend the technique to other sections. This way, you get to see its effects over time and across different conditions. That's basically how Stepped Wedge Design works.

In a Stepped Wedge Design, all participants or clusters start off in the control group, and then, at different times, they 'step' over to the intervention or treatment group. This creates a wedge-like pattern over time where more and more participants receive the treatment as the study progresses. It's like rolling out a new policy in phases, monitoring its impact at each stage before extending it to more people.

Stepped Wedge Design Pros

The Stepped Wedge Design offers several advantages. Firstly, it allows for the study of interventions that are expected to do more good than harm, which makes it ethically appealing.

Secondly, it's useful when resources are limited and it's not feasible to roll out a new treatment to everyone at once. Lastly, because everyone eventually receives the treatment, it can be easier to get buy-in from participants or organizations involved in the study.

Stepped Wedge Design Cons

However, this design can be complex to analyze because it has to account for both the time factor and the changing conditions in each 'step' of the wedge. And like any study where participants know they're receiving an intervention, there's the potential for the results to be influenced by the placebo effect or other biases.

Stepped Wedge Design Uses

This design is particularly useful in health and social care research. For instance, if a hospital wants to implement a new hygiene protocol, it might start in one department, assess its impact, and then roll it out to other departments over time. This allows the hospital to adjust and refine the new protocol based on real-world data before it's fully implemented.

In terms of applications, Stepped Wedge Designs are commonly used in public health initiatives, organizational changes in healthcare settings, and social policy trials. They are particularly useful in situations where an intervention is being rolled out gradually and it's important to understand its impacts at each stage.

21) Sequential Design

Next up is Sequential Design, the dynamic and flexible member of our experimental design family.

Imagine you're playing a video game where you can choose different paths. If you take one path and find a treasure chest, you might decide to continue in that direction. If you hit a dead end, you might backtrack and try a different route. Sequential Design operates in a similar fashion, allowing researchers to make decisions at different stages based on what they've learned so far.

In a Sequential Design, the experiment is broken down into smaller parts, or "sequences." After each sequence, researchers pause to look at the data they've collected. Based on those findings, they then decide whether to stop the experiment because they've got enough information, or to continue and perhaps even modify the next sequence.

Sequential Design Pros

This allows for a more efficient use of resources, as you're only continuing with the experiment if the data suggests it's worth doing so.

One of the great things about Sequential Design is its efficiency. Because you're making data-driven decisions along the way, you can often reach conclusions more quickly and with fewer resources.

Sequential Design Cons

However, it requires careful planning and expertise to ensure that these "stop or go" decisions are made correctly and without bias.

Sequential Design Uses

In terms of its applications, besides healthcare and medicine, Sequential Design is also popular in quality control in manufacturing, environmental monitoring, and financial modeling. In these areas, being able to make quick decisions based on incoming data can be a big advantage.

This design is often used in clinical trials involving new medications or treatments. For example, if early results show that a new drug has significant side effects, the trial can be stopped before more people are exposed to it.

On the flip side, if the drug is showing promising results, the trial might be expanded to include more participants or to extend the testing period.

Think of Sequential Design as the nimble athlete of experimental designs, capable of quick pivots and adjustments to reach the finish line in the most effective way possible. But just like an athlete needs a good coach, this design requires expert oversight to make sure it stays on the right track.

22) Field Experiments

Last but certainly not least, let's explore Field Experiments—the adventurers of the experimental design world.

Picture a scientist leaving the controlled environment of a lab to test a theory in the real world, like a biologist studying animals in their natural habitat or a social scientist observing people in a real community. These are Field Experiments, and they're all about getting out there and gathering data in real-world settings.

Field Experiments embrace the messiness of the real world, unlike laboratory experiments, where everything is controlled down to the smallest detail. This makes them both exciting and challenging.

Field Experiment Pros

On one hand, the results often give us a better understanding of how things work outside the lab.

While Field Experiments offer real-world relevance, they come with challenges like controlling for outside factors and the ethical considerations of intervening in people's lives without their knowledge.

Field Experiment Cons

On the other hand, the lack of control can make it harder to tell exactly what's causing what. Yet, despite these challenges, they remain a valuable tool for researchers who want to understand how theories play out in the real world.

Field Experiment Uses

Let's say a school wants to improve student performance. In a Field Experiment, they might change the school's daily schedule for one semester and keep track of how students perform compared to another school where the schedule remained the same.

Because the study is happening in a real school with real students, the results could be very useful for understanding how the change might work in other schools. But since it's the real world, lots of other factors—like changes in teachers or even the weather—could affect the results.

Field Experiments are widely used in economics, psychology, education, and public policy. For example, you might have heard of the famous "Broken Windows" experiment in the 1980s that looked at how small signs of disorder, like broken windows or graffiti, could encourage more serious crime in neighborhoods. This experiment had a big impact on how cities think about crime prevention.

From the foundational concepts of control groups and independent variables to the sophisticated layouts like Covariate Adaptive Randomization and Sequential Design, it's clear that the realm of experimental design is as varied as it is fascinating.

We've seen that each design has its own special talents, ideal for specific situations. Some designs, like the Classic Controlled Experiment, are like reliable old friends you can always count on.

Others, like Sequential Design, are flexible and adaptable, making quick changes based on what they learn. And let's not forget the adventurous Field Experiments, which take us out of the lab and into the real world to discover things we might not see otherwise.

Choosing the right experimental design is like picking the right tool for the job. The method you choose can make a big difference in how reliable your results are and how much people will trust what you've discovered. And as we've learned, there's a design to suit just about every question, every problem, and every curiosity.

So the next time you read about a new discovery in medicine, psychology, or any other field, you'll have a better understanding of the thought and planning that went into figuring things out. Experimental design is more than just a set of rules; it's a structured way to explore the unknown and answer questions that can change the world.

Related posts:

  • Experimental Psychologist Career (Salary + Duties + Interviews)
  • 40+ Famous Psychologists (Images + Biographies)
  • 11+ Psychology Experiment Ideas (Goals + Methods)
  • The Little Albert Experiment
  • 41+ White Collar Job Examples (Salary + Path)

Reference this article:

About The Author

Photo of author

Free Personality Test

Free Personality Quiz

Free Memory Test

Free Memory Test

Free IQ Test

Free IQ Test

PracticalPie.com is a participant in the Amazon Associates Program. As an Amazon Associate we earn from qualifying purchases.

Follow Us On:

Youtube Facebook Instagram X/Twitter

Psychology Resources

Developmental

Personality

Relationships

Psychologists

Serial Killers

Psychology Tests

Personality Quiz

Memory Test

Depression test

Type A/B Personality Test

© PracticalPsychology. All rights reserved

Privacy Policy | Terms of Use

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • A Quick Guide to Experimental Design | 5 Steps & Examples

A Quick Guide to Experimental Design | 5 Steps & Examples

Published on 11 April 2022 by Rebecca Bevans . Revised on 5 December 2022.

Experiments are used to study causal relationships . You manipulate one or more independent variables and measure their effect on one or more dependent variables.

Experimental design means creating a set of procedures to systematically test a hypothesis . A good experimental design requires a strong understanding of the system you are studying. 

There are five key steps in designing an experiment:

  • Consider your variables and how they are related
  • Write a specific, testable hypothesis
  • Design experimental treatments to manipulate your independent variable
  • Assign subjects to groups, either between-subjects or within-subjects
  • Plan how you will measure your dependent variable

For valid conclusions, you also need to select a representative sample and control any  extraneous variables that might influence your results. If if random assignment of participants to control and treatment groups is impossible, unethical, or highly difficult, consider an observational study instead.

Table of contents

Step 1: define your variables, step 2: write your hypothesis, step 3: design your experimental treatments, step 4: assign your subjects to treatment groups, step 5: measure your dependent variable, frequently asked questions about experimental design.

You should begin with a specific research question . We will work with two research question examples, one from health sciences and one from ecology:

To translate your research question into an experimental hypothesis, you need to define the main variables and make predictions about how they are related.

Start by simply listing the independent and dependent variables .

Research question Independent variable Dependent variable
Phone use and sleep Minutes of phone use before sleep Hours of sleep per night
Temperature and soil respiration Air temperature just above the soil surface CO2 respired from soil

Then you need to think about possible extraneous and confounding variables and consider how you might control  them in your experiment.

Extraneous variable How to control
Phone use and sleep in sleep patterns among individuals. measure the average difference between sleep with phone use and sleep without phone use rather than the average amount of sleep per treatment group.
Temperature and soil respiration also affects respiration, and moisture can decrease with increasing temperature. monitor soil moisture and add water to make sure that soil moisture is consistent across all treatment plots.

Finally, you can put these variables together into a diagram. Use arrows to show the possible relationships between variables and include signs to show the expected direction of the relationships.

Diagram of the relationship between variables in a sleep experiment

Here we predict that increasing temperature will increase soil respiration and decrease soil moisture, while decreasing soil moisture will lead to decreased soil respiration.

Prevent plagiarism, run a free check.

Now that you have a strong conceptual understanding of the system you are studying, you should be able to write a specific, testable hypothesis that addresses your research question.

Null hypothesis (H ) Alternate hypothesis (H )
Phone use and sleep Phone use before sleep does not correlate with the amount of sleep a person gets. Increasing phone use before sleep leads to a decrease in sleep.
Temperature and soil respiration Air temperature does not correlate with soil respiration. Increased air temperature leads to increased soil respiration.

The next steps will describe how to design a controlled experiment . In a controlled experiment, you must be able to:

  • Systematically and precisely manipulate the independent variable(s).
  • Precisely measure the dependent variable(s).
  • Control any potential confounding variables.

If your study system doesn’t match these criteria, there are other types of research you can use to answer your research question.

How you manipulate the independent variable can affect the experiment’s external validity – that is, the extent to which the results can be generalised and applied to the broader world.

First, you may need to decide how widely to vary your independent variable.

  • just slightly above the natural range for your study region.
  • over a wider range of temperatures to mimic future warming.
  • over an extreme range that is beyond any possible natural variation.

Second, you may need to choose how finely to vary your independent variable. Sometimes this choice is made for you by your experimental system, but often you will need to decide, and this will affect how much you can infer from your results.

  • a categorical variable : either as binary (yes/no) or as levels of a factor (no phone use, low phone use, high phone use).
  • a continuous variable (minutes of phone use measured every night).

How you apply your experimental treatments to your test subjects is crucial for obtaining valid and reliable results.

First, you need to consider the study size : how many individuals will be included in the experiment? In general, the more subjects you include, the greater your experiment’s statistical power , which determines how much confidence you can have in your results.

Then you need to randomly assign your subjects to treatment groups . Each group receives a different level of the treatment (e.g. no phone use, low phone use, high phone use).

You should also include a control group , which receives no treatment. The control group tells us what would have happened to your test subjects without any experimental intervention.

When assigning your subjects to groups, there are two main choices you need to make:

  • A completely randomised design vs a randomised block design .
  • A between-subjects design vs a within-subjects design .

Randomisation

An experiment can be completely randomised or randomised within blocks (aka strata):

  • In a completely randomised design , every subject is assigned to a treatment group at random.
  • In a randomised block design (aka stratified random design), subjects are first grouped according to a characteristic they share, and then randomly assigned to treatments within those groups.
Completely randomised design Randomised block design
Phone use and sleep Subjects are all randomly assigned a level of phone use using a random number generator. Subjects are first grouped by age, and then phone use treatments are randomly assigned within these groups.
Temperature and soil respiration Warming treatments are assigned to soil plots at random by using a number generator to generate map coordinates within the study area. Soils are first grouped by average rainfall, and then treatment plots are randomly assigned within these groups.

Sometimes randomisation isn’t practical or ethical , so researchers create partially-random or even non-random designs. An experimental design where treatments aren’t randomly assigned is called a quasi-experimental design .

Between-subjects vs within-subjects

In a between-subjects design (also known as an independent measures design or classic ANOVA design), individuals receive only one of the possible levels of an experimental treatment.

In medical or social research, you might also use matched pairs within your between-subjects design to make sure that each treatment group contains the same variety of test subjects in the same proportions.

In a within-subjects design (also known as a repeated measures design), every individual receives each of the experimental treatments consecutively, and their responses to each treatment are measured.

Within-subjects or repeated measures can also refer to an experimental design where an effect emerges over time, and individual responses are measured over time in order to measure this effect as it emerges.

Counterbalancing (randomising or reversing the order of treatments among subjects) is often used in within-subjects designs to ensure that the order of treatment application doesn’t influence the results of the experiment.

Between-subjects (independent measures) design Within-subjects (repeated measures) design
Phone use and sleep Subjects are randomly assigned a level of phone use (none, low, or high) and follow that level of phone use throughout the experiment. Subjects are assigned consecutively to zero, low, and high levels of phone use throughout the experiment, and the order in which they follow these treatments is randomised.
Temperature and soil respiration Warming treatments are assigned to soil plots at random and the soils are kept at this temperature throughout the experiment. Every plot receives each warming treatment (1, 3, 5, 8, and 10C above ambient temperatures) consecutively over the course of the experiment, and the order in which they receive these treatments is randomised.

Finally, you need to decide how you’ll collect data on your dependent variable outcomes. You should aim for reliable and valid measurements that minimise bias or error.

Some variables, like temperature, can be objectively measured with scientific instruments. Others may need to be operationalised to turn them into measurable observations.

  • Ask participants to record what time they go to sleep and get up each day.
  • Ask participants to wear a sleep tracker.

How precisely you measure your dependent variable also affects the kinds of statistical analysis you can use on your data.

Experiments are always context-dependent, and a good experimental design will take into account all of the unique considerations of your study system to produce information that is both valid and relevant to your research question.

Experimental designs are a set of procedures that you plan in order to examine the relationship between variables that interest you.

To design a successful experiment, first identify:

  • A testable hypothesis
  • One or more independent variables that you will manipulate
  • One or more dependent variables that you will measure

When designing the experiment, first decide:

  • How your variable(s) will be manipulated
  • How you will control for any potential confounding or lurking variables
  • How many subjects you will include
  • How you will assign treatments to your subjects

The key difference between observational studies and experiments is that, done correctly, an observational study will never influence the responses or behaviours of participants. Experimental designs will have a treatment condition applied to at least a portion of participants.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word ‘between’ means that you’re comparing different conditions between groups, while the word ‘within’ means you’re comparing different conditions within the same group.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bevans, R. (2022, December 05). A Quick Guide to Experimental Design | 5 Steps & Examples. Scribbr. Retrieved 18 June 2024, from https://www.scribbr.co.uk/research-methods/guide-to-experimental-design/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

American Psychological Association Logo

Sample articles

Journal of experimental psychology: general ®.

  • The Role of Political Devotion in Sharing Partisan Misinformation and Resistance to Fact-Checking (PDF, 3.3MB) June 2023 by Clara Pretus, Camila Servin-Barthet, Elizabeth A. Harris, William J. Brady, Oscar Vilarroya, and Jay J. Van Bavel
  • The Secret to Happiness: Feeling Good or Feeling Right? (PDF, 171KB) October 2017 by Maya Tamir, Shalom H. Schwartz, Shige Oishi, and Min Y. Kim
  • Overdistribution Illusions: Categorical Judgments Produce Them, Confidence Ratings Reduce Them (PDF, 182KB) January 2017 by C. J. Brainerd, K. Nakamura, V. F. Reyna, and R. E. Holliday
  • Motivated Recall in the Service of the Economic System: The Case of Anthropogenic Climate Change (PDF, 197KB) June 2016 by Erin P. Hennes, Benjamin C. Ruisch, Irina Feygina, Christopher A. Monteiro, and John T. Jost
  • Handwriting Generates Variable Visual Output to Facilitate Symbol Learning (PDF, 234KB) March 2016 by Julia X. Li and Karin H. James
  • Perceptual Dehumanization of Faces Is Activated by Norm Violations and Facilitates Norm Enforcement (PDF, 262KB) February 2016 by Katrina M. Fincher and Philip E. Tetlock
  • Moving While Black: Intergroup Attitudes Influence Judgments of Speed (PDF, 71KB) February 2016 by Andreana C. Kenrick, Stacey Sinclair, Jennifer Richeson, Sara C. Verosky, and Janetta Lun
  • Searching for Explanations: How the Internet Inflates Estimates of Internal Knowledge (PDF, 138KB) June 2015 by Matthew Fisher, Mariel K. Goddu, and Frank C. Keil
  • Finding a Needle in a Haystack: Toward a Psychologically Informed Method for Aviation Security Screening (PDF, 129KB) February 2015 by Thomas C. Ormerod and Coral J. Dando
  • The Myth of Harmless Wrongs in Moral Cognition: Automatic Dyadic Completion From Sin to Suffering (PDF, 197KB) August 2014 by Kurt Gray, Chelsea Schein, and Adrian F. Ward
  • Get Excited: Reappraising Pre-Performance Anxiety as Excitement (PDF, 217KB) June 2014 by Alison Wood Brooks
  • Set-Fit Effects in Choice (PDF, 93KB) April 2014 by Ellen R. K. Evers, Yoel Inbar, and Marcel Zeelenberg
  • I Want to Help You, But I Am Not Sure Why: Gaze-Cuing Induces Altruistic Giving (PDF, 190KB) April 2014 by Robert D. Rogers, Andrew P. Bayliss, Anna Szepietowska, Laura Dale, Lydia Reeder, Gloria Pizzamiglio, Karolina Czarna, Judi Wakeley, Phillip J. Cowen, Judi Wakeley and Phillip J. Cowen
  • Breaking the Cycle of Mistrust: Wise Interventions to Provide Critical Feedback Across the Racial Divide (PDF, 366KB) April 2014 by David Scott Yeager, Valerie Purdie-Vaughns, Julio Garcia, Nancy Apfel, Patti Brzustoski, Allison Master, William T. Hessert, Matthew E. Williams, and Geoffrey L. Cohen
  • Consolidation Power of Extrinsic Rewards: Reward Cues Enhance Long-Term Memory for Irrelevant Past Events (PDF, 87KB) February 2014 by Kou Murayama and Shinji Kitagami
  • The Invisible Man: Interpersonal Goals Moderate Inattentional Blindness to African Americans (PDF, 83KB) February 2014 by Jazmin L. Brown-Iannuzzi, Kelly M. Hoffman, B. Keith Payne, and Sophie Trawalter
  • Learning to Contend With Accents in Infancy: Benefits of Brief Speaker Exposure (PDF, 145KB) February 2014 by Marieke van Heugten and Elizabeth K. Johnson
  • On Feeding Those Hungry for Praise: Person Praise Backfires in Children With Low Self-Esteem (PDF, 102KB) February 2014 by Eddie Brummelman, Sander Thomaes, Geertjan Overbeek, Bram Orobio de Castro, Marcel A. van den Hout, and Brad J. Bushman
  • Paying It Forward: Generalized Reciprocity and the Limits of Generosity (PDF, 256KB) February 2014 by Kurt Gray, Adrian F. Ward, and Michael I. Norton
  • Shape Beyond Recognition: Form-Derived Directionality and Its Effects on Visual Attention and Motion Perception (PDF, 336KB) February 2014 by Heida M. Sigurdardottir, Suzanne M. Michalak, and David L. Sheinberg
  • Consonance and Pitch (PDF, 380KB) November 2013 by Neil McLachlan, David Marco, Maria Light, and Sarah Wilson
  • Forgetting Our Personal Past: Socially Shared Retrieval-Induced Forgetting of Autobiographical Memories (PDF, 126KB) November 2013 by Charles B. Stone, Amanda J. Barnier, John Sutton, and William Hirst
  • Preventing Motor Skill Failure Through Hemisphere-Specific Priming: Cases From Choking Under Pressure (PDF, 129KB) August 2013 by Jürgen Beckmann, Peter Gröpel, and Felix Ehrlenspiel
  • How Decisions Emerge: Action Dynamics in Intertemporal Decision Making (PDF, 206KB) February 2013 by Maja Dshemuchadse, Stefan Scherbaum, and Thomas Goschke
  • Improving Working Memory Efficiency by Reframing Metacognitive Interpretation of Task Difficulty (PDF, 110KB) November 2012 by Frédérique Autin and Jean-Claude Croizet
  • Divine Intuition: Cognitive Style Influences Belief in God (PDF, 102KB) August 2012 by Amitai Shenhav, David G. Rand, and Joshua D. Greene
  • Internal Representations Reveal Cultural Diversity in Expectations of Facial Expressions of Emotion (PDF, 320KB) February 2012 by Rachael E. Jack, Roberto Caldara, and Philippe G. Schyns
  • The Pain Was Greater If It Will Happen Again: The Effect of Anticipated Continuation on Retrospective Discomfort (PDF, 148KB) February 2011 by Jeff Galak and Tom Meyvis
  • The Nature of Gestures' Beneficial Role in Spatial Problem Solving (PDF, 181KB) February 2011 by Mingyuan Chu and Sotaro Kita

More about this journal

  • Journal of Experimental Psychology: General
  • Pricing and subscription info

Contact Journals

Experimental Design: Types, Examples & Methods

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Experimental design refers to how participants are allocated to different groups in an experiment. Types of design include repeated measures, independent groups, and matched pairs designs.

Probably the most common way to design an experiment in psychology is to divide the participants into two groups, the experimental group and the control group, and then introduce a change to the experimental group, not the control group.

The researcher must decide how he/she will allocate their sample to the different experimental groups.  For example, if there are 10 participants, will all 10 participants participate in both groups (e.g., repeated measures), or will the participants be split in half and take part in only one group each?

Three types of experimental designs are commonly used:

1. Independent Measures

Independent measures design, also known as between-groups , is an experimental design where different participants are used in each condition of the independent variable.  This means that each condition of the experiment includes a different group of participants.

This should be done by random allocation, ensuring that each participant has an equal chance of being assigned to one group.

Independent measures involve using two separate groups of participants, one in each condition. For example:

Independent Measures Design 2

  • Con : More people are needed than with the repeated measures design (i.e., more time-consuming).
  • Pro : Avoids order effects (such as practice or fatigue) as people participate in one condition only.  If a person is involved in several conditions, they may become bored, tired, and fed up by the time they come to the second condition or become wise to the requirements of the experiment!
  • Con : Differences between participants in the groups may affect results, for example, variations in age, gender, or social background.  These differences are known as participant variables (i.e., a type of extraneous variable ).
  • Control : After the participants have been recruited, they should be randomly assigned to their groups. This should ensure the groups are similar, on average (reducing participant variables).

2. Repeated Measures Design

Repeated Measures design is an experimental design where the same participants participate in each independent variable condition.  This means that each experiment condition includes the same group of participants.

Repeated Measures design is also known as within-groups or within-subjects design .

  • Pro : As the same participants are used in each condition, participant variables (i.e., individual differences) are reduced.
  • Con : There may be order effects. Order effects refer to the order of the conditions affecting the participants’ behavior.  Performance in the second condition may be better because the participants know what to do (i.e., practice effect).  Or their performance might be worse in the second condition because they are tired (i.e., fatigue effect). This limitation can be controlled using counterbalancing.
  • Pro : Fewer people are needed as they participate in all conditions (i.e., saves time).
  • Control : To combat order effects, the researcher counter-balances the order of the conditions for the participants.  Alternating the order in which participants perform in different conditions of an experiment.

Counterbalancing

Suppose we used a repeated measures design in which all of the participants first learned words in “loud noise” and then learned them in “no noise.”

We expect the participants to learn better in “no noise” because of order effects, such as practice. However, a researcher can control for order effects using counterbalancing.

The sample would be split into two groups: experimental (A) and control (B).  For example, group 1 does ‘A’ then ‘B,’ and group 2 does ‘B’ then ‘A.’ This is to eliminate order effects.

Although order effects occur for each participant, they balance each other out in the results because they occur equally in both groups.

counter balancing

3. Matched Pairs Design

A matched pairs design is an experimental design where pairs of participants are matched in terms of key variables, such as age or socioeconomic status. One member of each pair is then placed into the experimental group and the other member into the control group .

One member of each matched pair must be randomly assigned to the experimental group and the other to the control group.

matched pairs design

  • Con : If one participant drops out, you lose 2 PPs’ data.
  • Pro : Reduces participant variables because the researcher has tried to pair up the participants so that each condition has people with similar abilities and characteristics.
  • Con : Very time-consuming trying to find closely matched pairs.
  • Pro : It avoids order effects, so counterbalancing is not necessary.
  • Con : Impossible to match people exactly unless they are identical twins!
  • Control : Members of each pair should be randomly assigned to conditions. However, this does not solve all these problems.

Experimental design refers to how participants are allocated to an experiment’s different conditions (or IV levels). There are three types:

1. Independent measures / between-groups : Different participants are used in each condition of the independent variable.

2. Repeated measures /within groups : The same participants take part in each condition of the independent variable.

3. Matched pairs : Each condition uses different participants, but they are matched in terms of important characteristics, e.g., gender, age, intelligence, etc.

Learning Check

Read about each of the experiments below. For each experiment, identify (1) which experimental design was used; and (2) why the researcher might have used that design.

1 . To compare the effectiveness of two different types of therapy for depression, depressed patients were assigned to receive either cognitive therapy or behavior therapy for a 12-week period.

The researchers attempted to ensure that the patients in the two groups had similar severity of depressed symptoms by administering a standardized test of depression to each participant, then pairing them according to the severity of their symptoms.

2 . To assess the difference in reading comprehension between 7 and 9-year-olds, a researcher recruited each group from a local primary school. They were given the same passage of text to read and then asked a series of questions to assess their understanding.

3 . To assess the effectiveness of two different ways of teaching reading, a group of 5-year-olds was recruited from a primary school. Their level of reading ability was assessed, and then they were taught using scheme one for 20 weeks.

At the end of this period, their reading was reassessed, and a reading improvement score was calculated. They were then taught using scheme two for a further 20 weeks, and another reading improvement score for this period was calculated. The reading improvement scores for each child were then compared.

4 . To assess the effect of the organization on recall, a researcher randomly assigned student volunteers to two conditions.

Condition one attempted to recall a list of words that were organized into meaningful categories; condition two attempted to recall the same words, randomly grouped on the page.

Experiment Terminology

Ecological validity.

The degree to which an investigation represents real-life experiences.

Experimenter effects

These are the ways that the experimenter can accidentally influence the participant through their appearance or behavior.

Demand characteristics

The clues in an experiment lead the participants to think they know what the researcher is looking for (e.g., the experimenter’s body language).

Independent variable (IV)

The variable the experimenter manipulates (i.e., changes) is assumed to have a direct effect on the dependent variable.

Dependent variable (DV)

Variable the experimenter measures. This is the outcome (i.e., the result) of a study.

Extraneous variables (EV)

All variables which are not independent variables but could affect the results (DV) of the experiment. Extraneous variables should be controlled where possible.

Confounding variables

Variable(s) that have affected the results (DV), apart from the IV. A confounding variable could be an extraneous variable that has not been controlled.

Random Allocation

Randomly allocating participants to independent variable conditions means that all participants should have an equal chance of taking part in each condition.

The principle of random allocation is to avoid bias in how the experiment is carried out and limit the effects of participant variables.

Order effects

Changes in participants’ performance due to their repeating the same or similar test more than once. Examples of order effects include:

(i) practice effect: an improvement in performance on a task due to repetition, for example, because of familiarity with the task;

(ii) fatigue effect: a decrease in performance of a task due to repetition, for example, because of boredom or tiredness.

Print Friendly, PDF & Email

Related Articles

Discourse Analysis

Research Methodology

Discourse Analysis

Phenomenology In Qualitative Research

Phenomenology In Qualitative Research

Ethnography In Qualitative Research

Ethnography In Qualitative Research

Narrative Analysis In Qualitative Research

Narrative Analysis In Qualitative Research

Thematic Analysis: A Step by Step Guide

Thematic Analysis: A Step by Step Guide

Metasynthesis Of Qualitative Research

Metasynthesis Of Qualitative Research

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Types of Research Designs Compared | Guide & Examples

Types of Research Designs Compared | Guide & Examples

Published on June 20, 2019 by Shona McCombes . Revised on June 22, 2023.

When you start planning a research project, developing research questions and creating a  research design , you will have to make various decisions about the type of research you want to do.

There are many ways to categorize different types of research. The words you use to describe your research depend on your discipline and field. In general, though, the form your research design takes will be shaped by:

  • The type of knowledge you aim to produce
  • The type of data you will collect and analyze
  • The sampling methods , timescale and location of the research

This article takes a look at some common distinctions made between different types of research and outlines the key differences between them.

Table of contents

Types of research aims, types of research data, types of sampling, timescale, and location, other interesting articles.

The first thing to consider is what kind of knowledge your research aims to contribute.

Type of research What’s the difference? What to consider
Basic vs. applied Basic research aims to , while applied research aims to . Do you want to expand scientific understanding or solve a practical problem?
vs. Exploratory research aims to , while explanatory research aims to . How much is already known about your research problem? Are you conducting initial research on a newly-identified issue, or seeking precise conclusions about an established issue?
aims to , while aims to . Is there already some theory on your research problem that you can use to develop , or do you want to propose new theories based on your findings?

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

example of an experimental research paper

The next thing to consider is what type of data you will collect. Each kind of data is associated with a range of specific research methods and procedures.

Type of research What’s the difference? What to consider
Primary research vs secondary research Primary data is (e.g., through or ), while secondary data (e.g., in government or scientific publications). How much data is already available on your topic? Do you want to collect original data or analyze existing data (e.g., through a )?
, while . Is your research more concerned with measuring something or interpreting something? You can also create a research design that has elements of both.
vs Descriptive research gathers data , while experimental research . Do you want to identify characteristics, patterns and or test causal relationships between ?

Finally, you have to consider three closely related questions: how will you select the subjects or participants of the research? When and how often will you collect data from your subjects? And where will the research take place?

Keep in mind that the methods that you choose bring with them different risk factors and types of research bias . Biases aren’t completely avoidable, but can heavily impact the validity and reliability of your findings if left unchecked.

Type of research What’s the difference? What to consider
allows you to , while allows you to draw conclusions . Do you want to produce  knowledge that applies to many contexts or detailed knowledge about a specific context (e.g. in a )?
vs Cross-sectional studies , while longitudinal studies . Is your research question focused on understanding the current situation or tracking changes over time?
Field research vs laboratory research Field research takes place in , while laboratory research takes place in . Do you want to find out how something occurs in the real world or draw firm conclusions about cause and effect? Laboratory experiments have higher but lower .
Fixed design vs flexible design In a fixed research design the subjects, timescale and location are begins, while in a flexible design these aspects may . Do you want to test hypotheses and establish generalizable facts, or explore concepts and develop understanding? For measuring, testing and making generalizations, a fixed research design has higher .

Choosing between all these different research types is part of the process of creating your research design , which determines exactly how your research will be conducted. But the type of research is only the first step: next, you have to make more concrete decisions about your research methods and the details of the study.

Read more about creating a research design

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, June 22). Types of Research Designs Compared | Guide & Examples. Scribbr. Retrieved June 18, 2024, from https://www.scribbr.com/methodology/types-of-research/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, what is a research design | types, guide & examples, qualitative vs. quantitative research | differences, examples & methods, what is a research methodology | steps & tips, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Athl Train
  • v.45(1); Jan-Feb 2010

Study/Experimental/Research Design: Much More Than Statistics

Kenneth l. knight.

Brigham Young University, Provo, UT

The purpose of study, experimental, or research design in scientific manuscripts has changed significantly over the years. It has evolved from an explanation of the design of the experiment (ie, data gathering or acquisition) to an explanation of the statistical analysis. This practice makes “Methods” sections hard to read and understand.

To clarify the difference between study design and statistical analysis, to show the advantages of a properly written study design on article comprehension, and to encourage authors to correctly describe study designs.

Description:

The role of study design is explored from the introduction of the concept by Fisher through modern-day scientists and the AMA Manual of Style . At one time, when experiments were simpler, the study design and statistical design were identical or very similar. With the complex research that is common today, which often includes manipulating variables to create new variables and the multiple (and different) analyses of a single data set, data collection is very different than statistical design. Thus, both a study design and a statistical design are necessary.

Advantages:

Scientific manuscripts will be much easier to read and comprehend. A proper experimental design serves as a road map to the study methods, helping readers to understand more clearly how the data were obtained and, therefore, assisting them in properly analyzing the results.

Study, experimental, or research design is the backbone of good research. It directs the experiment by orchestrating data collection, defines the statistical analysis of the resultant data, and guides the interpretation of the results. When properly described in the written report of the experiment, it serves as a road map to readers, 1 helping them negotiate the “Methods” section, and, thus, it improves the clarity of communication between authors and readers.

A growing trend is to equate study design with only the statistical analysis of the data. The design statement typically is placed at the end of the “Methods” section as a subsection called “Experimental Design” or as part of a subsection called “Data Analysis.” This placement, however, equates experimental design and statistical analysis, minimizing the effect of experimental design on the planning and reporting of an experiment. This linkage is inappropriate, because some of the elements of the study design that should be described at the beginning of the “Methods” section are instead placed in the “Statistical Analysis” section or, worse, are absent from the manuscript entirely.

Have you ever interrupted your reading of the “Methods” to sketch out the variables in the margins of the paper as you attempt to understand how they all fit together? Or have you jumped back and forth from the early paragraphs of the “Methods” section to the “Statistics” section to try to understand which variables were collected and when? These efforts would be unnecessary if a road map at the beginning of the “Methods” section outlined how the independent variables were related, which dependent variables were measured, and when they were measured. When they were measured is especially important if the variables used in the statistical analysis were a subset of the measured variables or were computed from measured variables (such as change scores).

The purpose of this Communications article is to clarify the purpose and placement of study design elements in an experimental manuscript. Adopting these ideas may improve your science and surely will enhance the communication of that science. These ideas will make experimental manuscripts easier to read and understand and, therefore, will allow them to become part of readers' clinical decision making.

WHAT IS A STUDY (OR EXPERIMENTAL OR RESEARCH) DESIGN?

The terms study design, experimental design, and research design are often thought to be synonymous and are sometimes used interchangeably in a single paper. Avoid doing so. Use the term that is preferred by the style manual of the journal for which you are writing. Study design is the preferred term in the AMA Manual of Style , 2 so I will use it here.

A study design is the architecture of an experimental study 3 and a description of how the study was conducted, 4 including all elements of how the data were obtained. 5 The study design should be the first subsection of the “Methods” section in an experimental manuscript (see the Table ). “Statistical Design” or, preferably, “Statistical Analysis” or “Data Analysis” should be the last subsection of the “Methods” section.

Table. Elements of a “Methods” Section

An external file that holds a picture, illustration, etc.
Object name is i1062-6050-45-1-98-t01.jpg

The “Study Design” subsection describes how the variables and participants interacted. It begins with a general statement of how the study was conducted (eg, crossover trials, parallel, or observational study). 2 The second element, which usually begins with the second sentence, details the number of independent variables or factors, the levels of each variable, and their names. A shorthand way of doing so is with a statement such as “A 2 × 4 × 8 factorial guided data collection.” This tells us that there were 3 independent variables (factors), with 2 levels of the first factor, 4 levels of the second factor, and 8 levels of the third factor. Following is a sentence that names the levels of each factor: for example, “The independent variables were sex (male or female), training program (eg, walking, running, weight lifting, or plyometrics), and time (2, 4, 6, 8, 10, 15, 20, or 30 weeks).” Such an approach clearly outlines for readers how the various procedures fit into the overall structure and, therefore, enhances their understanding of how the data were collected. Thus, the design statement is a road map of the methods.

The dependent (or measurement or outcome) variables are then named. Details of how they were measured are not given at this point in the manuscript but are explained later in the “Instruments” and “Procedures” subsections.

Next is a paragraph detailing who the participants were and how they were selected, placed into groups, and assigned to a particular treatment order, if the experiment was a repeated-measures design. And although not a part of the design per se, a statement about obtaining written informed consent from participants and institutional review board approval is usually included in this subsection.

The nuts and bolts of the “Methods” section follow, including such things as equipment, materials, protocols, etc. These are beyond the scope of this commentary, however, and so will not be discussed.

The last part of the “Methods” section and last part of the “Study Design” section is the “Data Analysis” subsection. It begins with an explanation of any data manipulation, such as how data were combined or how new variables (eg, ratios or differences between collected variables) were calculated. Next, readers are told of the statistical measures used to analyze the data, such as a mixed 2 × 4 × 8 analysis of variance (ANOVA) with 2 between-groups factors (sex and training program) and 1 within-groups factor (time of measurement). Researchers should state and reference the statistical package and procedure(s) within the package used to compute the statistics. (Various statistical packages perform analyses slightly differently, so it is important to know the package and specific procedure used.) This detail allows readers to judge the appropriateness of the statistical measures and the conclusions drawn from the data.

STATISTICAL DESIGN VERSUS STATISTICAL ANALYSIS

Avoid using the term statistical design . Statistical methods are only part of the overall design. The term gives too much emphasis to the statistics, which are important, but only one of many tools used in interpreting data and only part of the study design:

The most important issues in biostatistics are not expressed with statistical procedures. The issues are inherently scientific, rather than purely statistical, and relate to the architectural design of the research, not the numbers with which the data are cited and interpreted. 6

Stated another way, “The justification for the analysis lies not in the data collected but in the manner in which the data were collected.” 3 “Without the solid foundation of a good design, the edifice of statistical analysis is unsafe.” 7 (pp4–5)

The intertwining of study design and statistical analysis may have been caused (unintentionally) by R.A. Fisher, “… a genius who almost single-handedly created the foundations for modern statistical science.” 8 Most research did not involve statistics until Fisher invented the concepts and procedures of ANOVA (in 1921) 9 , 10 and experimental design (in 1935). 11 His books became standard references for scientists in many disciplines. As a result, many ANOVA books were titled Experimental Design (see, for example, Edwards 12 ), and ANOVA courses taught in psychology and education departments included the words experimental design in their course titles.

Before the widespread use of computers to analyze data, designs were much simpler, and often there was little difference between study design and statistical analysis. So combining the 2 elements did not cause serious problems. This is no longer true, however, for 3 reasons: (1) Research studies are becoming more complex, with multiple independent and dependent variables. The procedures sections of these complex studies can be difficult to understand if your only reference point is the statistical analysis and design. (2) Dependent variables are frequently measured at different times. (3) How the data were collected is often not directly correlated with the statistical design.

For example, assume the goal is to determine the strength gain in novice and experienced athletes as a result of 3 strength training programs. Rate of change in strength is not a measurable variable; rather, it is calculated from strength measurements taken at various time intervals during the training. So the study design would be a 2 × 2 × 3 factorial with independent variables of time (pretest or posttest), experience (novice or advanced), and training (isokinetic, isotonic, or isometric) and a dependent variable of strength. The statistical design , however, would be a 2 × 3 factorial with independent variables of experience (novice or advanced) and training (isokinetic, isotonic, or isometric) and a dependent variable of strength gain. Note that data were collected according to a 3-factor design but were analyzed according to a 2-factor design and that the dependent variables were different. So a single design statement, usually a statistical design statement, would not communicate which data were collected or how. Readers would be left to figure out on their own how the data were collected.

MULTIVARIATE RESEARCH AND THE NEED FOR STUDY DESIGNS

With the advent of electronic data gathering and computerized data handling and analysis, research projects have increased in complexity. Many projects involve multiple dependent variables measured at different times, and, therefore, multiple design statements may be needed for both data collection and statistical analysis. Consider, for example, a study of the effects of heat and cold on neural inhibition. The variables of H max and M max are measured 3 times each: before, immediately after, and 30 minutes after a 20-minute treatment with heat or cold. Muscle temperature might be measured each minute before, during, and after the treatment. Although the minute-by-minute data are important for graphing temperature fluctuations during the procedure, only 3 temperatures (time 0, time 20, and time 50) are used for statistical analysis. A single dependent variable H max :M max ratio is computed to illustrate neural inhibition. Again, a single statistical design statement would tell little about how the data were obtained. And in this example, separate design statements would be needed for temperature measurement and H max :M max measurements.

As stated earlier, drawing conclusions from the data depends more on how the data were measured than on how they were analyzed. 3 , 6 , 7 , 13 So a single study design statement (or multiple such statements) at the beginning of the “Methods” section acts as a road map to the study and, thus, increases scientists' and readers' comprehension of how the experiment was conducted (ie, how the data were collected). Appropriate study design statements also increase the accuracy of conclusions drawn from the study.

CONCLUSIONS

The goal of scientific writing, or any writing, for that matter, is to communicate information. Including 2 design statements or subsections in scientific papers—one to explain how the data were collected and another to explain how they were statistically analyzed—will improve the clarity of communication and bring praise from readers. To summarize:

  • Purge from your thoughts and vocabulary the idea that experimental design and statistical design are synonymous.
  • Study or experimental design plays a much broader role than simply defining and directing the statistical analysis of an experiment.
  • A properly written study design serves as a road map to the “Methods” section of an experiment and, therefore, improves communication with the reader.
  • Study design should include a description of the type of design used, each factor (and each level) involved in the experiment, and the time at which each measurement was made.
  • Clarify when the variables involved in data collection and data analysis are different, such as when data analysis involves only a subset of a collected variable or a resultant variable from the mathematical manipulation of 2 or more collected variables.

Acknowledgments

Thanks to Thomas A. Cappaert, PhD, ATC, CSCS, CSE, for suggesting the link between R.A. Fisher and the melding of the concepts of research design and statistics.

Enago Academy

Experimental Research Design — 6 mistakes you should never make!

' src=

Since school days’ students perform scientific experiments that provide results that define and prove the laws and theorems in science. These experiments are laid on a strong foundation of experimental research designs.

An experimental research design helps researchers execute their research objectives with more clarity and transparency.

In this article, we will not only discuss the key aspects of experimental research designs but also the issues to avoid and problems to resolve while designing your research study.

Table of Contents

What Is Experimental Research Design?

Experimental research design is a framework of protocols and procedures created to conduct experimental research with a scientific approach using two sets of variables. Herein, the first set of variables acts as a constant, used to measure the differences of the second set. The best example of experimental research methods is quantitative research .

Experimental research helps a researcher gather the necessary data for making better research decisions and determining the facts of a research study.

When Can a Researcher Conduct Experimental Research?

A researcher can conduct experimental research in the following situations —

  • When time is an important factor in establishing a relationship between the cause and effect.
  • When there is an invariable or never-changing behavior between the cause and effect.
  • Finally, when the researcher wishes to understand the importance of the cause and effect.

Importance of Experimental Research Design

To publish significant results, choosing a quality research design forms the foundation to build the research study. Moreover, effective research design helps establish quality decision-making procedures, structures the research to lead to easier data analysis, and addresses the main research question. Therefore, it is essential to cater undivided attention and time to create an experimental research design before beginning the practical experiment.

By creating a research design, a researcher is also giving oneself time to organize the research, set up relevant boundaries for the study, and increase the reliability of the results. Through all these efforts, one could also avoid inconclusive results. If any part of the research design is flawed, it will reflect on the quality of the results derived.

Types of Experimental Research Designs

Based on the methods used to collect data in experimental studies, the experimental research designs are of three primary types:

1. Pre-experimental Research Design

A research study could conduct pre-experimental research design when a group or many groups are under observation after implementing factors of cause and effect of the research. The pre-experimental design will help researchers understand whether further investigation is necessary for the groups under observation.

Pre-experimental research is of three types —

  • One-shot Case Study Research Design
  • One-group Pretest-posttest Research Design
  • Static-group Comparison

2. True Experimental Research Design

A true experimental research design relies on statistical analysis to prove or disprove a researcher’s hypothesis. It is one of the most accurate forms of research because it provides specific scientific evidence. Furthermore, out of all the types of experimental designs, only a true experimental design can establish a cause-effect relationship within a group. However, in a true experiment, a researcher must satisfy these three factors —

  • There is a control group that is not subjected to changes and an experimental group that will experience the changed variables
  • A variable that can be manipulated by the researcher
  • Random distribution of the variables

This type of experimental research is commonly observed in the physical sciences.

3. Quasi-experimental Research Design

The word “Quasi” means similarity. A quasi-experimental design is similar to a true experimental design. However, the difference between the two is the assignment of the control group. In this research design, an independent variable is manipulated, but the participants of a group are not randomly assigned. This type of research design is used in field settings where random assignment is either irrelevant or not required.

The classification of the research subjects, conditions, or groups determines the type of research design to be used.

experimental research design

Advantages of Experimental Research

Experimental research allows you to test your idea in a controlled environment before taking the research to clinical trials. Moreover, it provides the best method to test your theory because of the following advantages:

  • Researchers have firm control over variables to obtain results.
  • The subject does not impact the effectiveness of experimental research. Anyone can implement it for research purposes.
  • The results are specific.
  • Post results analysis, research findings from the same dataset can be repurposed for similar research ideas.
  • Researchers can identify the cause and effect of the hypothesis and further analyze this relationship to determine in-depth ideas.
  • Experimental research makes an ideal starting point. The collected data could be used as a foundation to build new research ideas for further studies.

6 Mistakes to Avoid While Designing Your Research

There is no order to this list, and any one of these issues can seriously compromise the quality of your research. You could refer to the list as a checklist of what to avoid while designing your research.

1. Invalid Theoretical Framework

Usually, researchers miss out on checking if their hypothesis is logical to be tested. If your research design does not have basic assumptions or postulates, then it is fundamentally flawed and you need to rework on your research framework.

2. Inadequate Literature Study

Without a comprehensive research literature review , it is difficult to identify and fill the knowledge and information gaps. Furthermore, you need to clearly state how your research will contribute to the research field, either by adding value to the pertinent literature or challenging previous findings and assumptions.

3. Insufficient or Incorrect Statistical Analysis

Statistical results are one of the most trusted scientific evidence. The ultimate goal of a research experiment is to gain valid and sustainable evidence. Therefore, incorrect statistical analysis could affect the quality of any quantitative research.

4. Undefined Research Problem

This is one of the most basic aspects of research design. The research problem statement must be clear and to do that, you must set the framework for the development of research questions that address the core problems.

5. Research Limitations

Every study has some type of limitations . You should anticipate and incorporate those limitations into your conclusion, as well as the basic research design. Include a statement in your manuscript about any perceived limitations, and how you considered them while designing your experiment and drawing the conclusion.

6. Ethical Implications

The most important yet less talked about topic is the ethical issue. Your research design must include ways to minimize any risk for your participants and also address the research problem or question at hand. If you cannot manage the ethical norms along with your research study, your research objectives and validity could be questioned.

Experimental Research Design Example

In an experimental design, a researcher gathers plant samples and then randomly assigns half the samples to photosynthesize in sunlight and the other half to be kept in a dark box without sunlight, while controlling all the other variables (nutrients, water, soil, etc.)

By comparing their outcomes in biochemical tests, the researcher can confirm that the changes in the plants were due to the sunlight and not the other variables.

Experimental research is often the final form of a study conducted in the research process which is considered to provide conclusive and specific results. But it is not meant for every research. It involves a lot of resources, time, and money and is not easy to conduct, unless a foundation of research is built. Yet it is widely used in research institutes and commercial industries, for its most conclusive results in the scientific approach.

Have you worked on research designs? How was your experience creating an experimental design? What difficulties did you face? Do write to us or comment below and share your insights on experimental research designs!

Frequently Asked Questions

Randomization is important in an experimental research because it ensures unbiased results of the experiment. It also measures the cause-effect relationship on a particular group of interest.

Experimental research design lay the foundation of a research and structures the research to establish quality decision making process.

There are 3 types of experimental research designs. These are pre-experimental research design, true experimental research design, and quasi experimental research design.

The difference between an experimental and a quasi-experimental design are: 1. The assignment of the control group in quasi experimental research is non-random, unlike true experimental design, which is randomly assigned. 2. Experimental research group always has a control group; on the other hand, it may not be always present in quasi experimental research.

Experimental research establishes a cause-effect relationship by testing a theory or hypothesis using experimental groups or control variables. In contrast, descriptive research describes a study or a topic by defining the variables under it and answering the questions related to the same.

' src=

good and valuable

Very very good

Good presentation.

Rate this article Cancel Reply

Your email address will not be published.

example of an experimental research paper

Enago Academy's Most Popular Articles

What is Academic Integrity and How to Uphold it [FREE CHECKLIST]

Ensuring Academic Integrity and Transparency in Academic Research: A comprehensive checklist for researchers

Academic integrity is the foundation upon which the credibility and value of scientific findings are…

7 Step Guide for Optimizing Impactful Research Process

  • Publishing Research
  • Reporting Research

How to Optimize Your Research Process: A step-by-step guide

For researchers across disciplines, the path to uncovering novel findings and insights is often filled…

Launch of "Sony Women in Technology Award with Nature"

  • Industry News
  • Trending Now

Breaking Barriers: Sony and Nature unveil “Women in Technology Award”

Sony Group Corporation and the prestigious scientific journal Nature have collaborated to launch the inaugural…

Guide to Adhere Good Research Practice (FREE CHECKLIST)

Achieving Research Excellence: Checklist for good research practices

Academia is built on the foundation of trustworthy and high-quality research, supported by the pillars…

ResearchSummary

  • Promoting Research

Plain Language Summary — Communicating your research to bridge the academic-lay gap

Science can be complex, but does that mean it should not be accessible to the…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

Research Recommendations – Guiding policy-makers for evidence-based decision making

example of an experimental research paper

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

example of an experimental research paper

What would be most effective in reducing research misconduct?

How to Write an Experimental Research Paper

  • Conference paper
  • Cite this conference paper

example of an experimental research paper

  • M. N. Pamir M.D. 2 , 3  

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 83))

461 Accesses

1 Citations

The art and practice of academic neurosurgery are mastered by defining and learning the pertinent basic principles and skills. This article aims to present general guidelines to one of the many roles of a neurosurgeon: Writing an experimental research paper.

Every research report must use the “IMRAD formula: introduction, methods, results and discussion”. After the IMRAD is finished, abstract should be written and the title should be “created”. Your abstract should answer these questions: “Why did you start?, what did you do?, what answer did you get?, and what does it mean?”. Title of the research paper should be short enough to catch glance and memory of the reader and be long enough to give the essential information of what the paper is about.

Writing about the results of the experiment is no easier than the research itself. As surgery, writing a scientific paper is also an improvisation, but general principles should be learned and used in practice. The most effective style of learning basic skills to construct a research paper is the “trial and error” type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Unable to display preview.  Download preview PDF.

Ad Hoc Working Group for Clinical Appraisal of the Medical Literature (1987) A proposal for more informative abstracts of clinical articles. Ann Intern Med 106: 598–604.

Google Scholar  

Balch C, McKneally M, McPeek B, Mulder D, Spitzer W, Troidl H, Wechsler A (1997) Pentathlete: the many roles of academic surgeon. In: Troidl H, McKneally M, Mulder D, Wechsler A, McPeek B, Spitzer W (eds) Surgical research. New York: Springer, Berlin Heidelberg New York Tokyo.

Condon R (1986) Type III Error. Arch Surg 121: 877–878.

PubMed   CAS   Google Scholar  

Fleming A (1929) On the antimicrobial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exper Pathol 10: 226–236.

CAS   Google Scholar  

Hill A (1965) The reasons for writing. Br Med J 2: 626–627.

Article   Google Scholar  

Hugh E (1987) Structured abstracts for papers reporting clinical articles. Ann Intern Med 106: 626–627.

International Committee of Medical Journal Editors (1997) Uniform requirements for manuscripts submitted to biomedical journals. New Engl J Med 336: 309–315.

Pollock A, Evans M (1997) Writing a scientific paper. In: Troidl H, McKneally M, Mulder D, Wechsler A, McPeek B, Spitzer W (eds) Surgical research. Springer, Berlin Heidelberg New York Tokyo.

Tufte E (1983) The visual display of quantitative information. CT: Graphics, Cheshire.

Watson J, Crick F (1953) Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature 4356: 737–738.

Download references

Author information

Authors and affiliations.

Institute of Neurological Sciences, Marmara University, Istanbul, Turkey

M. N. Pamir M.D.

Norolojik Bilimler Enstitusu, Marmara University, PK 53 Maltepe, Istanbul, Turkey

You can also search for this author in PubMed   Google Scholar

Editor information

Editors and affiliations.

Ankara, Turkey

Y. Kanpolat

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag/Wien

About this paper

Cite this paper.

Pamir, M.N. (2002). How to Write an Experimental Research Paper. In: Kanpolat, Y. (eds) Research and Publishing in Neurosurgery. Acta Neurochirurgica Supplements, vol 83. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6743-4_18

Download citation

DOI : https://doi.org/10.1007/978-3-7091-6743-4_18

Publisher Name : Springer, Vienna

Print ISBN : 978-3-7091-7399-2

Online ISBN : 978-3-7091-6743-4

eBook Packages : Springer Book Archive

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Banner

Writing Center: Experimental Research Papers

  • How to Set Up an Appointment Online
  • Documentation Styles
  • Parts of Speech
  • Types of Clauses
  • Punctuation
  • Spelling & Mechanics
  • Usage & Styles
  • Resources for ESL Students
  • How to Set up an APA Paper
  • How to Set up an MLA Paper
  • Adapt to Academic Learning
  • Audience Awareness
  • Learn Touch Typing
  • Getting Started
  • Thesis Statement
  • The First Draft
  • Proofreading
  • Writing Introductions
  • Writing Conclusions
  • Chicago / Turabian Style
  • CSE / CBE Style
  • Avoiding Plagiarism
  • Cross-Cultural Understanding
  • Writing Resources
  • Research Paper - General Guidelines
  • Annotated Bibliographies
  • History Papers
  • Science Papers
  • Experimental Research Papers
  • Exegetical Papers
  • FAQs About Creative Writing
  • Tips For Creative Writing
  • Exercises To Develop Creative Writing Skills
  • Checklist For Creative Writing
  • Additional Resources For Creative Writing
  • FAQs About Creating PowerPoints
  • Tips For Creating PowerPoints
  • Exercises to Improve PowerPoint Skills
  • Checklist For PowerPoints
  • Structure For GRE Essay
  • Additional Resources For PowerPoints
  • Additional Resources For GRE Essay Writing
  • FAQs About Multimodal Assignments
  • Tips For Creating Multimodal Assignments
  • Checklist For Multimodal Assignments
  • Additional Resources For Multimodal Assignments
  • GRE Essay Writing FAQ
  • Tips for GRE Essay Writing
  • Sample GRE Essay Prompts
  • Checklist For GRE Essays
  • Cover Letter
  • Personal Statements
  • Resources for Tutors
  • Chapter 2: Theoretical Perspectives on Learning a Second Language
  • Chapter 4: Reading an ESL Writer's Text
  • Chapter 5: Avoiding Appropriation
  • Chapter 6: 'Earth Aches by Midnight': Helping ESL Writers Clarify Their Intended Meaning
  • Chapter 7: Looking at the Whole Text
  • Chapter 8: Meeting in the Middle: Bridging the Construction of Meaning with Generation 1.5 Learners
  • Chapter 9: A(n)/The/Ø Article About Articles
  • Chapter 10: Editing Line by Line
  • Chapter 14: Writing Activities for ESL Writers
  • Resources for Faculty
  • Writing Center Newsletter
  • Writing Center Survey

FAQs About Experimental Research Papers (APA)

What is a research paper? 

A researcher uses a research paper to explain how they conducted a research study to answer a question or test a hypothesis. They explain why they conducted the study, the research question or hypothesis they tested, how they conducted the study, the results of their study, and the implications of these results. 

What is the purpose of an experimental research paper? 

A research paper is intended to inform others about advancement in a particular field of study. The researcher who wrote the paper identified a gap in the research in a field of study and used their research to help fill this gap. The researcher uses their paper to inform others about the knowledge that the results of their study contribute. 

What sections are included in an experimental research paper?

A typical research paper contains a Title Page, Abstract, Introduction, Methods, Results, Discussion, and References section. Some also contain a Table and Figures section and Appendix section. 

What citation style is used for experimental research papers? 

APA (American Psychological Association) style is most commonly used for research papers. 

Structure Of Experimental Research Papers (APA)

  • Answers the question of “What is this paper about and who wrote it?”
  • Located on the first page of the paper 
  • The author’s note acknowledges any support that the authors received from others
  • A student paper also includes the course number and name, instructor’s name, and assignment due date
  • Contains a title that summarizes the purpose and content of the research study and engages the audience 
  • No longer than 250 words
  • Summarizes important background information, the research questions and/or hypothesis, methods, key findings, and implications of the findings
  • Explains what the topic of the research is and why the topic is worth studying
  • Summarizes and discusses prior research conducted on the topic 
  • Identifies unresolved issues and gaps in past research that the current research will address
  • Ends with an overview of the current research study, including how the independent and dependent variables, the research questions or hypotheses, and the objective of the research 
  • Explains how the research study was conducted 
  • Typically includes 3 sections: Participants, Materials, and Procedure
  • Includes characteristics of the subjects, how the subjects were selected and recruited, how their anonymity was protected, and what feedback was provided to the participants
  • Describes any equipment, surveys, tests, questionnaires, informed consent forms, and observational techniques 
  • Describes the independent and dependent variables, the type of research design, and how the data was collected
  • Explains what results were found in the research study 
  • Describes the data that was collected and the results of statistical tests 
  • Explains the significance of the results 
  • Accepts or denies the hypotheses 
  • Details the implications of these findings 
  • Addresses the limitations of the study and areas for future research 
  • Includes all sources that were mentioned in the research study 
  • Adheres to APA citation styles
  • Includes all tables and/or figures that were used in the research study 
  • Each table and figure is placed on a separate page 
  • Tables are included before figures
  • Begins with a bolded, centered header such as “ Table 1 ”
  • Appends all forms, surveys, tests, etc. that were used in the study 
  • Only includes documents that were referenced in the Methods section 
  • Each entry is placed on a separate page 
  • Begins with a bolded, centered header such as “ Appendix A ”

Tips For Experimental Research Papers (APA)

  • Initial interest will motivate you to complete your study 
  • Your entire study will be centered around this question or statement 
  • Use only verifiable sources that provide accurate information about your topic 
  • You need to thoroughly understand the field of study your topic is on to help you recognize the gap your research will fill and the significance of your results
  • This will help you identify what you should study and what the significance of your study will be 
  • Create an outline before you begin writing to help organize your thoughts and direct you in your writing 
  • This will prevent you from losing the source or forgetting to cite the source 
  • Work on one section at a time, rather than trying to complete multiple sections at once
  • This information can be easily referred to as your write your various sections 
  • When conducting your research, working general to specific will help you narrow your topic and fully understand the field your topic is in 
  • When writing your literature review, writing from general to specific will help the audience understand your overall topic and the narrow focus of your research 
  • This will prevent you from losing sources you may need later 
  • Incorporate correct APA formatting as you write, rather than changing the formatting at the end of the writing process 

Checklist For Experimental Research Papers (APA)

  • If the paper is a student paper, it contains the title of the project, the author’s name(s), the instructor's name, course number and name, and assignment due date
  • If the paper is a professional paper, it includes the title of the paper, the author’s name(s), the institutional affiliation, and the author note
  • Begins on the first page of the paper
  • The title is typed in upper and lowercase letters, four spaces below the top of the paper, and written in boldface 
  • Other information is separated by a space from the title

Title (found on title page)

  • Informs the audience about the purpose of the paper 
  • Captures the attention of the audience 
  • Accurately reflects the purpose and content of the research paper 

Abstract 

  • Labeled as “ Abstract ”
  • Begins on the second page 
  • Provides a short, concise summary of the content of the research paper 
  • Includes background information necessary to understand the topic 
  • Background information demonstrates the purpose of the paper
  • Contains the hypothesis and/or research questions addressed in the paper
  • Has a brief description of the methods used 
  • Details the key findings and significance of the results
  • Illustrates the implications of the research study 
  • Contains less than 250 words

Introduction 

  • Starts on the third page 
  • Includes the title of the paper in bold at the top of the page
  • Contains a clear statement of the problem that the paper sets out to address 
  • Places the research paper within the context of previous research on the topic 
  • Explains the purpose of the research study and what you hope to find
  • Describes the significance of the study 
  • Details what new insights the research will contribute
  • Concludes with a brief description of what information will be mentioned in the literature review

Literature Review

  • Labeled as “ Literature Review”
  • Presents a general description of the problem area 
  • Defines any necessary terms 
  • Discusses and summarizes prior research on the selected topic 
  • Identifies any unresolved issues or gaps in research that the current research plans to address
  • Concludes with a summary of the current research study, including the independent and dependent variables, the research questions or hypotheses, and the objective of the research  
  • Labeled as “ Methods ”
  • Efficiently explains how the research study was conducted 
  • Appropriately divided into sections
  • Describes the characteristics of the participants 
  • Explains how the participants were selected 
  • Details how the anonymity of the participants was protected 
  • Notes what feedback the participants will be provided 
  • Describes all materials and instruments that were used 
  • Mentions how the procedure was conducted and data collected
  • Notes the independent and dependent variables 
  • Includes enough information that another researcher could duplicate the research 

Results 

  • Labeled as “ Results ”
  • Describes the data was collected
  • Explains the results of statistical tests that were performed
  • Omits any analysis or discussion of the implications of the study 

Discussion 

  • Labeled as “ Discussion ”
  • Describes the significance of the results 
  • Relates the results to the research questions and/or hypotheses
  • States whether the hypotheses should be rejected or accepted 
  • Addresses limitations of the study, including potential bias, confounds, imprecision of measures, and limits to generalizability
  • Explains how the study adds to the knowledge base and expands upon past research
  • Labeled as “ References ”
  • Correctly cites sources according to APA formatting 
  • Orders sources alphabetically
  • All sources included in the study are cited in the reference section 

Table and Figures (optional)

  •  Each table and each figure is placed on a separate page 
  • Tables and figures are included after the reference page
  • Tables and figures are correctly labeled
  • Each table and figure begins with a bolded, centered header such as “ Table 1 ,” “ Table 2 ,”

Appendix (optional) 

  • Any forms, surveys, tests, etc. are placed in the Appendix
  • All appendix entries are mentioned in the Methods section 
  • Each appendix begins on a new page
  • Each appendix begins with a bolded, centered header such as “ Appendix A, ” “ Appendix B ”

Additional Resources For Experimental Research Papers (APA)

  • https://www.mcwritingcenterblog.org/single-post/how-to-conduct-research-using-the-library-s-resources
  • https://www.mcwritingcenterblog.org/single-post/how-to-read-academic-articles
  • https://researchguides.ben.edu/source-evaluation   
  • https://researchguides.library.brocku.ca/external-analysis/evaluating-sources
  • https://writing.wisc.edu/handbook/assignments/planresearchpaper/
  • https://nmu.edu/writingcenter/tips-writing-research-paper
  • https://writingcenter.gmu.edu/guides/how-to-write-a-research-question
  • https://www.unr.edu/writing-speaking-center/student-resources/writing-speaking-resources/guide-to-writing-research-papers
  • https://drive.google.com/drive/folders/1F4DFWf85zEH4aZvm10i8Ahm_3xnAekal?usp=sharing
  • https://owl.purdue.edu/owl/research_and_citation/apa_style/apa_formatting_and_style_guide/general_format.html
  • https://libguides.elmira.edu/research
  • https://www.nhcc.edu/academics/library/doing-library-research/basic-steps-research-process
  • https://libguides.wustl.edu/research
  • << Previous: Science Papers
  • Next: Exegetical Papers >>
  • Last Updated: Sep 14, 2023 10:30 AM
  • URL: https://mc.libguides.com/writingcenter

Examples

Experimental Research

Ai generator.

example of an experimental research paper

Humans are born curious. As babies, we quench our questions by navigating our surroundings with our available senses. Our fascination with the unknown lingers to adulthood that some of us build a career out of trying to discover the mysteries of the universe. To learn about a point of interest, one of the things we do is isolate and replicate the phenomenon in laboratories and controlled environment. Experimental research is a causal investigation into the cause-effect relationships by manipulating all other factors.  You may also see Student Research examples & samples

Experimental research is generally a quantitative research centered on validating or refuting certain claims on causative relationships of matter. We use this method in natural, applied, theoretical, and social sciences, to name a few. This research follows a scientific design that puts a weight on replicability. When the methodology and results are replicable, the study is verifiable by reviewers and critics.

Notable Experiments

We have been conducting experiments for the longest time. Experimental studies done some thousand of years ago prove that unrefined apparatus and limited knowledge, we were already trying to answer the questions of the universe. We had to start somewhere.

Anatomical Anomaly

Even before, societal beliefs have restricted scientific development. This is especially true for modern medicine. Back then, studying and opening cadavers is a punishable crime. Therefore, physicians based their knowledge on the human body on animal dissections. Because animals have a different body organization than humans, this limited what we knew about ourselves. It took actual studies and experiments on the human body to curtail the misinformation and improve medical knowledge.

Reviewing Resemblance

A garden of fuschia and peas helped change our understanding of heredity and inheritable traits. Mendel was curious about why the fuschia plants generate the colors of the flowers the way they do. He crossed varieties of the plant and obtained consistent results. He also tried to cross pea plants and came with repeatable results. The characteristics of the parent plants are passed down to their offsprings to a certain degree of similarity. He also figured out the predictability of certain traits to appear in the offspring. Mendelian genetics explain the laws of inheritance that are still relevant today.

Canine Conditioning 

In the history of psychology research, one experiment will always ring a bell. Pavlov conditioned a dog to expect food when a bell was rung. After repetitions of this approach, the dog started to salivate at the sound of the bell, even when Pavlov didn’t introduce the food. His work on training the reflexes and the mind is in line with the plasticity of the brain to learn and unlearn relationships based on stimuli.

Correlation Vs. Causation

We can opt for an experimental approach to research when we want to determine if the hypothesized cause follows the expected effect. We do this by following a scientific research method and design that emphasizes the replicability of results to limit and reduce biases. By isolating the variables and manipulating treatments, we can establish causation. This is important if we are to find out the relationship between A and B.

In our experiments, we will encounter two or more phenomena, and we might mislabel their connection. There are instances where that relationship is both correlative and causative. What we need to remember is that correlation is not causation. We can say that A causes B when event B is an explicit product of and entirely dependent on event A. Events A and B are correlated when they appear together, but after experimentation, A doesn’t necessarily result in B.

However, it is not enough to say A caused B. Our results are still subject to statistical treatment to determine the validity of the findings and the degree of causation. We still have to ask how much A influences B. Only then can we accept or reject our hypothesis .

Experimental Research Value

Experimental research is a trial-and-error with an educated basis. It lets us determine what works and what doesn’t, and the underlying relationship. In our daily life, we are engaging in pseudo experiments. While cooking, for instance, you taste the dish before you decide to pour additional seasoning. You test first if the food is fine without additives.

In some fields of science, the results of an experiment can be used to generalized a relationship as true for similar, if not all, cases. Experimental research papers make way for the formation of theories. When those theories become unrefuted for a long time, they can become laws that explain universal phenomena.

10+ Experimental Research Examples

Go over the following examples of experimental research papers . They may be able to help you gain a head start in your study or uproot you from where you’re stuck in your experiment.

1. Experimental Research Design Example

Experimental Research Design Example

Size: 465 KB

2. Experimental Data Quality Research Example

Experimental Data Quality Research Example

Size: 318 KB

3. Experimental Research on Labor Market Discrimination

Experimental Research on Labor Market Discrimination

Size: 722 KB

4. Experimental Studies Research Example

Experimental Studies Research

Size: 230 KB

5. Short Description of Experimental Research Example

Short Description of Experimental Research

Size: 280 KB

6. Sample Experimental Design Research Example

Sample Experimental Research

Size: 109 KB

7. Experimental Research on Democracy Example

Experimental Research on Democracy Example

Size: 86 KB

8. Standards for Experimental Research Example

Standards for Experimental Researchs

Size: 141 KB

9. Experimental Research for Evaluation Example

Experimental Research for Evaluation

Size: 87 KB

10. Defense Experimental Research Example

Defense Experimental Research Example

Size: 315 KB

11. Formal Experoimental Research in DOC

Formal Experoimental Research in DOC

How To Start Your Experiment

The best scientists and researchers started with the basics, too. Here are reminders on how you could improve your research writing skills. Who knows, one day, you will join the ranks of world changers with your experimental research report

1. Identify the Problem

To solve a problem, you need to define what it is first. You can begin with identifying the field of research you wish to investigate, then find gaps in knowledge from the related literature. An original work on a timely and relevant issue will help with the approval of your research proposal . After you have read scholarly articles about the topic, you can start narrowing the focus of your research into a specific topic.

2. Design the Experiment

Create a research plan for your intended research with the following notes. The experimental research design ideally employs a probabilistic sampling method to avoid biases from influencing the validity of your work. However, certain experiments call for non-probabilistic sampling techniques. Your experiment should have a control group with ambient conditions or blank treatments. This set up helps you objectively quantify the relationship between A and B.

3. Test the Hypothesis

In performing your experiment, you should have a variable that you would manipulate. The effect of the manipulation will be reflected in the dependent variable. By manipulating the factors that would cause event B, you can determine if A does, in fact, cause B. You can input the raw data into statistical analysis software and tools to see if you can derive a valid conclusion on the relationship between A and B. Correlation or causation and their degree can also be determined by different statistical tests.

4. Publish the Findings

After you have gone through all the efforts in conducting your research, the next step is communicating the findings to the academic community and the public, especially if public and government entities funded the study. You do this by submitting your paper to journals and academic conferences. For what use is the new knowledge you have worked for if you keep the results to yourself?

Experimental research separates science from fiction. Despite criticisms that this method exists in an ideal world, removed from reality, we cannot downsize its merits in the search for knowledge. Because the results are observable, replicable, and appreciable in a real-world sense, this research type will always have room in the development of scientific knowledge and the improvement of man. For as long as man is curious, science will keep growing.

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

University of the People Logo

Higher Education News , Tips for Online Students , Tips for Students

A Comprehensive Guide to Different Types of Research

example of an experimental research paper

Updated: June 19, 2024

Published: June 15, 2024

two researchers working in a laboratory

When embarking on a research project, selecting the right methodology can be the difference between success and failure. With various methods available, each suited to different types of research, it’s essential you make an informed choice. This blog post will provide tips on how to choose a research methodology that best fits your research goals .

We’ll start with definitions: Research is the systematic process of exploring, investigating, and discovering new information or validating existing knowledge. It involves defining questions, collecting data, analyzing results, and drawing conclusions.

Meanwhile, a research methodology is a structured plan that outlines how your research is to be conducted. A complete methodology should detail the strategies, processes, and techniques you plan to use for your data collection and analysis.

 a computer keyboard being worked by a researcher

Research Methods

The first step of a research methodology is to identify a focused research topic, which is the question you seek to answer. By setting clear boundaries on the scope of your research, you can concentrate on specific aspects of a problem without being overwhelmed by information. This will produce more accurate findings. 

Along with clarifying your research topic, your methodology should also address your research methods. Let’s look at the four main types of research: descriptive, correlational, experimental, and diagnostic.

Descriptive Research

Descriptive research is an approach designed to describe the characteristics of a population systematically and accurately. This method focuses on answering “what” questions by providing detailed observations about the subject. Descriptive research employs surveys, observational studies , and case studies to gather qualitative or quantitative data. 

A real-world example of descriptive research is a survey investigating consumer behavior toward a competitor’s product. By analyzing the survey results, the company can gather detailed insights into how consumers perceive a competitor’s product, which can inform their marketing strategies and product development.

Correlational Research

Correlational research examines the statistical relationship between two or more variables to determine whether a relationship exists. Correlational research is particularly useful when ethical or practical constraints prevent experimental manipulation. It is often employed in fields such as psychology, education, and health sciences to provide insights into complex real-world interactions, helping to develop theories and inform further experimental research.

An example of correlational research is the study of the relationship between smoking and lung cancer. Researchers observe and collect data on individuals’ smoking habits and the incidence of lung cancer to determine if there is a correlation between the two variables. This type of research helps identify patterns and relationships, indicating whether increased smoking is associated with higher rates of lung cancer.

Experimental Research

Experimental research is a scientific approach where researchers manipulate one or more independent variables to observe their effect on a dependent variable. This method is designed to establish cause-and-effect relationships. Fields like psychology , medicine, and social sciences frequently employ experimental research to test hypotheses and theories under controlled conditions. 

A real-world example of experimental research is Pavlov’s Dog experiment. In this experiment, Ivan Pavlov demonstrated classical conditioning by ringing a bell each time he fed his dogs. After repeating this process multiple times, the dogs began to salivate just by hearing the bell, even when no food was presented. This experiment helped to illustrate how certain stimuli can elicit specific responses through associative learning.

Diagnostic Research

Diagnostic research tries to accurately diagnose a problem by identifying its underlying causes. This type of research is crucial for understanding complex situations where a precise diagnosis is necessary for formulating effective solutions. It involves methods such as case studies and data analysis and often integrates both qualitative and quantitative data to provide a comprehensive view of the issue at hand. 

An example of diagnostic research is studying the causes of a specific illness outbreak. During an outbreak of a respiratory virus, researchers might conduct diagnostic research to determine the factors contributing to the spread of the virus. This could involve analyzing patient data, testing environmental samples, and evaluating potential sources of infection. The goal is to identify the root causes and contributing factors to develop effective containment and prevention strategies.

Using an established research method is imperative, no matter if you are researching for marketing , technology , healthcare , engineering, or social science. A methodology lends legitimacy to your research by ensuring your data is both consistent and credible. A well-defined methodology also enhances the reliability and validity of the research findings, which is crucial for drawing accurate and meaningful conclusions. 

Additionally, methodologies help researchers stay focused and on track, limiting the scope of the study to relevant questions and objectives. This not only improves the quality of the research but also ensures that the study can be replicated and verified by other researchers, further solidifying its scientific value.

a graphical depiction of the wide possibilities of research

How to Choose a Research Methodology

Choosing the best research methodology for your project involves several key steps to ensure that your approach aligns with your research goals and questions. Here’s a simplified guide to help you make the best choice.

Understand Your Goals

Clearly define the objectives of your research. What do you aim to discover, prove, or understand? Understanding your goals helps in selecting a methodology that aligns with your research purpose.

Consider the Nature of Your Data

Determine whether your research will involve numerical data, textual data, or both. Quantitative methods are best for numerical data, while qualitative methods are suitable for textual or thematic data.

Understand the Purpose of Each Methodology

Becoming familiar with the four types of research – descriptive, correlational, experimental, and diagnostic – will enable you to select the most appropriate method for your research. Many times, you will want to use a combination of methods to gather meaningful data. 

Evaluate Resources and Constraints

Consider the resources available to you, including time, budget, and access to data. Some methodologies may require more resources or longer timeframes to implement effectively.

Review Similar Studies

Look at previous research in your field to see which methodologies were successful. This can provide insights and help you choose a proven approach.

By following these steps, you can select a research methodology that best fits your project’s requirements and ensures robust, credible results.

Completing Your Research Project

Upon completing your research, the next critical step is to analyze and interpret the data you’ve collected. This involves summarizing the key findings, identifying patterns, and determining how these results address your initial research questions. By thoroughly examining the data, you can draw meaningful conclusions that contribute to the body of knowledge in your field. 

It’s essential that you present these findings clearly and concisely, using charts, graphs, and tables to enhance comprehension. Furthermore, discuss the implications of your results, any limitations encountered during the study, and how your findings align with or challenge existing theories.

Your research project should conclude with a strong statement that encapsulates the essence of your research and its broader impact. This final section should leave readers with a clear understanding of the value of your work and inspire continued exploration and discussion in the field.

Now that you know how to perform quality research , it’s time to get started! Applying the right research methodologies can make a significant difference in the accuracy and reliability of your findings. Remember, the key to successful research is not just in collecting data, but in analyzing it thoughtfully and systematically to draw meaningful conclusions. So, dive in, explore, and contribute to the ever-growing body of knowledge with confidence. Happy researching!

At UoPeople, our blog writers are thinkers, researchers, and experts dedicated to curating articles relevant to our mission: making higher education accessible to everyone.

Related Articles

Help | Advanced Search

Computer Science > Artificial Intelligence

Title: measuring sample importance in data pruning for training llms from a data compression perspective.

Abstract: Compute-efficient training of large language models (LLMs) has become an important research problem. In this work, we consider data pruning as a method of data-efficient training of LLMs, where we take a data compression view on data pruning. We argue that the amount of information of a sample, or the achievable compression on its description length, represents its sample importance. The key idea is that, less informative samples are likely to contain redundant information, and thus should be pruned first. We leverage log-likelihood function of trained models as a surrogate to measure information content of samples. Experiments reveal a surprising insight that information-based pruning can enhance the generalization capability of the model, improves upon language modeling and downstream tasks as compared to the model trained on the entire dataset.
Subjects: Artificial Intelligence (cs.AI); Machine Learning (cs.LG)
Cite as: [cs.AI]
  (or [cs.AI] for this version)
  Focus to learn more arXiv-issued DOI via DataCite

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

Journal of Applied Crystallography Journal of Applied
Crystallography

Journals Logo

1. Introduction

2. formulation of the proposed framework, 3. formulation of a multicomponent monodisperse spheres model, 4. numerical experiments, 5. discussion, 6. conclusions.

example of an experimental research paper

Format BIBTeX
EndNote
RefMan
Refer
Medline
CIF
SGML
Plain Text
Text

example of an experimental research paper

research papers \(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

JOURNAL OF
APPLIED
CRYSTALLOGRAPHY

Open Access

Qu­antitative selection of sample structures in small-angle scattering using Bayesian methods

a Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561, Japan, b Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan, c National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan, and d Facalty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan * Correspondence e-mail: [email protected]

Small-angle scattering (SAS) is a key experimental technique for analyzing nanoscale structures in various materials. In SAS data analysis, selecting an appropriate mathematical model for the scattering intensity is critical, as it generates a hypothesis of the structure of the experimental sample. Traditional model selection methods either rely on qualitative approaches or are prone to overfitting. This paper introduces an analytical method that applies Bayesian model selection to SAS measurement data, enabling a quantitative evaluation of the validity of mathematical models. The performance of the method is assessed through numerical experiments using artificial data for multicomponent spherical materials, demonstrating that this proposed analysis approach yields highly accurate and interpretable results. The ability of the method to analyze a range of mixing ratios and particle size ratios for mixed components is also discussed, along with its precision in model evaluation by the degree of fitting. The proposed method effectively facilitates quantitative analysis of nanoscale sample structures in SAS, which has traditionally been challenging, and is expected to contribute significantly to advancements in a wide range of fields.

Keywords: small-angle X-ray scattering ; small-angle neutron scattering ; nanostructure analysis ; model selection ; Bayesian inference .

SAS measurement data are expressed in terms of scattering intensity that corresponds to a scattering vector, a physical quantity representing the scattering angle. Data analysis requires selection and parameter estimation of a mathematical model of the scattering intensity that contains information about the structure of the specimen. This selection process is critical as it involves assumptions about the structure of the specimen.

We conducted numerical experiments to assess the effectiveness of our proposed method. These experiments are based on synthetic data used to estimate the number of distinct components in a specimen, which was modeled as a mixture of monodisperse spheres of varying radii, scattering length densities and volume fractions. The results demonstrate the high accuracy, interpretability and stability of our method, even in the presence of measurement noise. To discuss the utility of the proposed method, we compare our approach with traditional model selection methods based on the reduced χ -squared error.

In this section, we present a detailed formulation of our algorithm for selecting mathematical models for SAS specimens using Bayesian model selection. The pseudocode for this algorithm is provided in Algorithm 1.

2.1. Bayesian model selection

The likelihood is thus expressed as

Let φ ( K ) be the prior distribution of the parameter K that characterizes the model, and φ ( Ξ | K ) be the prior distribution of the model parameters Ξ . Then, from Bayes' theorem, the posterior distribution of the parameters given the measurement data can be written as

2.2. Calculation of marginal likelihood

Sampling from the joint probability distribution at each inverse temperature gives

2.3. Estimation of model parameters

In this paper, we consider isotropic scattering and focus on the scattering vector's magnitude q , defined as

Monodisperse spheres are spherical particles of uniform radius. The scattering intensity I ( q ,  ξ ) of a specimen composed of sufficiently dilute monodisperse spheres of a single type for the scattering vector magnitude q is given by

To formulate the scattering intensity of a specimen composed of K types of monodisperse sphere, we assume a dilute system and denote the particle size of the k th component in the sample as R k and the scale as S k . The scattering intensity of a sample composed of K types of monodisperse sphere is then given by


An illustration of a mixture of two types of spherical specimen. This shows scenarios with two components ( = 2), including mixtures of spherical particles of different sizes or volume fractions, and aggregates from a single particle type approximated as a large sphere.

The numerical experiments reported in this section were conducted with a burn-in period of 10 5 and a sample size of 10 5 for the REMC. We set the number of replicas for REMC, the values of inverse temperature and the step size of the Metropolis method taking into consideration the state exchange rate and the acceptance rate.

4.1. Generation of synthetic data

(i) Set the number of data points to N = 400 and define the scattering vector magnitudes at N equally spaced points within the interval [0.1, 3] to obtain { q i } i =1 N =400 (nm −1 ).

In this section, we consider cases with pseudo-measurement times of T = 1 and T = 0.1. Generally, smaller values of T indicate greater effects from measurement noise.

4.2. Setting the prior distributions

In the Bayesian model selection framework, prior knowledge concerning the parameters Ξ and the model-characterizing parameter K is set as their prior distributions.

In this numerical experiment, the prior distributions for the parameters Ξ were set as Gamma distributions based on the pseudo-measurement time T used during data generation, while the prior for K was a discrete uniform distribution over the interval [1, 4].


Plots of the prior distributions for various parameters. ( ) Prior distribution of , φ( ). ( ) Prior distribution of ) Prior distribution of , φ( ). ( ) Prior distribution of , φ( ).

4.3. Results for two-component monodisperse spheres based on scale ratio

The ratio of the scale parameters S 1 and S 2 for spheres 1 and 2 during data generation, denoted r S , is defined as


Parameter values used for data generation with varying

  Sphere 1 Sphere 2
Radius (nm) 2 10
Scale 250 {250, 100, 20, 0.5, 0.1, 0.05}
Background (cm ) 0.01
Pseudo-measurement time {1, 0.1}

Fitting to synthetic data generated at various values and residual plots. Panels and show cases for pseudo-measurement times of = 1 and = 0.1, respectively. In plots ( )–( ) and ( )–( ), the scale ratio is displayed in descending order for = 1 and = 0.1, respectively. Black circles represent the generated data and the black dotted lines indicate the true scattering intensity curves. For models = 1, = 2, = 3 and = 4, the fitting curves and residual plots are represented by blue dashed–dotted lines, red dashed lines, orange solid lines and green dotted lines, respectively. Fitting curves were plotted using 1000 parameter samples that were randomly selected from the posterior probability distributions for each model. The width of the distribution of these fitting curves reflects the confidence level at each point.

Results of Bayesian model selection among models = 1–4 for varying values. Panel shows the posterior probability for each model using data generated with a pseudo-measurement time of = 1, and panel shows results for = 0.1. In cases ( )–( ) and ( )–( ), the scale ratio is displayed in descending order for = 1 and = 0.1, respectively. The height of each bar corresponds to the average values calculated for ten data sets generated with different random seeds, with maximum and minimum values shown as error bars. Areas highlighted in red indicate cases where, on average, the highest probability was found for the true model with = 2, while blue backgrounds indicate that models other than = 2 were associated with the highest probability on average.


The number of times each model was associated with the highest probability in numerical experiments for ten data sets generated with different random seeds at each value

) = 1

 
1 2 3 4
( ) 1.0 0 0 0
( ) 0.4 0 0 0
( ) 0.08 0 0 0
( ) 0.002 0 0 0
( ) 0.0004 0 0 0
( ) 0.0002 2 0 0
) = 0.1

 
1 2 3 4
( ) 1.0 0 0 0
( ) 0.4 0 0 0
( ) 0.08 0 0 0
( ) 0.002 0 0 0
( ) 0.0004 1 0 0
( ) 0.0002 0 0 0

4.4. Results for two-component monodisperse spheres based on radius ratio

During synthetic data generation, the ratio of the radii R 1 and R 2 of spheres 1 and 2, denoted r R , was defined as

In this setup, we generated seven types of data by varying the value of r R for pseudo-measurement times of T = 1 and T  = 0.1.


Parameter values used for data generation when varying

  Sphere 1 Sphere 2
Radius (nm) {9.9, 9.7, 9.5, 0.5, 0.5, 0.4, 0.3} 10
Scale 250 100
Background (cm ) 0.01  
Pseudo-measurement time {1, 0.1}  

Fitting to synthetic data generated at various values and residual plots. Panels and show cases for pseudo-measurement times of = 1 and = 0.1, respectively. In plots ( )–( ) and ( )–( ), the radius ratio is displayed in descending order for = 1 and = 0.1, respectively. Black circles represent the generated data and the black dotted lines indicate the true scattering intensity curves. For models = 1, = 2, = 3 and = 4, the fitting curves and residual plots are represented by blue dashed–dotted lines, red dashed lines, orange solid lines and green dotted lines, respectively. Fitting curves were plotted using 1000 parameter samples that were randomly selected from the posterior probability distributions for each model. The width of the distribution of these fitting curves reflects the confidence level at each point.

Results of Bayesian model selection among models = 1–4 for varying values. Panel shows the posterior probability of each model using data generated with a pseudo-measurement time of = 1, and panel shows results for = 0.1. In cases ( )–( ) and ( )–( ), the radius ratio is displayed in descending order for = 1 and = 0.1, respectively. The height of each bar corresponds to the average values calculated for ten data sets generated with different random seeds, with the maximum and minimum values shown as error bars. Areas highlighted in red indicate cases where the true model = 2 was most highly supported, while the blue backgrounds indicate that the likelihood of a model other than = 2 was the highest.


The number of times each model was most highly supported in numerical experiments for ten data sets generated by varying values

) = 1

 
1 2 3 4
( ) 0.99 1 0 0
( ) 0.97 0 0 0
( ) 0.95 0 0 0
( ) 0.5 0 0 0
( ) 0.05 0 0 0
( ) 0.04 1 0 0
( ) 0.03 0 0 0
) = 0.1

 
1 2 3 4
( ) 0.99 0 0 0
( ) 0.97 2 0 0
( ) 0.95 0 0 0
( ) 0.5 0 0 0
( ) 0.05 1 0 0
( ) 0.04 3 0 0
( ) 0.03 0 0 0

5.1. Limitations of the proposed method

5.2. model selection based on χ -squared error.

In SAS data analysis, selecting an appropriate mathematical model for the analysis is a crucial but challenging process. In this subsection, we compare the conventional model selection method based on the χ -squared error with the results of model selection using our proposed method.


The fitting results and residual plots for the data shown in Fig. 3 ( ) were derived using parameters that minimize the χ-squared error from the posterior probability distributions for models ranging from = 1 to = 4. For each of these models, the fitting curves and their corresponding residual plots are represented by blue dashed–dotted lines, red dashed lines, orange solid lines and green dotted lines, respectively. The legend indicates the reduced χ-squared values for each model ( = 1 to = 4).


Model selection results based on reduced χ-squared values

-squared value to 1 for ten data sets generated with different random seeds for each setting = 1. Labels ( ) to ( ) refer to the settings in Figs. 3–4 and Table 2. The cases with the highest level of support for each data set are shown in bold.

 
1 2 3 4
( ) 1.0 0 2 0\sim
( ) 0.4 0 0 1
( ) 0.08 0 0 1
( ) 0.002 0 0 0
( ) 0.0004 0 4 1
( ) 0.0002 0 2 0

In this paper, we have introduced a Bayesian model selection framework for SAS data analysis that quantitatively evaluates model validity through posterior probabilities. We have conducted numerical experiments using synthetic data for a two-component system of monodisperse spheres to assess the performance of the proposed method.

We have identified the analytical limits of the proposed method, under the settings of this study, with respect to the scale and radius ratios of two-component spherical particles, and compared the performance of traditional model selection methods based on the reduced χ -squared.

The numerical experiments and subsequent discussion reveal the range of parameters that can be analyzed using the proposed method. Within that range, our method provides stable and highly accurate model selection, even for data with significant noise or in situations in which qualitative model determination is challenging. In comparison with the traditional method of selecting models based on fitting curves and data residuals, it was found that the proposed method offers greater accuracy and stability.

SAS is used to study specimens with a variety of structures other than spheres, including cylinders, core–shell structures, lamellae and more. The proposed method should be applied to other sample models to determine the feasibility of expanding the analysis beyond the case examined here to broader experimental settings. Future work could benefit from using the proposed method to conduct real data analysis, which is expected to yield new insights through our more efficient analysis approach.

Funding information

This work was supported by JST CREST (grant Nos. PMJCR1761 and JPMJCR1861) from the Japan Science and Technology Agency (JST) and by a JSPS KAKENHI Grant-in-Aid for Scientific Research (A) (grant No. 23H00486).

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence , which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Follow J. Appl. Cryst.

Research on abnormal diagnosis model of electric power measurement based on small sample learning

  • Zhuang, Gewei
  • Zhang, Jingyue
  • Zhang, Honghong

For a long time, abnormal metering of electricity meters has caused huge economic losses to power grid companies. Abnormal diagnosis of power metering is an important means to ensure the normal operation of electricity meters and power automation operation and maintenance systems and is a hot topic of research for power workers. This article proposes a known measurement anomaly diagnosis model based on small sample learning to address the problem of insufficient labeled samples in power measurement anomaly diagnosis. The embedded network maps samples from the original sample space to the embedded space adjusts the embedded network structure, and improves the loss function. The experimental results show that the improved classification network has a higher recognition accuracy for known anomalies than the original network and other small sample learning models.

COMMENTS

  1. APA Sample Paper: Experimental Psychology

    Writing the Experimental Report: Methods, Results, and Discussion. Tables, Appendices, Footnotes and Endnotes. References and Sources for More Information. APA Sample Paper: Experimental Psychology. Style Guide Overview MLA Guide APA Guide Chicago Guide OWL Exercises. Purdue OWL. Subject-Specific Writing.

  2. Guide to Experimental Design

    Step 1: Define your variables. You should begin with a specific research question. We will work with two research question examples, one from health sciences and one from ecology: Example question 1: Phone use and sleep. You want to know how phone use before bedtime affects sleep patterns.

  3. 10 Real-Life Experimental Research Examples (2024)

    Examples of Experimental Research. 1. Pavlov's Dog: Classical Conditioning. Pavlovs Dogs. Dr. Ivan Pavlov was a physiologist studying animal digestive systems in the 1890s. In one study, he presented food to a dog and then collected its salivatory juices via a tube attached to the inside of the animal's mouth.

  4. PDF Sample Paper: One-Experiment Paper

    Sample One-Experiment Paper (continued) emotional detection than young adults, or older adults could show a greater facilitation than. young adults only for the detection of positive information. The results lent some support to the. first two alternatives, but no evidence was found to support the third alternative.

  5. Exploring Experimental Research: Methodologies, Designs, and

    Experimental research serves as a fundamental scientific method aimed at unraveling. cause-and-effect relationships between variables across various disciplines. This. paper delineates the key ...

  6. Beauty sleep: experimental study on the perceived health and

    Methods. Using an experimental design we photographed the faces of 23 adults (mean age 23, range 18-31 years, 11 women) between 14.00 and 15.00 under two conditions in a balanced design: after a normal night's sleep (at least eight hours of sleep between 23.00-07.00 and seven hours of wakefulness) and after sleep deprivation (sleep 02.00-07.00 and 31 hours of wakefulness).

  7. Experimental Reports 1

    Experimental reports (also known as "lab reports") are reports of empirical research conducted by their authors. You should think of an experimental report as a "story" of your research in which you lead your readers through your experiment. As you are telling this story, you are crafting an argument about both the validity and reliability of ...

  8. 19+ Experimental Design Examples (Methods + Types)

    1) True Experimental Design. In the world of experiments, the True Experimental Design is like the superstar quarterback everyone talks about. Born out of the early 20th-century work of statisticians like Ronald A. Fisher, this design is all about control, precision, and reliability.

  9. A Quick Guide to Experimental Design

    Step 1: Define your variables. You should begin with a specific research question. We will work with two research question examples, one from health sciences and one from ecology: Example question 1: Phone use and sleep. You want to know how phone use before bedtime affects sleep patterns.

  10. Journal of Experimental Psychology: General: Sample articles

    February 2011. by Jeff Galak and Tom Meyvis. The Nature of Gestures' Beneficial Role in Spatial Problem Solving (PDF, 181KB) February 2011. by Mingyuan Chu and Sotaro Kita. Date created: 2009. Sample articles from APA's Journal of Experimental Psychology: General.

  11. Experimental Design: Types, Examples & Methods

    Three types of experimental designs are commonly used: 1. Independent Measures. Independent measures design, also known as between-groups, is an experimental design where different participants are used in each condition of the independent variable. This means that each condition of the experiment includes a different group of participants.

  12. Types of Research Designs Compared

    You can also create a mixed methods research design that has elements of both. Descriptive research vs experimental research. Descriptive research gathers data without controlling any variables, while experimental research manipulates and controls variables to determine cause and effect.

  13. Study/Experimental/Research Design: Much More Than Statistics

    A proper experimental design serves as a road map to the study methods, helping readers to understand more clearly how the data were obtained and, therefore, assisting them in properly analyzing the results. Keywords: scientific writing, scholarly communication. Study, experimental, or research design is the backbone of good research.

  14. (PDF) Experimental Research Design-types & process

    Experimental design is the process of carrying out research in an objective and controlled fashion. so that precision is maximized and specific conclusions can be drawn regarding a hypothesis ...

  15. Experimental Research Designs: Types, Examples & Advantages

    There are 3 types of experimental research designs. These are pre-experimental research design, true experimental research design, and quasi experimental research design. 1. The assignment of the control group in quasi experimental research is non-random, unlike true experimental design, which is randomly assigned. 2.

  16. How to Write an Experimental Research Paper

    This article aims to present general guidelines to one of the many roles of a neurosurgeon: Writing an experimental research paper. Every research report must use the "IMRAD formula: introduction, methods, results and discussion". After the IMRAD is finished, abstract should be written and the title should be "created".

  17. Experimental Research Papers

    A research paper is intended to inform others about advancement in a particular field of study. The researcher who wrote the paper identified a gap in the research in a field of study and used their research to help fill this gap. The researcher uses their paper to inform others about the knowledge that the results of their study contribute ...

  18. PDF An Experimental Study on the Effectiveness of Multimedia

    The results have been fed into SPSS (12.0) and analyzed using independent sample T-test analysis. Table 2 shows that in Test 1, Group 1 and Group 2 are quite similar in the means (Group 1 is 69.33, while Group 2 is 70.92), this means both groups have nearly the same English proficiency, and though experimental group is a little

  19. (PDF) AN EXPERIMENTAL STUDY ON THE EFFECT OF PARTS ...

    experimental group that was class XI.2 as an experimental group (46 students) and class XI.5 as a control group (46 students). It means tha t totally 92 students were the sample of the resea rch.

  20. Experimental Research: Definition, Types and Examples

    The three main types of experimental research design are: 1. Pre-experimental research. A pre-experimental research study is an observational approach to performing an experiment. It's the most basic style of experimental research. Free experimental research can occur in one of these design structures: One-shot case study research design: In ...

  21. Experimental Research

    Here are reminders on how you could improve your research writing skills. Who knows, one day, you will join the ranks of world changers with your experimental research report. 1. Identify the Problem. To solve a problem, you need to define what it is first. You can begin with identifying the field of research you wish to investigate, then find ...

  22. A Beginner's Guide to Types of Research

    A real-world example of experimental research is Pavlov's Dog experiment. In this experiment, Ivan Pavlov demonstrated classical conditioning by ringing a bell each time he fed his dogs. After repeating this process multiple times, the dogs began to salivate just by hearing the bell, even when no food was presented. ...

  23. PDF CHAPTER 4: ANALYSIS AND INTERPRETATION OF RESULTS

    The analysis and interpretation of data is carried out in two phases. The. first part, which is based on the results of the questionnaire, deals with a quantitative. analysis of data. The second, which is based on the results of the interview and focus group. discussions, is a qualitative interpretation.

  24. Measuring Sample Importance in Data Pruning for Training LLMs from a

    Compute-efficient training of large language models (LLMs) has become an important research problem. In this work, we consider data pruning as a method of data-efficient training of LLMs, where we take a data compression view on data pruning. We argue that the amount of information of a sample, or the achievable compression on its description length, represents its sample importance. The key ...

  25. (PDF) Experimental Research Methods

    The experimental method formally surfaced in educational psy-. chology around the turn of the century, with the classic studies. by Thorndike and Woodworth on transf er (Cronbach, 1957). The ...

  26. (IUCr) Qu­antitative selection of sample structures in small-angle

    This paper introduces an analytical method that applies Bayesian model selection to SAS measurement data, enabling a quantitative evaluation of the validity of mathematical models. The performance of the method is assessed through numerical experiments using artificial data for multicomponent spherical materials, demonstrating that this ...

  27. Research on abnormal diagnosis model of electric power ...

    For a long time, abnormal metering of electricity meters has caused huge economic losses to power grid companies. Abnormal diagnosis of power metering is an important means to ensure the normal operation of electricity meters and power automation operation and maintenance systems and is a hot topic of research for power workers. This article proposes a known measurement anomaly diagnosis model ...