Copy assignment operator

(C++11)
(C++11)
(C++11)
General topics
statement
loop
loop (C++11)
loop
loop
statement
statement
(C++11)
Literals
(C++11)
(C++11)
expression
pointer
(C++11)
(C++11)
(C++11)

A copy assignment operator of class T is a non-template non-static member function with the name operator = that takes exactly one parameter of type T , T & , const T & , volatile T & , or const volatile T & . A type with a public copy assignment operator is CopyAssignable .

Syntax Explanation Implicitly-declared copy assignment operator Deleted implicitly-declared copy assignment operator Trivial copy assignment operator Implicitly-defined copy assignment operator Notes Copy and swap Example

[ edit ] Syntax

class_name class_name ( class_name ) (1) (since C++11)
class_name class_name ( const class_name ) (2) (since C++11)
class_name class_name ( const class_name ) = default; (3) (since C++11)
class_name class_name ( const class_name ) = delete; (4) (since C++11)

[ edit ] Explanation

  • Typical declaration of a copy assignment operator when copy-and-swap idiom can be used
  • Typical declaration of a copy assignment operator when copy-and-swap idiom cannot be used
  • Forcing a copy assignment operator to be generated by the compiler
  • Avoiding implicit copy assignment

The copy assignment operator is called whenever selected by overload resolution , e.g. when an object appears on the left side of an assignment expression.

[ edit ] Implicitly-declared copy assignment operator

If no user-defined copy assignment operators are provided for a class type ( struct , class , or union ), the compiler will always declare one as an inline public member of the class. This implicitly-declared copy assignment operator has the form T & T :: operator = ( const T & ) if all of the following is true:

  • each direct base B of T has a copy assignment operator whose parameters are B or const B& or const volatile B &
  • each non-static data member M of T of class type or array of class type has a copy assignment operator whose parameters are M or const M& or const volatile M &

Otherwise the implicitly-declared copy assignment operator is declared as T & T :: operator = ( T & ) . (Note that due to these rules, the implicitly-declared copy assignment operator cannot bind to a volatile lvalue argument)

A class can have multiple copy assignment operators, e.g. both T & T :: operator = ( const T & ) and T & T :: operator = ( T ) . If some user-defined copy assignment operators are present, the user may still force the generation of the implicitly declared copy assignment operator with the keyword default .

Because the copy assignment operator is always declared for any class, the base class assignment operator is always hidden. If a using-declaration is used to bring in the assignment operator from the base class, and its argument type could be the same as the argument type of the implicit assignment operator of the derived class, the using-declaration is also hidden by the implicit declaration.

[ edit ] Deleted implicitly-declared copy assignment operator

The implicitly-declared or defaulted copy assignment operator for class T is defined as deleted in any of the following is true:

  • T has a non-static data member that is const
  • T has a non-static data member of a reference type.
  • T has a non-static data member that cannot be copy-assigned (has deleted, inaccessible, or ambiguous copy assignment operator)
  • T has direct or virtual base class that cannot be copy-assigned (has deleted, inaccessible, or ambiguous move assignment operator)
  • T has a user-declared move constructor
  • T has a user-declared move assignment operator

[ edit ] Trivial copy assignment operator

The implicitly-declared copy assignment operator for class T is trivial if all of the following is true:

  • T has no virtual member functions
  • T has no virtual base classes
  • The copy assignment operator selected for every direct base of T is trivial
  • The copy assignment operator selected for every non-static class type (or array of class type) memeber of T is trivial

A trivial copy assignment operator makes a copy of the object representation as if by std:: memmove . All data types compatible with the C language (POD types) are trivially copy-assignable.

[ edit ] Implicitly-defined copy assignment operator

If the implicitly-declared copy assignment operator is not deleted or trivial, it is defined (that is, a function body is generated and compiled) by the compiler. For union types, the implicitly-defined copy assignment copies the object representation (as by std:: memmove ). For non-union class types ( class and struct ), the operator performs member-wise copy assignment of the object's bases and non-static members, in their initialization order, using, using built-in assignment for the scalars and copy assignment operator for class types.

The generation of the implicitly-defined copy assignment operator is deprecated (since C++11) if T has a user-declared destructor or user-declared copy constructor.

[ edit ] Notes

If both copy and move assignment operators are provided, overload resolution selects the move assignment if the argument is an rvalue (either prvalue such as a nameless temporary or xvalue such as the result of std:: move ), and selects the copy assignment if the argument is lvalue (named object or a function/operator returning lvalue reference). If only the copy assignment is provided, all argument categories select it (as long as it takes its argument by value or as reference to const, since rvalues can bind to const references), which makes copy assignment the fallback for move assignment, when move is unavailable.

[ edit ] Copy and swap

Copy assignment operator can be expressed in terms of copy constructor, destructor, and the swap() member function, if one is provided:

T & T :: operator = ( T arg ) { // copy/move constructor is called to construct arg     swap ( arg ) ;     // resources exchanged between *this and arg     return * this ; }   // destructor is called to release the resources formerly held by *this

For non-throwing swap(), this form provides strong exception guarantee . For rvalue arguments, this form automatically invokes the move constructor, and is sometimes referred to as "unifying assignment operator" (as in, both copy and move).

[ edit ] Example

  • C++ Data Types
  • C++ Input/Output
  • C++ Pointers
  • C++ Interview Questions
  • C++ Programs
  • C++ Cheatsheet
  • C++ Projects
  • C++ Exception Handling
  • C++ Memory Management

Copy Constructor vs Assignment Operator in C++

Copy constructor and Assignment operator are similar as they are both used to initialize one object using another object. But, there are some basic differences between them:

Copy constructor Assignment operator 
It is called when a new object is created from an existing object, as a copy of the existing objectThis operator is called when an already initialized object is assigned a new value from another existing object. 
It creates a separate memory block for the new object.It does not automatically create a separate memory block or new memory space. However, if the class involves dynamic memory management, the assignment operator must first release the existing memory on the left-hand side and then allocate new memory as needed to copy the data from the right-hand side.
It is an overloaded constructor.It is a bitwise operator. 
C++ compiler implicitly provides a copy constructor, if no copy constructor is defined in the class.A bitwise copy gets created, if the Assignment operator is not overloaded. 

className(const className &obj) {

// body 

}

 

className obj1, obj2;

obj2 = obj1;

Consider the following C++ program. 

Explanation: Here, t2 = t1;  calls the assignment operator , same as t2.operator=(t1); and   Test t3 = t1;  calls the copy constructor , same as Test t3(t1);

Must Read: When is a Copy Constructor Called in C++?

Please Login to comment...

Similar reads.

  • How to Get a Free SSL Certificate
  • Best SSL Certificates Provider in India
  • Elon Musk's xAI releases Grok-2 AI assistant
  • What is OpenAI SearchGPT? How it works and How to Get it?
  • Content Improvement League 2024: From Good To A Great Article

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

cppreference.com

Search

Copy assignment operator

(C++11)
(C++11)
(C++11)
General
Members
pointer
(C++11)
specifier
specifier
Special member functions
(C++11)
(C++11)
Inheritance
(C++11)
(C++11)

A copy assignment operator of class T is a non-template non-static member function with the name operator = that takes exactly one parameter of type T , T & , const T & , volatile T & , or const volatile T & . For a type to be CopyAssignable , it must have a public copy assignment operator.

Syntax Explanation Implicitly-declared copy assignment operator Deleted implicitly-declared copy assignment operator Trivial copy assignment operator Implicitly-defined copy assignment operator Notes Copy and swap Example

[ edit ] Syntax

class_name class_name ( class_name ) (1)
class_name class_name ( const class_name ) (2)
class_name class_name ( const class_name ) = default; (3) (since C++11)
class_name class_name ( const class_name ) = delete; (4) (since C++11)

[ edit ] Explanation

  • Typical declaration of a copy assignment operator when copy-and-swap idiom can be used
  • Typical declaration of a copy assignment operator when copy-and-swap idiom cannot be used (non-swappable type or degraded performance)
  • Forcing a copy assignment operator to be generated by the compiler
  • Avoiding implicit copy assignment

The copy assignment operator is called whenever selected by overload resolution , e.g. when an object appears on the left side of an assignment expression.

[ edit ] Implicitly-declared copy assignment operator

If no user-defined copy assignment operators are provided for a class type ( struct , class , or union ), the compiler will always declare one as an inline public member of the class. This implicitly-declared copy assignment operator has the form T & T :: operator = ( const T & ) if all of the following is true:

  • each direct base B of T has a copy assignment operator whose parameters are B or const B& or const volatile B &
  • each non-static data member M of T of class type or array of class type has a copy assignment operator whose parameters are M or const M& or const volatile M &

Otherwise the implicitly-declared copy assignment operator is declared as T & T :: operator = ( T & ) . (Note that due to these rules, the implicitly-declared copy assignment operator cannot bind to a volatile lvalue argument)

A class can have multiple copy assignment operators, e.g. both T & T :: operator = ( const T & ) and T & T :: operator = ( T ) . If some user-defined copy assignment operators are present, the user may still force the generation of the implicitly declared copy assignment operator with the keyword default . (since C++11)

Because the copy assignment operator is always declared for any class, the base class assignment operator is always hidden. If a using-declaration is used to bring in the assignment operator from the base class, and its argument type could be the same as the argument type of the implicit assignment operator of the derived class, the using-declaration is also hidden by the implicit declaration.

[ edit ] Deleted implicitly-declared copy assignment operator

A implicitly-declared copy assignment operator for class T is defined as deleted if any of the following is true:

  • T has a user-declared move constructor
  • T has a user-declared move assignment operator

Otherwise, it is defined as defaulted.

A defaulted copy assignment operator for class T is defined as deleted if any of the following is true:

  • T has a non-static data member of non-class type (or array thereof) that is const
  • T has a non-static data member of a reference type.
  • T has a non-static data member or a direct or virtual base class that cannot be copy-assigned (overload resolution for the copy assignment fails, or selects a deleted or inaccessible function)
  • T is a union-like class , and has a variant member whose corresponding assignment operator is non-trivial.

[ edit ] Trivial copy assignment operator

The copy assignment operator for class T is trivial if all of the following is true:

  • It is not user-provided (meaning, it is implicitly-defined or defaulted), and if it is defaulted, its signature is the same as implicitly-defined
  • T has no virtual member functions
  • T has no virtual base classes
  • The copy assignment operator selected for every direct base of T is trivial
  • The copy assignment operator selected for every non-static class type (or array of class type) member of T is trivial
has no non-static data members of -qualified type (since C++14)

A trivial copy assignment operator makes a copy of the object representation as if by std::memmove . All data types compatible with the C language (POD types) are trivially copy-assignable.

[ edit ] Implicitly-defined copy assignment operator

If the implicitly-declared copy assignment operator is neither deleted nor trivial, it is defined (that is, a function body is generated and compiled) by the compiler if odr-used . For union types, the implicitly-defined copy assignment copies the object representation (as by std::memmove ). For non-union class types ( class and struct ), the operator performs member-wise copy assignment of the object's bases and non-static members, in their initialization order, using built-in assignment for the scalars and copy assignment operator for class types.

The generation of the implicitly-defined copy assignment operator is deprecated (since C++11) if T has a user-declared destructor or user-declared copy constructor.

[ edit ] Notes

If both copy and move assignment operators are provided, overload resolution selects the move assignment if the argument is an rvalue (either prvalue such as a nameless temporary or xvalue such as the result of std::move ), and selects the copy assignment if the argument is lvalue (named object or a function/operator returning lvalue reference). If only the copy assignment is provided, all argument categories select it (as long as it takes its argument by value or as reference to const, since rvalues can bind to const references), which makes copy assignment the fallback for move assignment, when move is unavailable.

It is unspecified whether virtual base class subobjects that are accessible through more than one path in the inheritance lattice, are assigned more than once by the implicitly-defined copy assignment operator (same applies to move assignment ).

[ edit ] Copy and swap

Copy assignment operator can be expressed in terms of copy constructor, destructor, and the swap() member function, if one is provided:

T & T :: operator = ( T arg ) { // copy/move constructor is called to construct arg     swap ( arg ) ;     // resources exchanged between *this and arg     return * this ; }   // destructor is called to release the resources formerly held by *this

For non-throwing swap(), this form provides strong exception guarantee . For rvalue arguments, this form automatically invokes the move constructor, and is sometimes referred to as "unifying assignment operator" (as in, both copy and move). However, this approach is not always advisable due to potentially significant overhead: see assignment operator overloading for details.

[ edit ] Example

  • Recent changes
  • Offline version
  • What links here
  • Related changes
  • Upload file
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • In other languages
  • This page was last modified on 30 November 2015, at 07:24.
  • This page has been accessed 110,155 times.
  • Privacy policy
  • About cppreference.com
  • Disclaimers

Powered by MediaWiki

Copy assignment operator

(C++11)
(C++11)
(C++11)
General
Members
pointer
initializer(C++11)
specifier
Special member functions
(C++11)
(C++11)
Inheritance
(C++11)
(C++11)

A copy assignment operator of class T is a non-template non-static member function with the name operator = that takes exactly one parameter of type T , T & , const T & , volatile T & , or const volatile T & . A type with a public copy assignment operator is CopyAssignable .

Syntax Explanation Implicitly-declared copy assignment operator Deleted implicitly-declared copy assignment operator Trivial copy assignment operator Implicitly-defined copy assignment operator Notes Copy and swap Example

[ edit ] Syntax

class_name class_name ( class_name ) (1)
class_name class_name ( const class_name ) (2)
class_name class_name ( const class_name ) = default; (3) (since C++11)
class_name class_name ( const class_name ) = delete; (4) (since C++11)

[ edit ] Explanation

  • Typical declaration of a copy assignment operator when copy-and-swap idiom can be used
  • Typical declaration of a copy assignment operator when copy-and-swap idiom cannot be used
  • Forcing a copy assignment operator to be generated by the compiler
  • Avoiding implicit copy assignment

The copy assignment operator is called whenever selected by overload resolution , e.g. when an object appears on the left side of an assignment expression.

[ edit ] Implicitly-declared copy assignment operator

If no user-defined copy assignment operators are provided for a class type ( struct , class , or union ), the compiler will always declare one as an inline public member of the class. This implicitly-declared copy assignment operator has the form T & T :: operator = ( const T & ) if all of the following is true:

  • each direct base B of T has a copy assignment operator whose parameters are B or const B& or const volatile B &
  • each non-static data member M of T of class type or array of class type has a copy assignment operator whose parameters are M or const M& or const volatile M &

Otherwise the implicitly-declared copy assignment operator is declared as T & T :: operator = ( T & ) . (Note that due to these rules, the implicitly-declared copy assignment operator cannot bind to a volatile lvalue argument)

A class can have multiple copy assignment operators, e.g. both T & T :: operator = ( const T & ) and T & T :: operator = ( T ) . If some user-defined copy assignment operators are present, the user may still force the generation of the implicitly declared copy assignment operator with the keyword default . (since C++11)

Because the copy assignment operator is always declared for any class, the base class assignment operator is always hidden. If a using-declaration is used to bring in the assignment operator from the base class, and its argument type could be the same as the argument type of the implicit assignment operator of the derived class, the using-declaration is also hidden by the implicit declaration.

[ edit ] Deleted implicitly-declared copy assignment operator

The implicitly-declared or defaulted copy assignment operator for class T is defined as deleted in any of the following is true:

  • T has a non-static data member that is const
  • T has a non-static data member of a reference type.
  • T has a non-static data member that cannot be copy-assigned (has deleted, inaccessible, or ambiguous copy assignment operator)
  • T has direct or virtual base class that cannot be copy-assigned (has deleted, inaccessible, or ambiguous move assignment operator)
  • T has a user-declared move constructor
  • T has a user-declared move assignment operator

[ edit ] Trivial copy assignment operator

The copy assignment operator for class T is trivial if all of the following is true:

  • The operator is not user-provided (meaning, it is implicitly-defined or defaulted), and if it is defaulted, its signature is the same as implicitly-defined
  • T has no virtual member functions
  • T has no virtual base classes
  • The copy assignment operator selected for every direct base of T is trivial
  • The copy assignment operator selected for every non-static class type (or array of class type) memeber of T is trivial
has no non-static data members of -qualified type (since C++14)

A trivial copy assignment operator makes a copy of the object representation as if by std::memmove . All data types compatible with the C language (POD types) are trivially copy-assignable.

[ edit ] Implicitly-defined copy assignment operator

If the implicitly-declared copy assignment operator is not deleted or trivial, it is defined (that is, a function body is generated and compiled) by the compiler. For union types, the implicitly-defined copy assignment copies the object representation (as by std::memmove ). For non-union class types ( class and struct ), the operator performs member-wise copy assignment of the object's bases and non-static members, in their initialization order, using, using built-in assignment for the scalars and copy assignment operator for class types.

The generation of the implicitly-defined copy assignment operator is deprecated (since C++11) if T has a user-declared destructor or user-declared copy constructor.

[ edit ] Notes

If both copy and move assignment operators are provided, overload resolution selects the move assignment if the argument is an rvalue (either prvalue such as a nameless temporary or xvalue such as the result of std::move ), and selects the copy assignment if the argument is lvalue (named object or a function/operator returning lvalue reference). If only the copy assignment is provided, all argument categories select it (as long as it takes its argument by value or as reference to const, since rvalues can bind to const references), which makes copy assignment the fallback for move assignment, when move is unavailable.

[ edit ] Copy and swap

Copy assignment operator can be expressed in terms of copy constructor, destructor, and the swap() member function, if one is provided:

T & T :: operator = ( T arg ) { // copy/move constructor is called to construct arg     swap ( arg ) ;     // resources exchanged between *this and arg     return * this ; }   // destructor is called to release the resources formerly held by *this

For non-throwing swap(), this form provides strong exception guarantee . For rvalue arguments, this form automatically invokes the move constructor, and is sometimes referred to as "unifying assignment operator" (as in, both copy and move).

[ edit ] Example

  • Graphics and multimedia
  • Language Features
  • Unix/Linux programming
  • Source Code
  • Standard Library
  • Tips and Tricks
  • Tools and Libraries
  • Windows API
  • Copy constructors, assignment operators,

Copy constructors, assignment operators, and exception safe assignment

*

MyClass& other ); MyClass( MyClass& other ); MyClass( MyClass& other ); MyClass( MyClass& other );
MyClass* other );
MyClass { x; c; std::string s; };
MyClass& other ) : x( other.x ), c( other.c ), s( other.s ) {}
);
print_me_bad( std::string& s ) { std::cout << s << std::endl; } print_me_good( std::string& s ) { std::cout << s << std::endl; } std::string hello( ); print_me_bad( hello ); print_me_bad( std::string( ) ); print_me_bad( ); print_me_good( hello ); print_me_good( std::string( ) ); print_me_good( );
, );
=( MyClass& other ) { x = other.x; c = other.c; s = other.s; * ; }
< T > MyArray { size_t numElements; T* pElements; : size_t count() { numElements; } MyArray& =( MyArray& rhs ); };
<> MyArray<T>:: =( MyArray& rhs ) { ( != &rhs ) { [] pElements; pElements = T[ rhs.numElements ]; ( size_t i = 0; i < rhs.numElements; ++i ) pElements[ i ] = rhs.pElements[ i ]; numElements = rhs.numElements; } * ; }
<> MyArray<T>:: =( MyArray& rhs ) { MyArray tmp( rhs ); std::swap( numElements, tmp.numElements ); std::swap( pElements, tmp.pElements ); * ; }
< T > swap( T& one, T& two ) { T tmp( one ); one = two; two = tmp; }
<> MyArray<T>:: =( MyArray tmp ) { std::swap( numElements, tmp.numElements ); std::swap( pElements, tmp.pElements ); * ; }
  • Network Programming
  • Windows Programming
  • Visual Studio
  • Visual Basic

Logo

CodeGuru content and product recommendations are editorially independent. We may make money when you click on links to our partners. Learn More .

Copy Constructors and Assignment Operators: Just Tell Me the Rules! Part I

I get asked this question sometimes from seasoned programmers who are new to C++. There are plenty of good books written on the subject, but I found no clear and concise set of rules on the Internet for those who don’t want to understand every nuance of the language—and just want the facts.

Hence this article.

The purpose of copy constructors and assignment operators is easy to understand when you realize that they’re always there even if you don’t write them, and that they have a default behavior that you probably already understand. Every struct and class have a default copy constructor and assignment operator method. Look at a simple use of these.

Start with a struct called Rect with a few fields:

Yes, even a struct as simple as this has a copy constructor and assignment operator. Now, look at this code:

Line 2 invokes the default copy constructor for r2, copying into it the members from r1. Line 3 does something similar, but invokes the default assignment operator of r3, copying into it the members from r1. The difference between the two is that the copy constructor of the target is invoked when the source object is passed in at the time the target is constructed, such as in line 2. The assignment operator is invoked when the target object already exists, such as on line 4.

Looking at what the default implementation produces, examine what Line 4 ends up doing:

So, if the default copy constructor and assignment operators do all this for you, why would anyone implement their own? The problem with the default implementations is that a simple copy of the members may not be appropriate to clone an object. For instance, what if one of the members were a pointer that is allocated by the class? Simply copying the pointer isn’t enough because now you’ll have two objects that have the same pointer value, and both objects will try to free the memory associated with that pointer when they destruct. Look at an example class:

Now, look at some code that uses this class:

The problem is, c1 and c2 will have the same pointer value for the “name” field. When c2 goes out of scope, its destructor will get called and delete the memory that was allocated when c1 was constructed (because the name field of both objects have the same pointer value). Then, when c1 destructs, it will attempt to delete the pointer value, and a “double-free” occur. At best, the heap will catch the problem and report an error. At worst, the same pointer value may, by then, be allocated to another object, the delete will free the wrong memory, and this will introduce a difficult-to-find bug in the code.

The way you want to solve this is by adding an explicit copy constructor and an assignment operator to the class, like so:

Now, the code that uses the class will function properly. Note that the difference between the copy constructor and assignment operator above is that the copy constructor can assume that fields of the object have not been set yet (because the object is just being constructed). However, the assignment operator must handle the case when the fields already have valid values. The assignment operator deletes the contents of the existing string before assigning the new string. You might ask why the tempName local variable is used, and why the code isn’t written as follows instead:

The problem with this code is that if the new operator throws an exception, the object will be left in a bad state because the name field would have already been freed by the previous instruction. By performing all the operations that could fail first and then replacing the fields once there’s no chance of an exception from occurring, the code is exception safe.

Note: The reason the assignment operator returns a reference to the object is so that code such as the following will work: c1 = c2 = c3;

One might think that the case when an explicit copy constructor and assignment operator methods are necessary is when a class or struct contains pointer fields. This is not the case. In the case above, the explicit methods were needed because the data pointed to by the field is owned by the object. If the pointer is a “back” (or weak) pointer, or a reference to some other object that the class is not responsible for releasing, it may be perfectly valid to have more than one object share the value in a pointer field.

There are times when a class field actually refers to some entity that cannot be copied, or it does not make sense to be copied. For instance, what if the field were a handle to a file that it created? It’s possible that copying the object might require that another file be created that has its own handle. But, it’s also possible that more than one file cannot be created for the given object. In this case, there cannot be a valid copy constructor or assignment operator for the class. As you have seen earlier, simply not implementing them does not mean that they won’t exist, because the compiler supplies the default versions when explicit versions aren’t specified. The solution is to provide copy constructors and assignment operators in the class and mark them as private. As long as no code tries to copy the object, everything will work fine, but as soon as code is introduced that attempts to copy the object, the compiler will indicate an error that the copy constructor or assignment operator cannot be accessed.

To create a private copy constructor and assignment operator, one does not need to supply implementation for the methods. Simply prototyping them in the class definition is enough. Example:

Some people wish that C++ did not provide an implicit copy constructor and assignment operator if one isn’t provided. They automatically define a private copy constructor and assignment operator automatically when they define a new class. That way, it will prevent anyone from copying their object unless the explicitly support such an operation. This is generally a good practice.

CodeGuru Staff

More by Author

Best video game development tools, video game careers overview, the top task management software for developers, best online courses for .net developers, news & trends, dealing with non-cls exceptions in .net, online courses to learn video game development, get the free newsletter.

Subscribe to Developer Insider for top news, trends & analysis

Best Online Courses to Learn C++

CodeGuru covers topics related to Microsoft-related software development, mobile development, database management, and web application programming. In addition to tutorials and how-tos that teach programmers how to code in Microsoft-related languages and frameworks like C# and .Net, we also publish articles on software development tools, the latest in developer news, and advice for project managers. Cloud services such as Microsoft Azure and database options including SQL Server and MSSQL are also frequently covered.

Advertisers

Advertise with TechnologyAdvice on CodeGuru and our other developer-focused platforms.

  • Privacy Policy
  • California – Do Not Sell My Information

Property of TechnologyAdvice. © 2023 TechnologyAdvice. All Rights Reserved Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.

This browser is no longer supported.

Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

C++ At Work

Copy Constructors, Assignment Operators, and More

Paul DiLascia

Code download available at: CAtWork0509.exe (276 KB) Browse the Code Online

Q I have a simple C++ problem. I want my copy constructor and assignment operator to do the same thing. Can you tell me the best way to accomplish this?

A At first glance this seems like a simple question with a simple answer: just write a copy constructor that calls operator=.

Or, alternatively, write a common copy method and call it from both your copy constructor and operator=, like so:

This code works fine for many classes, but there's more here than meets the eye. In particular, what happens if your class contains instances of other classes as members? To find out, I wrote the test program in Figure 1 . It has a main class, CMainClass, which contains an instance of another class, CMember. Both classes have a copy constructor and assignment operator, with the copy constructor for CMainClass calling operator= as in the first snippet. The code is sprinkled with printf statements to show which methods are called when. To exercise the constructors, cctest first creates an instance of CMainClass using the default ctor, then creates another instance using the copy constructor:

Figure 1 Copy Constructors and Assignment Operators

If you compile and run cctest, you'll see the following printf messages when cctest constructs obj2:

The member object m_obj got initialized twice! First by the default constructor, and again via assignment. Hey, what's going on?

In C++, assignment and copy construction are different because the copy constructor initializes uninitialized memory, whereas assignment starts with an existing initialized object. If your class contains instances of other classes as data members, the copy constructor must first construct these data members before it calls operator=. The result is that these members get initialized twice, as cctest shows. Got it? It's the same thing that happens with the default constructor when you initialize members using assignment instead of initializers. For example:

As opposed to:

Using assignment, m_obj is initialized twice; with the initializer syntax, only once. So, what's the solution to avoid extra initializations during copy construction? While it goes against your instinct to reuse code, this is one situation where it's best to implement your copy constructor and assignment operator separately, even if they do the same thing. Calling operator= from your copy constructor will certainly work, but it's not the most efficient implementation. My observation about initializers suggests a better way:

Now the main copy ctor calls the member object's copy ctor using an initializer, and m_obj is initialized just once by its copy ctor. In general, copy ctors should invoke the copy ctors of their members. Likewise for assignment. And, I may as well add, the same goes for base classes: your derived copy ctor and assignment operators should invoke the corresponding base class methods. Of course, there are always times when you may want to do something different because you know how your code works—but what I've described are the general rules, which are to be broken only when you have a compelling reason. If you have common tasks to perform after the basic objects have been initialized, you can put them in a common initialization method and call it from your constructors and operator=.

Q Can you tell me how to call a Visual C++® class from C#, and what syntax I need to use for this?

Sunil Peddi

Q I have an application that is written in both C# (the GUI) and in classic C++ (some business logic). Now I need to call from a DLL written in C++ a function (or a method) in a DLL written in Visual C++ .NET. This one calls another DLL written in C#. The Visual C++ .NET DLL acts like a proxy. Is this possible? I was able to use LoadLibrary to call a function present in the Visual C++ .NET DLL, and I can receive a return value, but when I try to pass some parameters to the function in the Visual C++ .NET DLL, I get the following error:

How can I resolve this problem?

Giuseppe Dattilo

A I get a lot of questions about interoperability between the Microsoft® .NET Framework and native C++, so I don't mind revisiting this well-covered topic yet again. There are two directions you can go: calling the Framework from C++ or calling C++ from the Framework. I won't go into COM interop here as that's a separate issue best saved for another day.

Let's start with the easiest one first: calling the Framework from C++. The simplest and easiest way to call the Framework from your C++ program is to use the Managed Extensions. These Microsoft-specific C++ language extensions are designed to make calling the Framework as easy as including a couple of files and then using the classes as if they were written in C++. Here's a very simple C++ program that calls the Framework's Console class:

To use the Managed Extensions, all you need to do is import <mscorlib.dll> and whatever .NET assemblies contain the classes you plan to use. Don't forget to compile with /clr:

Your C++ code can use managed classes more or less as if they were ordinary C++ classes. For example, you can create Framework objects with operator new, and access them using C++ pointer syntax, as shown in the following:

Here, the String s is declared as pointer-to-String because String::Format returns a new String object.

The "Hello, world" and date/time programs seem childishly simple—and they are—but just remember that however complex your program is, however many .NET assemblies and classes you use, the basic idea is the same: use <mscorlib.dll> and whatever other assemblies you need, then create managed objects with new, and use pointer syntax to access them.

So much for calling the Framework from C++. What about going the other way, calling C++ from the Framework? Here the road forks into two options, depending on whether you want to call extern C functions or C++ class member functions. Again, I'll take the simpler case first: calling C functions from .NET. The easiest thing to do here is use P/Invoke. With P/Invoke, you declare the external functions as static methods of a class, using the DllImport attribute to specify that the function lives in an external DLL. In C# it looks like this:

This tells the compiler that MessageBox is a function in user32.dll that takes an IntPtr (HWND), two Strings, and an int. You can then call it from your C# program like so:

Of course, you don't need P/Invoke for MessageBox since the .NET Framework already has a MessageBox class, but there are plenty of API functions that aren't supported directly by the Framework, and then you need P/Invoke. And, of course, you can use P/Invoke to call C functions in your own DLLs. I've used C# in the example, but P/Invoke works with any .NET-based language like Visual Basic® .NET or JScript®.NET. The names are the same, only the syntax is different.

Note that I used IntPtr to declare the HWND. I could have got away with int, but you should always use IntPtr for any kind of handle such as HWND, HANDLE, or HDC. IntPtr will default to 32 or 64 bits depending on the platform, so you never have to worry about the size of the handle.

DllImport has various modifiers you can use to specify details about the imported function. In this example, CharSet=CharSet.Auto tells the Framework to pass Strings as Unicode or Ansi, depending on the target operating system. Another little-known modifier you can use is CallingConvention. Recall that in C, there are different calling conventions, which are the rules that specify how the compiler should pass arguments and return values from one function to another across the stack. The default CallingConvention for DllImport is CallingConvention.Winapi. This is actually a pseudo-convention that uses the default convention for the target platform; for example, StdCall (in which the callee cleans the stack) on Windows® platforms and CDecl (in which the caller cleans the stack) on Windows CE .NET. CDecl is also used with varargs functions like printf.

The calling convention is where Giuseppe ran into trouble. C++ uses yet a third calling convention: thiscall. With this convention, the compiler uses the hardware register ECX to pass the "this" pointer to class member functions that don't have variable arguments. Without knowing the exact details of Giuseppe's program, it sounds from the error message that he's trying to call a C++ member function that expects thiscall from a C# program that's using StdCall—oops!

Aside from calling conventions, another interoperability issue when calling C++ methods from the Framework is linkage: C and C++ use different forms of linkage because C++ requires name-mangling to support function overloading. That's why you have to use extern "C" when you declare C functions in C++ programs: so the compiler won't mangle the name. In Windows, the entire windows.h file (now winuser.h) is enclosed in extern "C" brackets.

While there may be a way to call C++ member functions in a DLL directly using P/Invoke and DllImport with the exact mangled names and CallingConvention=ThisCall, it's not something to attempt if you're in your right mind. The proper way to call C++ classes from managed code—option number two—is to wrap your C++ classes in managed wrappers. Wrapping can be tedious if you have lots of classes, but it's really the only way to go. Say you have a C++ class CWidget and you want to wrap it so .NET clients can use it. The basic formula looks something like this:

The pattern is the same for any class. You write a managed (__gc) class that holds a pointer to the native class, you write a constructor and destructor that allocate and destroy the instance, and you write wrapper methods that call the corresponding native C++ member functions. You don't have to wrap all the member functions, only the ones you want to expose to the managed world.

Figure 2 shows a simple but concrete example in full detail. CPerson is a class that holds the name of a person, with member functions GetName and SetName to change the name. Figure 3 shows the managed wrapper for CPerson. In the example, I converted Get/SetName to a property, so .NET-based programmers can use the property syntax. In C#, using it looks like this:

Figure 3 Managed Person Class

Figure 2 Native CPerson Class

Using properties is purely a matter of style; I could equally well have exposed two methods, GetName and SetName, as in the native class. But properties feel more like .NET. The wrapper class is an assembly like any other, but one that links with the native DLL. This is one of the cool benefits of the Managed Extensions: You can link directly with native C/C++ code. If you download and compile the source for my CPerson example, you'll see that the makefile generates two separate DLLs: person.dll implements a normal native DLL and mperson.dll is the managed assembly that wraps it. There are also two test programs: testcpp.exe, a native C++ program that calls the native person.dll and testcs.exe, which is written in C# and calls the managed wrapper mperson.dll (which in turn calls the native person.dll).

Figure 4** Interop Highway **

I've used a very simple example to highlight the fact that there are fundamentally only a few main highways across the border between the managed and native worlds (see Figure 4 ). If your C++ classes are at all complex, the biggest interop problem you'll encounter is converting parameters between native and managed types, a process called marshaling. The Managed Extensions do an admirable job of making this as painless as possible (for example, automatically converting primitive types and Strings), but there are times where you have to know something about what you're doing.

For example, you can't pass the address of a managed object or subobject to a native function without pinning it first. That's because managed objects live in the managed heap, which the garbage collector is free to rearrange. If the garbage collector moves an object, it can update all the managed references to that object—but it knows nothing of raw native pointers that live outside the managed world. That's what __pin is for; it tells the garbage collector: don't move this object. For strings, the Framework has a special function PtrToStringChars that returns a pinned pointer to the native characters. (Incidentally, for those curious-minded souls, PtrToStringChars is the only function as of this date defined in <vcclr.h>. Figure 5 shows the code.) I used PtrToStringChars in MPerson to set the Name (see Figure 3 ).

Figure 5 PtrToStringChars

Pinning isn't the only interop problem you'll encounter. Other problems arise if you have to deal with arrays, references, structs, and callbacks, or access a subobject within an object. This is where some of the more advanced techniques come in, such as StructLayout, boxing, __value types, and so on. You also need special code to handle exceptions (native or managed) and callbacks/delegates. But don't let these interop details obscure the big picture. First decide which way you're calling (from managed to native or the other way around), and if you're calling from managed to native, whether to use P/Invoke or a wrapper.

In Visual Studio® 2005 (which some of you may already have as beta bits), the Managed Extensions have been renamed and upgraded to something called C++/CLI. Think of the C++/CLI as Managed Extensions Version 2, or What the Managed Extensions Should Have Been. The changes are mostly a matter of syntax, though there are some important semantic changes, too. In general C++/CLI is designed to highlight rather than blur the distinction between managed and native objects. Using pointer syntax for managed objects was a clever and elegant idea, but in the end perhaps a little too clever because it obscures important differences between managed and native objects. C++/CLI introduces the key notion of handles for managed objects, so instead of using C pointer syntax for managed objects, the CLI uses ^ (hat):

As you no doubt noticed, there's also a gcnew operator to clarify when you're allocating objects on the managed heap as opposed to the native one. This has the added benefit that gcnew doesn't collide with C++ new, which can be overloaded or even redefined as a macro. C++/CLI has many other cool features designed to make interoperability as straightforward and intuitive as possible.

Send your questions and comments for Paul to   [email protected] .

Paul DiLascia is a freelance software consultant and Web/UI designer-at-large. He is the author of Windows ++: Writing Reusable Windows Code in C ++ (Addison-Wesley, 1992). In his spare time, Paul develops PixieLib, an MFC class library available from his Web site, www.dilascia.com .

Additional resources

14.14 — Introduction to the copy constructor

The copy constructor

This is illustrated in the following example:

  • Stack Overflow for Teams Where developers & technologists share private knowledge with coworkers
  • Advertising & Talent Reach devs & technologists worldwide about your product, service or employer brand
  • OverflowAI GenAI features for Teams
  • OverflowAPI Train & fine-tune LLMs
  • Labs The future of collective knowledge sharing
  • About the company Visit the blog

Collectives™ on Stack Overflow

Find centralized, trusted content and collaborate around the technologies you use most.

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

Get early access and see previews of new features.

C: does the assignment operator deep copy?

For scalar values, the assignment operator seems to copy the right-hand side value to the left. How does that work for composite data types? Eg, if I have a nested struct

does the assignment recursively deep copy the values?
does the same happen when passing the struct to a function?
By experimenting it seems like it does, but can anyone point to the specification of the behavior?
  • assignment-operator

Lundin's user avatar

  • 4 I wouldn't call what you are doing a "deep copy". I would reserve that term for a data structure containing pointers to things that also need to be copied, and a simple assignment doesn't do that. –  Ian Abbott Commented Jun 11, 2019 at 10:54
  • 1 Note that struct outer s2 = s1; isn't an assignment but initialization. –  KamilCuk Commented Jun 11, 2019 at 11:04
  • @KamilCuk: correct. but, isn't equivalent in terms of copying? –  aris Commented Jun 11, 2019 at 11:05
  • @KamilCuk That's not entirely relevant in C though, since we have 6.7.9 Initialization §11: "the same type constraints and conversions as for simple assignment apply". C++ is another story entirely. –  Lundin Commented Jun 11, 2019 at 11:07

2 Answers 2

There is no "recursion"; it copies all the (value) bits of the value. Pointers are not magically followed of course, the assignment operator wouldn't know how to duplicate the pointed-to data.

You can think of

as shorthand for

The sizeof is misleading of course, since we know the types are the same on both sides but I don't think __typeof__ helps.

The draft C11 spec says (in 6.5.16.1 Simple assignment, paragraph 2):

In simple assignment ( = ), the value of the right operand is converted to the type of the assignment expression and replaces the value stored in the object designated by the left operand.

unwind's user avatar

  • The term recursion is often formally used in the standard though, for iterating through a structs members, without it having anything to do with recursive functions. Take the rules of 6.5 pointer aliasing for example: "- an aggregate or union type that includes one of the aforementioned types among its members (including, recursively , a member of a subaggregate or contained union)". Or the rules of struct initialization: "if it is an aggregate, every member is initialized (recursively) according to these rules, and any padding is initialized to zero bits;" –  Lundin Commented Jun 11, 2019 at 10:50

Yes, just as if you would have used memcpy . Pointers are copied, but not what they point at. The term "deep copy" often means: also copy what the pointers point at (for example in a C++ copy constructor).

Except the values of any padding bytes may hold indeterminate values. (Meaning that memcmp on a struct might be unsafe.)

Yes. See the reference to 6.5.2.2 below.

C17 6.5.16:

An assignment operator stores a value in the object designated by the left operand. An assignment expression has the value of the left operand after the assignment, but is not an lvalue. The type of an assignment expression is the type the left operand would have after lvalue conversion.

(Lvalue conversion in this case isn't relevant, since both structs must be of 100% identical and compatible types. Simply put: two structs are compatible if they have exactly the same members.)

C17 6.5.16.1 Simple assignment:

the left operand has an atomic, qualified, or unqualified version of a structure or union type compatible with the type of the right;

C17 6.5.2.2 Function calls, §7:

If the expression that denotes the called function has a type that does include a prototype, the arguments are implicitly converted, as if by assignment, ...
  • 1 Two structure or union types must also have the same tag (or both be untagged) to be compatible. Member correspondence is not enough. In practice, it follows that inside a code block, a structure or union type is compatible only with itself. –  John Bollinger Commented Jun 11, 2019 at 12:00
  • @JohnBollinger Yep but I didn't want to drag the whole compatible struct definition into this answer since it is complex, hence "simply put". For those who are interested, it's the first wall of text below chapter 6.2.7 in the standard. –  Lundin Commented Jun 11, 2019 at 15:00
  • I understand what you're doing, and I know you were already aware of the details of struct compatibility. It's not necessary to go into the full details here, but I think it's important to convey that member correspondence is not enough, because that would be an easy misunderstanding for an inexperienced person to take away. –  John Bollinger Commented Jun 11, 2019 at 15:11
  • 1 @JohnBollinger To make matters worse, you can have two structs with same members but different tags or names. They are not compatible types, but you can in theory lvalue access their data through pointers by using the "union common initial sequence hack". Which is an obscure rule that has caused various standard DR and compiler bug reports. stackoverflow.com/a/54571011/584518 –  Lundin Commented Jun 11, 2019 at 15:17

Your Answer

Reminder: Answers generated by artificial intelligence tools are not allowed on Stack Overflow. Learn more

Sign up or log in

Post as a guest.

Required, but never shown

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy .

Not the answer you're looking for? Browse other questions tagged c struct assignment-operator or ask your own question .

  • The Overflow Blog
  • LLMs evolve quickly. Their underlying architecture, not so much.
  • From PHP to JavaScript to Kubernetes: how one backend engineer evolved over time
  • Featured on Meta
  • We've made changes to our Terms of Service & Privacy Policy - July 2024
  • Bringing clarity to status tag usage on meta sites
  • Feedback requested: How do you use tag hover descriptions for curating and do...
  • What does a new user need in a homepage experience on Stack Overflow?
  • Staging Ground Reviewer Motivation

Hot Network Questions

  • "can-do" vs. "can-explain" fallacy
  • Crystal Oscillator Waveform
  • Why cant we save the heat rejected in a heat engine?
  • If physics can be reduced to mathematics (and thus to logic), does this mean that (physical) causation is ultimately reducible to implication?
  • Could a minineptune host life at the surface with gas giant-style storms up above?
  • How to make a ParametricPlot3D into solid shape
  • Why are volumes of revolution typically taught in Calculus 2 and not Calculus 3?
  • Can light become a satellite of a black hole?
  • Canceling factors in a ratio of factorials
  • Meaning of て form here: 「あなたどう思って?」と聞いた。
  • Is the error in translation of Genesis 19:5 deliberate?
  • Which cards use −5 V and −12 V in IBM PC compatible systems?
  • How could Bangladesh protect itself from Indian dams and barrages?
  • Need strftime() output in the buffer
  • A simplified Blackjack C++ OOP console game
  • Is it OK to make an "offshape" bid if you can handle any likely response?
  • Why doesn't the world fill with time travelers?
  • Why does a 240V dryer heating element have 3+1 terminals?
  • Hotspot vs home internet
  • Order of connection using digital multimeter wall outlet
  • default-valued optional (boolean) parameter for a new command in tikz
  • What is LED starter?
  • Submitting a paper as a nonacademic practitioner in a field
  • Repeating zsh brace expansion values in zsh to download multiple files using wget2

c make copy assignment operator

IMAGES

  1. [100% Working Code]

    c make copy assignment operator

  2. Difference between copy constructor and assignment operator in c++

    c make copy assignment operator

  3. Programming example: Copy assignment operator

    c make copy assignment operator

  4. What is assignment operator in C with example?

    c make copy assignment operator

  5. 5. Copy Assignment Operator Overloading C++

    c make copy assignment operator

  6. C++ : When is the copy assignment operator called?

    c make copy assignment operator

COMMENTS

  1. Copy assignment operator

    Triviality of eligible copy assignment operators determines whether the class is a trivially copyable type. [] NoteIf both copy and move assignment operators are provided, overload resolution selects the move assignment if the argument is an rvalue (either a prvalue such as a nameless temporary or an xvalue such as the result of std::move), and selects the copy assignment if the argument is an ...

  2. The copy constructor and assignment operator

    The copy constructor is for creating a new object. It copies an existing object to a newly constructed object.The copy constructor is used to initialize a new instance from an old instance. It is not necessarily called when passing variables by value into functions or as return values out of functions. The assignment operator is to deal with an ...

  3. Copy constructors and copy assignment operators (C++)

    Use an assignment operator operator= that returns a reference to the class type and takes one parameter that's passed by const reference—for example ClassName& operator=(const ClassName& x);. Use the copy constructor. If you don't declare a copy constructor, the compiler generates a member-wise copy constructor for you.

  4. Copy assignment operator

    The copy assignment operator selected for every non-static class type (or array of class type) memeber of T is trivial. A trivial copy assignment operator makes a copy of the object representation as if by std::memmove. All data types compatible with the C language (POD types) are trivially copy-assignable.

  5. Copy Constructor vs Assignment Operator in C++

    C++ compiler implicitly provides a copy constructor, if no copy constructor is defined in the class. A bitwise copy gets created, if the Assignment operator is not overloaded. Consider the following C++ program. Explanation: Here, t2 = t1; calls the assignment operator, same as t2.operator= (t1); and Test t3 = t1; calls the copy constructor ...

  6. Copy assignment operator

    The copy assignment operator selected for every non-static class type (or array of class type) member of T is trivial T has no non-static data members of volatile-qualified type (since C++14) A trivial copy assignment operator makes a copy of the object representation as if by std::memmove. All data types compatible with the C language (POD ...

  7. PDF Copy Constructors and Assignment Operators

    Unless you specify otherwise, C++ will automatically provide objects a basic copy constructor and assignment operator that simply invoke the copy constructors and assignment operators of all the class's data members. In many cases, this is exactly what you want. For example, consider the following class: class MyClass {public: /* Omitted ...

  8. Copy constructors and Assignment Operators

    No assignment operator is used in the first test-case. It just uses the initialization form called "copy initialization". Copy initialization does not consider explicit constructors when initializing the object. struct A {. A(); // explicit copy constructor. explicit A(A const&); // explicit constructor. explicit A(int);

  9. Everything You Need To Know About The Copy Assignment Operator In C++

    The Copy Assignment Operator in a class is a non-template non-static member function that is declared with the operator=. When you create a class or a type that is copy assignable (that you can copy with the = operator symbol), it must have a public copy assignment operator. Here is a simple syntax for the typical declaration of a copy ...

  10. Copy assignment operator

    The copy assignment operator selected for every non-static class type (or array of class type) memeber of T is trivial T has no non-static data members of volatile-qualified type (since C++14) A trivial copy assignment operator makes a copy of the object representation as if by std::memmove. All data types compatible with the C language (POD ...

  11. Copy constructors, assignment operators,

    The first line runs the copy constructor of T, which can throw; the remaining lines are assignment operators which can also throw. HOWEVER, if you have a type T for which the default std::swap() may result in either T's copy constructor or assignment operator throwing, you are

  12. 21.12

    21.12 — Overloading the assignment operator. The copy assignment operator (operator=) is used to copy values from one object to another already existing object. As of C++11, C++ also supports "Move assignment". We discuss move assignment in lesson 22.3 -- Move constructors and move assignment .

  13. Copy Constructors and Assignment Operators

    Every struct and class have a default copy constructor and assignment operator method. Look at a simple use of these. Start with a struct called Rect with a few fields: struct Rect { int top, left, bottom right; }; Yes, even a struct as simple as this has a copy constructor and assignment operator. Now, look at this code:

  14. Why must the copy assignment operator return a reference/const

    Copy assignment should not return rvalue reference cos it may have the assigned object moved. Again take the assignment chain for example. a = b = c; // if a has a copy assignment overload that takes rvalue reference as argument like the following. X& operator=(X &&);

  15. Is it possible to write a common function that handles both the copy

    The assignment operator, OTOH, overrides existing values with new ones. More often than never, this involves dismissing old resources (for example, memory) and allocating new ones. If there's a similarity between the two, it's that the assignment operator performs destruction and copy-construction.

  16. Copy assignment operators (C++ only)

    Copy assignment operators (C++ only) The copy assignment operator lets you create a new object from an existing one by initialization. A copy assignment operator of a class A is a nonstatic non-template member function that has one of the following forms: If you do not declare a copy assignment operator for a class A, the compiler will ...

  17. C++ at Work: Copy Constructors, Assignment Operators, and More

    CopyObj(rhs); return *this; } A At first glance this seems like a simple question with a simple answer: just write a copy constructor that calls operator=. CFoo::CFoo(const CFoo& obj) {. *this = obj; } Or, alternatively, write a common copy method and call it from both your copy constructor and operator=, like so:

  18. C++ : Implementing copy constructor and copy assignment operator

    Your copy assignment operator is implemented incorrectly. The object being assigned to leaks the object its base points to.. Your default constructor is also incorrect: it leaves both base and var uninitialized, so there is no way to know whether either is valid and in the destructor, when you call delete base;, Bad Things Happen.. The easiest way to implement the copy constructor and copy ...

  19. 14.14

    The rule of three is a well known C++ principle that states that if a class requires a user-defined copy constructor, destructor, or copy assignment operator, then it probably requires all three. In C++11, this was expanded to the rule of five , which adds the move constructor and move assignment operator to the list.

  20. Implementing the copy constructor in terms of operator=

    Typically, the copy assignment operator will do some cleanup. If your class has a pointer to dynamically allocated memory, the first thing the copy-assignment operator should do is free that memory. This implementation of the copy constructor would give the copy assignment operator a dangling pointer, which you don't want to delete. -

  21. C: does the assignment operator deep copy?

    C17 6.5.16: An assignment operator stores a value in the object designated by the left operand. An assignment expression has the value of the left operand after the assignment, but is not an lvalue. The type of an assignment expression is the type the left operand would have after lvalue conversion. (Lvalue conversion in this case isn't ...