To view approved MS Thesis or PhD Dissertation abstracts
: Both links on this page require an active njit.edu Google login within the browser ( ). |
Part of the submission must include your Abstract in PDF form. Submissions will be reviewed by Graduate Studies and you will receive a notification once approved. If changes are needed, you will be notified to do so via email.
IF YOUR THESIS OR DISSERTATION IS TO BE SEQUESTERED/EMBARGOED , DO NOT SUBMIT AN ABSTRACT BUT JUST INCLUDE "SEQUESTERED/EMBARGOED" INSTEAD OF AN ABSTRACT. ANYONE WHO WILL THEN ATTEND YOUR DEFENSE MUST SIGN THE NON-DISCLOSURE AGREEMENT FORM AVAILABLE AT THIS LINK . DOWNLOAD THE FORM AND GIVE IT TO YOUR MAIN ADVISOR BEFORE THE DEFENSE.
If you have any questions, please contact [email protected]
An official announcement of the dissertation defense must be distributed to all Joint Doctoral Program faculty, staff, and students following the same procedures outlined for the proposal defense two weeks prior to the scheduled final defense. Faculty/student notification is a requirement, not simply a courtesy. Failure to comply may delay the defense. Note: No defense will be permitted less than two weeks prior to final copy submission deadlines. The information for the defense announcement must include the student’s name, the title, the committee and each department/university represented, date, time and location of the defense, and an abstract.
Final Dissertation Defense Announcement Template
An official website of the United States government
Here's how you know
Official websites use .gov A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS. A lock ( Lock Locked padlock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.
View guidelines, important information for proposers.
All proposals must be submitted in accordance with the requirements specified in this funding opportunity and in the NSF Proposal & Award Policies & Procedures Guide (PAPPG) that is in effect for the relevant due date to which the proposal is being submitted. It is the responsibility of the proposer to ensure that the proposal meets these requirements. Submitting a proposal prior to a specified deadline does not negate this requirement.
Supports doctoral research aimed at understanding patterns, causes and consequences of human social and cultural variation, including research that has implications for confronting anthropogenic problems.
The primary objective of the Cultural Anthropology Program is to support basic scientific research on the causes, consequences and complexities of human social and cultural variability.
Contemporary cultural anthropology is an arena in which diverse research traditions and methodologies are valid in investigations of human cultural variation. Recognizing the breadth of the field's contributions to science, the Cultural Anthropology Program welcomes proposals for empirically grounded, theoretically engaged and methodologically sophisticated research in all sub-fields of cultural anthropology. Because the National Science Foundation's mission is to support basic research, the NSF Cultural Anthropology Program does not fund research that takes as its primary goal improved clinical practice, humanistic understanding or applied policy. A proposal that applies anthropological methods to a social problem but does not propose how that problem provides an opportunity to make a theory-testing and/or theory-expanding contribution to anthropology will be returned without review.
Program research priorities include, but are not limited to, research that increases our understanding of:
As part of its effort to encourage and support projects that explicitly integrate education and basic research, CA provides support to enhance and improve the conduct of doctoral dissertation projects designed and carried out by doctoral students enrolled in U.S. institutions of higher education who are conducting scientific research that enhances basic scientific knowledge.
Video and slides from cultural anthropology funding opportunity webinars, may and july, 2022, program contacts.
(703) 292-7783 | SBE/BCS | ||
Program Director | (703) 292-8740 | SBE/BCS | |
Program Director | (703) 292-8740 | SBE/BCS | |
Program Specialist | (703) 292-4636 | SBE/BCS |
Related programs.
Campus events.
Dissertation Defense Calendar
The advancement of medical imaging has significantly enhanced the ability to diagnose, monitor, and treat cancer. This dissertation focuses on the development of deep learning methodologies for the segmentation and registration of medical images, specifically Positron Emission Tomography (PET), Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and pathology images, to improve the accuracy and efficiency of cancer diagnosis and treatment planning. Segmentation, the process of delineating anatomical structures and pathological regions, is a crucial step in medical image analysis. This work introduces novel high-precision deep learning models for the automatic segmentation of tumors and organs at risk (OARs). These models utilize convolutional neural networks (CNNs) and transformer-based architectures to handle the complexities and variations inherent in PET, CT, and MRI. The segmentation models are trained on multi-modal imaging datasets, incorporating advanced techniques such as data augmentation, transfer learning, and ensemble learning to enhance robustness and generalization. Evaluation on various datasets demonstrates that these models achieve superior performance compared to traditional methods, with significant improvements in accuracy and reliability.
Registration, which aligns images from different modalities or time points, is another critical component in the analysis of medical images. This dissertation presents advanced deep learning approaches for the registration of CT, MRI, and pathology images, leveraging deep neural networks (DNNs) and unsupervised learning techniques. The proposed registration methods employ spatial transformer networks (STNs) and other novel architectures to learn complex spatial transformations directly from the data, enabling accurate alignment of multi-modal images. These approaches are designed to be computationally efficient and scalable, facilitating their integration into clinical workflows.
Our final goal is to streamline these deep learning methods to real clinical applications. This dissertation explores the practical applications of the developed models, including their deployment in microservices for common radiotherapy imaging tasks. The models are made accessible via Python scripts for clinical treatment planning software such as RayStation, allowing seamless integration into existing clinical systems. Evaluation using images and treatment planning data for prostate cancer underscores the potential of these models to enhance the quality of treatment planning and streamline the overall process of planning, response assessment, and adaptation. Additionally, this dissertation investigates the potential of federated learning for collaborative model training across multiple institutions without sharing sensitive patient data. This approach could enhance model robustness and generalizability by leveraging diverse datasets from various sources.
In conclusion, this dissertation explores the critical component of medical imaging for cancer diagnosis, monitoring, and treatment with advanced deep learning methods. We hope these innovative techniques developed in this research pave the way for more precise, efficient, and individualized patient care in oncology.
Electrical fires caused by arc faults necessitate advanced detection methods for improved safety and reliability in AC and DC power systems. This research introduces innovative artificial intelligence (AI)-based methods for the efficient detection of arc faults, enhancing both safety and reliability in electrical systems. For AC systems, we developed a convolutional neural network (CNN)-based arc fault detection algorithm that autonomously extracts arc fault features without manual thresholding. Using raw current as input, the algorithm achieves an arc fault detection accuracy of 99.47%. Additionally, this research determined an optimal sampling rate of 10 kHz for the input current. The model's efficacy was verified using the Raspberry Pi 3B platform.
While traditional CNN algorithms have high accuracy, they require optimization for real-time arc fault detection on resource-limited hardware. To address this, we proposed a lightweight CNN architecture combined with a model compression technique using a knowledge distillation-based teacher-student algorithm. This model maintains a high detection accuracy of 99.31% and operates with an impressively minimal runtime of 0.20 milliseconds per sample when implemented on the Raspberry Pi 3B platform. This performance demonstrates its suitability for commercial embedded microcontrollers (MCUs) with limited computational capability.
Extending our research to DC systems, we introduced a cost-effective, AI-driven Arc Fault Circuit Interrupter (AFCI) for DC applications. Utilizing an STM32 MCU and a silicon carbide (SiC) MOSFET-based solid-state circuit breaker (SSCB), the proposed method achieves a detection accuracy of 98.15% with a remarkable arc fault interruption time of 25 milliseconds. This AFCI solution stands out for its rapid response and high reliability, promising significant improvements in safety for DC systems.
Together, these contributions signify a leap forward in electrical safety, presenting viable solutions for the timely detection and interruption of arc faults in AC and DC systems. The outcomes of this research are expected to influence future standards and practices in electrical safety management across residential, commercial, and industrial sectors.
People adopt security technologies and make security decisions based on their perceptions, or mental models, of what risks they have and what they can do to protect their devices. Thus, people rely on their mental models to decide how to use their computing devices and the consequences of these actions. Understanding why users make security decisions and addressing the misconceptions in their mental models, specifically regarding security risks, can help prevent security mistakes made by users and help determine how to help users make good security decisions. This dissertation seeks to understand how users perceive security risks, why they make security-related decisions, and where they have misconceptions. In my dissertation, I examine how users' mental models of security and privacy differ by device platform, how that impacts how people use and interact with applications on each platform, and how user’s mental models can be used to influence adoption of good device security practices. I will present the results of three user studies exploring user mental models of security and privacy and how users need an increasing awareness of security risks and measures across all types of computing platforms in order to adopt appropriate practices to protect themselves and their information.
Social media has emerged as a common platform for knowledge sharing and exchange in online communities. However, it has also become a hotbed for the diffusion of irregular content. Content moderation is crucial for maintaining a safe and healthy online environment by regulating the distribution of user-generated content (UGC). Engaging users in content moderation fosters a sense of shared responsibility and empowers them to actively shape the environment of online communities. Leveraging the expertise of moderators leads to a deeper contextual understanding of content, thereby improving the overall consistency and legitimacy of content moderation in compliance with community or platform guidelines. Nevertheless, the collaborative effort of a more inclusive and community-driven moderation process remains unexplored by previous studies. While there is increasing attention to fairness, transparency, and ethics in content moderation, prior research often assesses content moderation perceptions of users, platforms, moderators, and bystanders in isolation. This results in a lack of comprehensive understanding of user perceptions in content moderation decision-making. To address these limitations, this research proposes UMCollab, a user-moderator collaborative content moderation framework that incorporates the dynamics of user engagement and the domain knowledge of moderators into deep learning models to facilitate content moderation decision-making. Additionally, this research empirically investigates user perceptions of content moderation from the perspectives of content familiarity, content diversity, and user roles. UMCollab leverages graph learning to model user engagement, which is further enhanced by the credibility and stance of users' online discussions. It also employs attention mechanisms to learn the domain knowledge of moderators based on their decisions regarding UGC per online community rules. Moreover, this study conducts an online user study by asking participants with diverse online engagement backgrounds and roles to complete a series of content moderation decision-making tasks and evaluate their perceptions of content moderation. The findings of this dissertation research hold significant promise for promoting effectiveness, fairness, transparency, and community ownership in moderating UGC in social media, offering opportunities to improve the safety and success of online communities.
Physical activity offers a range of health benefits but can be difficult to initiate and maintain. Self-regulatory processes are one route to understanding health behavior change. While affective mechanisms like positive affect and reward processing provide a valuable neurobiological pathway to elucidate individual motivations for physical activity. Theories and models that emphasize the role of affect and intrinsic and extrinsic motivations are applied in the current study to deepen our understanding of physical activity behaviors. Psychosocial sources of individual motivations, such as improving mood or changing one’s physical appearance, can provide insight into ways to alter affective-cognitive mechanisms to encourage sustainable physical activity behaviors. The present study applied a mixed-method approach to elucidate themes of affect and motivation in social media content. A sample of 2,585 Twitter posts were collected in mid-July 2022. A motivational and health behavior change qualitative codebook was first developed to guide thematic coding analyses. Thematic coding results revealed a high frequency of extrinsic motivation and goal and change-oriented facilitators of physical activity. Intrinsic motivation included the highest percentage of positive attitudes compared to other motivation types. Health-oriented themes, satisfaction, dissatisfaction with physical appearance, and weight loss were also relevant. LIWC-22 analyses supported the role of positive affect and informed health themes. BERT topic modeling analyses provided overarching physical activity topic themes for motivation and physical activity. Interpretations of the current results were presented, and future directions were suggested.
Nanotechnology has the potential to revolutionize various fields, addressing complex issues such as cancer treatment, waste remediation, and energy storage. To achieve this, precise engineering of nanocrystals at the atomic level is essential, going beyond mere control of size and shape. The unique properties of nanomaterials, which differ from their bulk counterparts, are influenced by surface chemistry, defects, and local structure. These characteristics are determined by the synthesis methods used, making a deep mechanistic understanding of these processes crucial for engineering nanoscale structures and properties.
To contribute to the rapidly evolving field of nanoscience, this dissertation focuses on the solution-based synthesis of vanadium oxide nanocrystals. Vanadium oxides are promising candidates for applications in catalysis, sensing, cathode materials for high-density lithium batteries, smart windows, neuromorphic computing, and optical switching. However, vanadium oxides exhibit multiple oxidation states (+2 to +5) and polymorphs. Consequently, the colloidal synthesis of high-quality vanadium oxide nanocrystals in a specific oxidation state and stoichiometry remains challenging.
This dissertation advances the synthesis of vanadium oxide nanocrystals, emphasizing the effects of synthetic parameters on their oxidation state and crystal structure. Key findings include the successful synthesis of anosovite V₃O₅ nanocrystals via a hot-injection method, marking the first colloidal synthesis of this rare phase from a readily available precursor. By adjusting vanadium precursor-to-alcohol-to-amine ratio, controlled reduction of vanadium was achieved to selectively synthesize V₃O₅ and V₂O₃ nanocrystals. The dissertation also presents an alcohol-mediated valence-state controlled synthesis method for selective preparation of pure corundum-structured V₂O₃ and anosovite V₃O₅ nanocrystals. Comprehensive characterization, including spectroscopic ellipsometry and diffuse reflectance spectroscopy, reveals unique optical properties deviating from bulk behavior, attributed to the nanoscale size effects. In addition, a heat-up method was developed for synthesizing VOx nanocrystals by thermal decomposition of vanadyl acetylacetonate, demonstrating the formation of vanadium monoxide nanocrystals. The reaction pathways for the formation of these nanocrystals via hot-injection method and heat-up methods were analyzed with ATR-FTIR spectroscopy. The findings will advance the fundamental understanding of vanadium oxide nanocrystal synthesis and pave the way for their application as advanced functional nanomaterials.
Edge computing-assisted artificial intelligence (edge-AI) has enabled a new paradigm of smart applications that have very stringent latency requirements, especially for applications on mobile devices (e.g., smartphones, wearable devices, and autonomous vehicles). However, the high mobility of users and instability in wireless networks decrease the overall Quality-of-Service (QoS) of an edge-AI application running on mobile devices with non-linear battery discharge properties. The objective of this research is to provide mobile AI applications with an energy-efficient wireless infrastructure to enhance the overall QoS.
This dissertation presents a comprehensive experimental study of mobile AI applications, including a novel performance analysis modeling framework and a Gaussian process regression-based general predictive energy model, focusing on computational resource utilization, delay, and energy consumption. To enhance mobile AI performance, this dissertation presents a novel periodic predictive AoI-based service aggregation method for high-mobility AI applications, which processes information updates according to their update cycles with satisfactory latency. Furthermore, an H.264 video encoding-based edge-AI system is proposed to overcome the challenges posed by unstable wireless networks. Finally, a novel deep reinforcement learning-based smart edge-AI system is proposed in this research, where the edge server provides smart and dynamic offloading and data processing decisions.
This dissertation explores the relationship between climate change, reproductive justice, and the prosperity of families, communities, and economies through a discussion utilizing a comprehensive literature review and the results of a quantitative study to examine the relationship between the adverse impacts of a changing climate and the cost of living, represented by increases in food prices, housing costs, and health care expenditures, and the associated impact on declining birth rates.
The first chapter builds the foundation for examining how climate change, reproductive justice, and societal prosperity interact by summarizing the climate change science literature that addresses the health and social harm disparities for low-income, communities of color, particularly women of color, and advocates for a reclaiming of bodily autonomy given the communities that are most impacted by climate change. The second chapter recalls the historical legacy of settler colonialism, especially the exploitation of Indigenous women, and examines how corporate expansion, consumerism, and white feminist ideologies create and maintain corporate colonialism and the oppression of nonwhite women through the disproportionate impacts of climate change, while calling for a reconstruction of feminism. The third chapter explores how a modern society measures prosperity through both financial and nonfinancial performance measures and introduces a new prosperity model based on a four-part test to promote, protect, and advance the health and long-term viability of families, communities, economies, and ecosystems through sustainable and responsible economic principles, means, and indicators of success. Implications and considerations for private industry and public policy are discussed, along with the need for additional research to better understand the new model’s effectiveness in predicting, determining, and protecting societal prosperity.
The invention of advanced Ni-containing concentrated solid solution alloys has significantly broadened the compositional space of alloy design. Unlike conventional alloys that typically consist of a principal solvent element with minor additions of various solute atoms, concentrated solid solution alloys involve multiple elements in equal or near-equal compositions. These concentrated solid solution alloys have exhibited remarkable properties such as exceptional toughness and superior radiation resistance. The exceptional performance of these concentrated solid solution alloys is generally attributed to specific intrinsic properties of concentrated solid solution alloys such as high entropy effect, severe lattice distortion and short ordering effect. However, being relatively new emerging materials, the theoretical understanding and experimental exploration of these alloys are still ongoing and not comprehensively understood.
This dissertation work will provide a systematic investigation on surface properties including mechanical properties and radiation damage of Ni-based concentrated solid solution alloys by using ex-situ and in-situ indentation techniques. The study explores the surface properties of a batch of Ni-containing concentrated solid solution alloys with addition of different 3d transition elements including binary NiCo, NiFe, Ni80Cr20, Ni80Mn20 and quaternary NiCoFeCr. First, initial investigations use ex-situ nanoindentation to obtain mechanical properties of five alloys including hardness, elastic modulus and strain rate sensitivity. A complete methodology is developed to acquire accurate property information directly from nanoindentation in a high throughput manner, which considers the indentation size effect and pile-up effect. Furthermore, the strengthening in Ni-concentrated solid solution alloys is attributed to being driven by solid solution strengthening induced by mismatch in atomic size. Notably, the intrinsic properties of alloying elements play a more critical role in strengthening than the number of alloying elements. Second, based on previous work, nanoindentation is further employed to evaluate the early-stage irradiation induced hardening in NiCo, NiFe and NiCoFeCr. It proposes using nanoindentation to detect early-stage irradiation-induced defects and hypothesizes that interactions between these defects and dislocations carried by deformation during indentation can quantify irradiation-induced defects. This approach successfully quantifies irradiation-induced hardening in NiCo, NiFe, and NiCoFeCr. Quantitative analysis reveals that irradiation-induced defects harden NiFe and NiCoFeCr, but no significant hardening is observed in NiCo. Additionally, irradiation-induced hardening is associated with the evolution of geometrically necessary dislocations and is interpreted by changes in the plastic zone during indentation. Finally, in-situ flat-punch indentation provides real-time observations of deformation behaviors, aiming to derive accurate stress-strain curves. A new protocol addresses thermal drift effects and contact issues, often neglected in measurements.
This comprehensive study on Ni-based concentrated solid solution alloys enhances understanding of their mechanical properties and irradiation resistance by using ex-situ and in-situ nano-mechanical techniques. Methodologies are developed for nanoindentations to acquire meaningful property information directly from surface in a high throughput manner. This systematic work offers valuable insights into the strengthening mechanisms and irradiation hardening mechanisms of Ni-based concentrated solid solution alloys. The robust experimental evidence supports that the exceptional properties of concentrated solid solution alloys are not solely determined by the number of elements but also determined by the intrinsic performance of alloying elements. These results provide new insights for alloying design strategy of concentrated solid solution alloys.
Approximately 30% of individuals with autism have complex communication needs (CCN). These individuals are unable to use vocal speech as their primary form of language and typically require support across several areas of communication such as comprehension, pragmatics, phonology, semantics, and syntax (Ganz et al., 2022; Reichle, 2019). Researchers have found that communication skills can greatly impact academic, behavioral, social, and postsecondary outcomes (Carter et al., 2012; Chiang, 2008; Matson et al., 2013; Park et al., 2012; Pillay & Bronlow, 2017). Fortunately, augmentative and alternative communication (AAC) has been effectively used to increase communication for individuals with intellectual and developmental disabilities (IDD; Crowe et al., 2022). Most often, individuals with autism are only taught to request using single words or short phrases using AAC devices (Ganz et al., 2017; Muharib et al., 2018; Tincani et al., 2020). Another way to expand communication through AAC is to teach sentence structure. Researchers have used an intervention package consisting of response prompting, sentence frames, and technology like AAC to teach students with autism and CCN to construct sentences (Pennington et al., 2021; Pennington, Flick, et al. 2018; Pennington, Foreman, et al. 2018; Pennington & Rockhold, 2018). Additionally, matrix training has been used as a generative framework to increase language for individuals with autism who use vocal speech (Frampton et al., 2016, 2019; Jimenez-Gomez et al., 2019; Kohler & Malott, 2014) and AAC (Marya et al., 2021; Naoi et al., 2006; Nigam et al., 2006; Tönsing et al., 2014). This study examined the effects of matrix training, response prompting, and sentence frames on sentence writing for four students, ages 10–18 with ASD and CCN in a specialized private school located in the southeastern United States. Three teachers, ages 23–46 served as the interventionists in the study. A series of A-B designs with modifications was used to examine the effects of the intervention package on the percentage of trained and untrained correct sentences, percentage of subject-verb combinations, and the percentage of correct word selections. Teachers presented photos of subject-verb combinations for students to write about using pre-programmed arrays with words and symbol supports on speech-generating devices. Overall, results indicated that across all interventions, there were no effects on the percentage of trained and untrained correct sentences and subject-verb combinations for all participants. Two students, however, increased their percentage of correct word selections. Overall, teachers found the intervention acceptable and beneficial for students in the classroom. Furthermore, three of four students preferred this writing intervention over their typical writing instruction in the classroom. Implications of this study provide several considerations for practitioners who would like to use matrix training to teach subject-verb combinations and/or sentence writing with students who have autism and CCN.
IMAGES
VIDEO
COMMENTS
The Dissertation Proposal Announcement (see template above) must be submitted by email to BOTH JDP Co-Directors for final approval. Please make sure you copy your Dissertation Chair (and Co-Chair if applicable) on the email. The email should include the student's cell phone (or other phone numbers) so they can be called to discuss any ...
The proposal defense is open to the public, and will be posted on both the COEDU Advanced Graduate Student Canvas page and the GSO Dissertation Announcements webpage. Proposal defense sessions may be held virtually or face-to-face; virtual defenses should be hosted through Microsoft Teams if possible.
Proposal and Defense Announcement Samples. Thesis/Dissertation Proposal Guidelines (PDF) Sample Proposals. Biology ... Only manuscripts of students who have completed all thesis and dissertation milestones will be included in Digital Commons. Incorrectly formatted documents require a lot of student and administrative time, as they must be ...
The announcement must also be posted in a public forum for a minimum of twenty-four hours to comply with statute requirements for a public meeting. Below is a list of announcements for the current semester's Dissertation Proposals and Final Defense Sessions in the College of Education. NOTE: All Defenses are being held virtually at this time.
A sample dissertation announcement follows: Announcing the Final Examination of [your name] for the degree of [Doctor of Education/Doctor of Philosophy] Date of defense: _____ Time and room: _____ Dissertation Title: _____ (Sample below - length is at your discretion) The goal of this research was to increase the effectiveness of placement ...
Each student is required to pass an oral examination defending the proposed dissertation. This proposal defense must be publicly announced to all Joint Doctoral Program faculty, students, and staff a minimum of two weeks' before the defense date. Announcements are sent by e-mail. Dissertation Proposal Defense Announcement Template
Thesis or Dissertation Defense Announcement Form (posted electronically on Academic program or Departmental website, distributed electronically to appropriate list-serves, and posted on appropriate bulletin boards at least 7 days prior to scheduled date) ... Thesis or Dissertation Proposal Announcement Form Last modified by: Jennifer Palm Company:
Thesis or Dissertation Proposal Announcement Form. Thesis or Dissertation Defense Announcement Form. (posted electronically on Academic program or Departmental website, distributed electronically to appropriate list-serves, and posted on appropriate bulletin boards at least 7 days prior to scheduled date) Student's Name. Date and Time.
A copy of the dissertation proposal is available in the Office of Graduate Support (EDU 320) for review by interested faculty members. Disability Accommodations . If you require a reasonable accommodation to participate, please contact the Office of Diversity & Equal Opportunity at 813-974-4373 at least five (5) working days prior to the event.
The Graduate School hosts two info-sessions each semester about the thesis and dissertation formatting process. Make sure to follow weekly Graduate School Announcements emails for more information. Publishing Your Work: Thesis and Dissertation Formatting Workshop (Recorded January 14, 2021) Forms. Instructions for Thesis and Dissertation.
Luoxi Tan, CEAS Mon, 12 Aug 2024. '' Amphiphilic Co-solvent Partitioning in Biomembranes''. Maksym Krutko, CEAS Wed, 09 Jul 2025. '' Developing Piezoelectric Materials for Tissue Engineering''. View more dissertation defense announcements.
The dissertation/thesis defense must be open to the public and announced two weeks prior to the date of the defense. College Policy on Dissertation/Thesis Defenses. Thesis/Dissertation Approval Form. Thesis/Dissertation Approval Form - This form is used by Thesis and Dissertation students who have successfully defended. It will be started by ...
To request a dissertation announcement, please fill the out Dissertation Announcement Request Form. To request an invitation to attend a dissertation presentation via teleconference, please contact the presenter and/or their committee chairperson. Upcoming Presentations Karina Oliveira de Paula. Dissertation Proposal Presentation to Doctoral ...
Thesis or Dissertation Proposal Announcement Form. Thesis or Dissertation Defense Announcement Form. (posted electronically on Academic program or Departmental website, distributed electronically to appropriate list-serves, and posted on appropriate bulletin boards at least 7 days prior to scheduled date) Student's Name. G-number. Email address.
Contains a dissertation proposal. Please note: In order for a student currently enrolled in our MS program to switch to the Ph.D. program or to be considered for financial support, ... your defense announcement. After a successful dissertation defense, students must complete the following items.
This dissertation investigates the pivotal role of higher education institutions, specifically Historically Black Colleges and Universities (HBCUs) and Predominantly White Institutions (PWIs), in promoting the growth of the African American...
Submission of Announcement and List of Approved Defenses. Please submit thesis or dissertation final defense announcement at least 3 weeks prior to the defense date (requires 2nd review of thesis/dissertation document to have been processed by GSO) Submit your Embargo form to [email protected] at least two weeks before the second review of your ...
An official announcement of the dissertation defense must be distributed to all Joint Doctoral Program faculty, staff, and students following the same procedures outlined for the proposal defense two weeks prior to the scheduled final defense. Faculty/student notification is a requirement, not simply a courtesy.
A copy of the dissertation proposal is available in the Office of Graduate Support (EDU 320) for review by interested faculty members. Disability Accommodations. If you require a reasonable accommodation to participate, please contact the Office of Diversity & Equal Opportunity at 813-974-4373 at least five (5) working days prior to the event.
Updates and announcements Video and slides from Cultural Anthropology funding opportunity webinars, May and July, 2022 August 3, 2022 View more updates. Program contacts ... The proposer may concurrently submit a doctoral dissertation proposal to other funding organizations. Please indicate this in the "Current and Pending Support" section of ...
PhD Announcement of Dissertation Proposal Defense Dissertation Committee Members: (please print) Date and Time Building/Room# or via Zoom Title of my dissertation proposal: All members of my dissertation committee can attend the defense on the approved date and time. The chair and committee members all agree that the dissertation is an ...
The dissertation also presents an alcohol-mediated valence-state controlled synthesis method for selective preparation of pure corundum-structured V₂O₃ and anosovite V₃O₅ nanocrystals. Comprehensive characterization, including spectroscopic ellipsometry and diffuse reflectance spectroscopy, reveals unique optical properties deviating ...
A copy of the dissertation proposal is available in the Office of Graduate Support (EDU 320) for review by interested faculty members. Disability Accommodations . If you require a reasonable accommodation to participate, please contact the Office of Diversity & Equal Opportunity at 813-974-4373 at least five (5) working days prior to the event.
Approval of the dissertation topic, a successful dissertation proposal presentation to the entire graduate advisory committee, and IRB approval (where appropriate) must precede any ... Defense announcement immediately after dissertation defense Survey of Earned Doctorate within 2 weeks of defense
Thesis or Dissertation Proposal Announcement Form. Thesis or Dissertation Proposal Announcement Form. (posted electronically on Academic program or Departmental website, distributed electronically to appropriate list-serves, and posted on appropriate bulletin boards at least 7 days prior to scheduled date) Student's Name. G-number. Email address.