• How it works

researchprospect post subheader

What is Critical Thinking in Academics – Guide With Examples

Published by Grace Graffin at October 17th, 2023 , Revised On October 17, 2023

In an era dominated by vast amounts of information, the ability to discern, evaluate, and form independent conclusions is more crucial than ever. Enter the realm of “critical thinking.” But what does this term truly mean? 

What is Critical Thinking?

Critical thinking is the disciplined art of analysing and evaluating information or situations by applying a range of intellectual skills. It goes beyond mere memorisation or blind acceptance of information, demanding a deeper understanding and assessment of evidence, context, and implications.

Moreover, paraphrasing in sources is an essential skill in critical thinking, as it allows for representing another’s ideas in one’s own words, ensuring comprehension.

Critical thinking is not just an academic buzzword but an essential tool. In academic settings, it serves as the backbone of genuine understanding and the springboard for innovation. When students embrace critical thinking, they move from being passive recipients of information to active participants in their own learning journey.

They question, evaluate, and synthesise information from various sources, fostering an intellectual curiosity that extends beyond the classroom. Part of this involves understanding how to integrate sources into their work, which means not only including information from various places, but also doing so in a cohesive and logical way.

The importance of critical thinking in academics cannot be overstated. It equips students with the skills to discern credible sources from unreliable ones, develop well-informed arguments, and approach problems with a solution-oriented mindset.

The Origins and Evolution of Critical Thinking

The idea of critical thinking isn’t a new-age concept. Its roots reach back into ancient civilisations, moulding the foundations of philosophy, science, and education. To appreciate its evolution, it’s vital to delve into its historical context and the influential thinkers who have championed it.

Historical Perspective on the Concept of Critical Thinking

The seeds of critical thinking can be traced back to Ancient Greece, particularly in the city-state of Athens. Here, the practice of debate, dialogue, and philosophical inquiry was valued and was seen as a route to knowledge and wisdom. This era prized the art of questioning, investigating, and exploring diverse viewpoints to reach enlightened conclusions.

In medieval Islamic civilisation, scholars in centres of learning, such as the House of Wisdom in Baghdad, played a pivotal role in advancing critical thought. Their works encompassed vast areas, including philosophy, mathematics, and medicine, often intertwining rigorous empirical observations with analytical reasoning.

The Renaissance period further nurtured critical thinking as it was a time of revival in art, culture, and intellect. This era championed humanistic values, focusing on human potential and achievements. It saw the rebirth of scientific inquiry, scepticism about religious dogma, and an emphasis on empirical evidence.

Philosophers and Educators Who Championed Critical Thinking

Several philosophers and educators stand out for their remarkable contributions to the sphere of critical thinking:

Known for the Socratic method, a form of cooperative argumentative dialogue, Socrates would ask probing questions, forcing his pupils to think deeply about their beliefs and assumptions. His methodology still influences modern education, emphasising the answer and the path of reasoning that leads to it.

A student of Socrates, Plato believed in the importance of reason and inquiry. His allegory of the cave highlights the difference between blindly accepting information and seeking true knowledge.

He placed great emphasis on empirical evidence and logic. His works on syllogism and deductive reasoning laid the foundation for systematic critical thought.

Al-Farabi And Ibn Rushd (Averroes)

Islamic philosophers, who harmonised Greek philosophy with Islamic thought, emphasised the importance of rationality and critical inquiry.

Sir Francis Bacon

An advocate for the scientific method, Bacon believed that knowledge should be based on empirical evidence, observation, and experimentation rather than mere reliance on accepted truths.

A modern proponent of critical thinking, Dewey viewed it as an active, persistent, and careful consideration of a belief or supposed form of knowledge. He emphasised that students should be taught to think for themselves rather than just memorise facts.

Paulo Freire

Recognised for his ideas on “problem-posing education,” Freire believed that students should be encouraged to question, reflect upon, and respond to societal issues, fostering critical consciousness.

Characteristics of Critical Thinkers

Critical thinkers are not defined merely by the knowledge they possess, but by the manner in which they process, analyse, and use that knowledge. While the profile of a critical thinker can be multifaceted, certain core traits distinguish them. Let’s delve into these characteristics:

1. Open-mindedness

Open-mindedness refers to the willingness to consider different ideas, opinions, and perspectives, even if they challenge one’s existing beliefs. It allows critical thinkers to avoid being trapped in their own biases or preconceived notions. By being open to diverse viewpoints, they can make more informed and holistic decisions.

  • Listening to a debate without immediately taking sides.
  • Reading literature from different cultures to understand various world views.

2. Analytical Nature

An analytical nature entails the ability to break down complex problems or information into smaller, manageable parts to understand the whole better. Being analytical enables individuals to see patterns, relationships, and inconsistencies, allowing for deeper comprehension and better problem-solving.

  • Evaluating a research paper by examining its methodology, results, and conclusions separately.
  • Breaking down the components of a business strategy to assess its viability.

3. Scepticism

Scepticism is the tendency to question and doubt claims or assertions until sufficient evidence is presented. Skepticism ensures that critical thinkers do not accept information at face value. They seek evidence and are cautious about jumping to conclusions without verification.

  • Questioning the results of a study that lacks a control group.
  • Doubting a sensational news headline and researching further before believing or sharing it.

4. Intellectual Humility

Intellectual humility involves recognising and accepting the limitations of one’s knowledge and understanding. It is about being aware that one does not have all the answers. This trait prevents arrogance and overconfidence. Critical thinkers with intellectual humility are open to learning and receptive to constructive criticism.

  • Admitting when one is wrong in a discussion.
  • Actively seeking feedback on a project or idea to enhance it.

5. Logical Reasoning

Logical reasoning is the ability to think sequentially and make connections between concepts in a coherent manner. It involves drawing conclusions that logically follow from the available information. Logical reasoning ensures that decisions and conclusions are sound and based on valid premises. It helps avoid fallacies and cognitive biases.

  • Using deductive reasoning to derive a specific conclusion from a general statement.
  • Evaluating an argument for potential logical fallacies like “slippery slope” or “ad hominem.”

The Difference Between Critical Thinking and Memorisation

In today’s rapidly changing educational landscape, there is an ongoing debate about the importance of rote memorisation versus the significance of cultivating critical thinking skills. Both have their place in learning, but they serve very different purposes.

Nature Of Learning

  • Rote Learning: Involves memorising information exactly as it is, without necessarily understanding its context or underlying meaning. It’s akin to storing data as-is, without processing.
  • Analytical Processing (Critical Thinking): Involves understanding, questioning, and connecting new information with existing knowledge. It’s less about storage and more about comprehension and application.

Depth of Engagement

  • Rote Learning: Often remains at the surface level. Students might remember facts for a test, but might forget them shortly after.
  • Analytical Processing: Engages deeper cognitive skills. When students think critically, they’re more likely to retain information because they’ve processed it deeper.

Application in New Situations

  • Rote Learning: Information memorised through rote often does not easily apply to new or unfamiliar situations, since it is detached from understanding.
  • Analytical Processing: Promotes adaptability. Critical thinkers can transfer knowledge and skills to different contexts because they understand underlying concepts and principles.

Why Critical Thinking Produces Long-Term Academic Benefits

Here are the benefits of critical thinking in academics. 

Enhanced Retention

Critical thinking often involves active learning—discussions, problem-solving, and debates—which promotes better retention than passive memorisation.

Skill Development

Beyond content knowledge, critical thinking develops skills like analysis, synthesis, source evaluation , and problem-solving. These are invaluable in higher education and professional settings.

Adaptability

In an ever-evolving world, the ability to adapt is crucial. Critical thinkers are better equipped to learn and adapt because they don’t just know facts; they understand concepts.

Lifelong Learning

Critical thinkers are naturally curious. They seek to understand, question, and explore, turning them into lifelong learners who continually seek knowledge and personal growth.

Improved Decision-Making

Analytical processing allows students to evaluate various perspectives, weigh evidence, and make well-informed decisions, a skill far beyond academics.

Preparation for Real-World Challenges

The real world does not come with a textbook. Critical thinkers can navigate unexpected challenges, connect disparate pieces of information, and innovate solutions.

Steps in the Critical Thinking Process

Critical thinking is more than just a skill—it is a structured process. By following a systematic approach, critical thinkers can navigate complex issues and ensure their conclusions are well-informed and reasoned. Here’s a breakdown of the steps involved:

Step 1. Identification and Clarification of the Problem or Question

Recognizing that a problem or question exists and understanding its nature. It’s about defining the issue clearly, without ambiguity. A well-defined problem serves as the foundation for the subsequent steps. The entire process may become misguided without a clear understanding of what’s being addressed.

Example: Instead of a vague problem like “improving the environment,” a more specific question could be “How can urban areas reduce air pollution?”

Step 2. Gathering Information and Evidence

Actively seeking relevant data, facts, and evidence. This might involve research, observations, experiments, or discussions. Reliable decisions are based on solid evidence. The quality and relevance of the information gathered can heavily influence the final conclusion.

Example: To address urban air pollution, one might gather data on current pollution levels, sources of pollutants, existing policies, and strategies employed by other cities.

Step 3. Analysing the Information

Breaking down the gathered information, scrutinising its validity, and identifying patterns, contradictions, and relationships. This step ensures that the information is not just accepted at face value. Critical thinkers can differentiate between relevant and irrelevant information and detect biases or inaccuracies by analysing data.

Example: When examining data on pollution, one might notice that certain industries are major contributors or that pollution levels rise significantly at specific times of the year.

Step 4. Drawing Conclusions and Making Decisions

After thorough analysis, formulating an informed perspective, solution, or decision-based on the evidence. This is the culmination of the previous steps. Here, the critical thinker synthesises the information and applies logic to arrive at a reasoned conclusion.

Example: Based on the analysis, one might conclude that regulating specific industries and promoting public transportation during peak pollution periods can help reduce urban air pollution.

Step 5. Reflecting on the Process And The Conclusions Reached

Take a step back to assess the entire process, considering any potential biases, errors, or alternative perspectives. It is also about evaluating the feasibility and implications of the conclusions. Reflection ensures continuous learning and improvement. Individuals can refine their approach to future problems by evaluating their thinking process.

Example: Reflecting on the proposed solution to reduce pollution, one might consider its economic implications, potential industry resistance, and the need for public awareness campaigns.

The research done by our experts have:

  • Precision and Clarity
  • Zero Plagiarism
  • Authentic Sources

how essential is critical thinking and communication skills in academic research

The Role of Critical Thinking in Different Academic Subjects

Critical thinking is a universal skill applicable across disciplines. Its methodologies might differ based on the subject, but its core principles remain consistent. Let us explore how critical thinking manifests in various academic domains:

1. Sciences

  • Hypothesis Testing: Science often begins with a hypothesis—a proposed explanation for a phenomenon. Critical thinking is essential in formulating a testable hypothesis and determining its validity based on experimental results.
  • Experimental Design: Designing experiments requires careful planning to ensure valid and reliable results. Critical thinking aids in identifying variables, ensuring controls, and determining the best methodologies to obtain accurate data.
  • Example: In a biology experiment to test the effect of light on plant growth, critical thinking helps ensure variables like water and soil quality are consistent, allowing for a fair assessment of the light’s impact.

2. Humanities

  • Analysing Texts: Humanities often involve studying texts—literature, historical documents, or philosophical treatises. Critical thinking lets students decode themes, discern authorial intent, and recognise underlying assumptions or biases.
  • Understanding Contexts: Recognizing a text or artwork’s cultural, historical, or social contexts is pivotal. Critical thinking allows for a deeper appreciation of these contexts, providing a holistic understanding of the subject.
  • Example: When studying Shakespeare’s “Othello,” critical thinking aids in understanding the play’s exploration of jealousy, race, and betrayal, while also appreciating its historical context in Elizabethan England.

3. Social Sciences

  • Evaluating Arguments: Social sciences, such as sociology or political science, often present various theories or arguments about societal structures and behaviours. Critical thinking aids in assessing the merits of these arguments and recognising their implications.
  • Understanding Biases: Since social sciences study human societies, they’re susceptible to biases. Critical thinking helps identify potential biases in research or theories, ensuring a more objective understanding.
  • Example: In studying economic policies, critical thinking helps weigh the benefits and drawbacks of different economic models, considering both empirical data and theoretical arguments.

4. Mathematics

  • Problem-Solving: Mathematics is more than just numbers; it is about solving problems. Critical thinking enables students to identify the best strategies to tackle problems, ensuring efficient and accurate solutions.
  • Logical Deduction: Mathematical proofs and theorems rely on logical steps. Critical thinking ensures that each step is valid and the conclusions sound.
  • Example: In geometry, when proving that two triangles are congruent, critical thinking helps ensure that each criterion (like side lengths or angles) is met and the logic of the proof is coherent.

Examples of Critical Thinking in Academics

Some of the critical thinking examples in academics are discussed below. 

Case Study 1: Evaluating A Scientific Research Paper

Scenario: A research paper claims that a new herbal supplement significantly improves memory in elderly individuals.

Critical Thinking Application:

Scrutinising Methodology:

  • Was the study double-blind and placebo-controlled?
  • How large was the sample size?
  • Were the groups randomised?
  • Were there any potential confounding variables?

Assessing Conclusions:

  • Do the results conclusively support the claim, or are there other potential explanations?
  • Are the statistical analyses robust, and do they show a significant difference?
  • Is the effect size clinically relevant or just statistically significant?

Considering Broader Context:

  • How does this study compare with existing literature on the subject?
  • Were there any conflicts of interest, such as funding from the supplement company?

Critical analysis determined that while the study showed statistical significance, the effect size was minimal. Additionally, the sample size was small, and there was potential bias as the supplement manufacturer funded the study.

Case Study 2: Analysing a Literary Text

Scenario: A reading of F. Scott Fitzgerald’s “The Great Gatsby.”

Understanding Symbolism:

  • What does the green light represent for Gatsby and in the broader context of the American Dream?
  • How does the Valley of Ashes symbolise societal decay?

Recognising Authorial Intent:

  • Why might Fitzgerald depict the characters’ lavish lifestyles amid underlying dissatisfaction?
  • What critiques of American society is Fitzgerald potentially making?

Contextual Analysis:

  • How does the era in which the novel was written (Roaring Twenties) influence its themes and characters?

Through critical analysis, the reader recognises that while “The Great Gatsby” is a tale of love and ambition, it’s also a poignant critique of the hollowness of the American Dream and the societal excesses of the 1920s.

Case Study 3: Decoding Historical Events

Scenario: The events leading up to the American Revolution.

Considering Multiple Perspectives:

  • How did the British government view the colonies and their demands?
  • What were the diverse perspectives within the American colonies, considering loyalists and patriots?

Assessing Validity of Sources:

  • Which accounts are primary sources, and which are secondary?
  • Are there potential biases in these accounts, based on their origins?

Analysing Causation and Correlation:

  • Were taxes and representation the sole reasons for the revolution, or were there deeper economic and philosophical reasons?

Through critical analysis, the student understands that while taxation without representation was a significant catalyst, the American Revolution was also influenced by Enlightenment ideas, economic interests, and long-standing grievances against colonial policies.

Challenges to Developing Critical Thinking Skills

In our complex and rapidly changing world, the importance of critical thinking cannot be overstated. However, various challenges can impede the cultivation of these vital skills. 

1. Common Misconceptions and Cognitive Biases

Human brains often take shortcuts in processing information, leading to cognitive biases. Additionally, certain misconceptions about what constitutes critical thinking can hinder its development.

  • Confirmation Bias: The tendency to search for, interpret, and recall information that confirms one’s pre-existing beliefs.
  • Anchoring Bias: Relying too heavily on the first piece of information encountered when making decisions.
  • Misconception: Believing that critical thinking merely means being critical or negative about ideas, rather than evaluating them objectively.

These biases can skew perception and decision-making, making it challenging to objectively approach issues.

2. The Influence of Technology and Social Media

While providing unprecedented access to information, the digital age also presents unique challenges. The barrage of information, the immediacy of social media reactions, and algorithms that cater to user preferences can hinder critical thought.

  • Information Overload: The sheer volume of online data can make it difficult to discern credible sources from unreliable ones.
  • Clickbait and Misinformation: Articles with sensational titles designed to generate clicks might lack depth or accuracy.
  • Algorithmic Bias: Platforms showing users content based on past preferences can limit exposure to diverse viewpoints.

Relying too heavily on technology and social media can lead to superficial understanding, reduced attention spans, and a narrow worldview.

3. The Danger of Echo Chambers and Confirmation Bias

An echo chamber is a situation in which beliefs are amplified or reinforced by communication and repetition inside a closed system, cutting off differing viewpoints.

  • Social Media Groups: Joining groups or following pages that only align with one’s beliefs can create a feedback loop, reinforcing existing opinions without challenge.
  • Selective Media Consumption: Only watching news channels or reading websites that align with one’s political or social views.

Echo chambers reinforce confirmation bias, limit exposure to diverse perspectives, and can polarise opinions, making objective, critical evaluation of issues challenging.

Benefits of Promoting Critical Thinking in Education

When cultivated and promoted in educational settings, critical thinking can have transformative effects on students, equipping them with vital skills to navigate their academic journey and beyond. Here’s an exploration of the manifold benefits of emphasising critical thinking in education:

Improved Problem-Solving Skills

Critical thinking enables students to approach problems methodically, breaking them down into manageable parts, analysing each aspect, and synthesising solutions.

  • Academic: Enhances students’ ability to tackle complex assignments, research projects, and unfamiliar topics.
  • Beyond School: Prepares students for real-world challenges where they might encounter problems without predefined solutions.

Enhanced Creativity and Innovation

Critical thinking is not just analytical but also involves lateral thinking, helping students see connections between disparate ideas and encouraging imaginative solutions.

  • Academic: Promotes richer discussions, more creative projects, and the ability to view topics from multiple angles.
  • Beyond School: Equips students for careers and situations where innovative solutions can lead to advancements in fields like technology, arts, or social entrepreneurship.

Better Decision-Making Abilities

Critical thinkers evaluate information thoroughly, weigh potential outcomes, and make decisions based on evidence and reason rather than impulse or peer pressure.

  • Academic: Helps students make informed choices about their studies, research directions, or group projects.
  • Beyond School: Prepares students to make sound decisions in personal and professional spheres, from financial choices to ethical dilemmas.

Greater Resilience in the Face of Complex Challenges

Critical thinking nurtures a growth mindset. When students think critically, they are more likely to view challenges as opportunities for learning rather than insurmountable obstacles.

  • Academic: Increases perseverance in difficult subjects, promoting a deeper understanding rather than superficial learning. Students become more resilient in handling academic pressures and setbacks.
  • Beyond School: Cultivates individuals who can navigate the complexities of modern life, from career challenges to societal changes, with resilience and adaptability.

Frequently Asked Questions

What is critical thinking.

Critical thinking is the objective analysis and evaluation of an issue to form a judgment. It involves gathering relevant information, discerning potential biases, logically connecting ideas, and questioning assumptions. Essential for informed decision-making, it promotes scepticism and requires the ability to think independently and rationally.

What makes critical thinking?

Critical thinking arises from questioning assumptions, evaluating evidence, discerning fact from opinion, recognising biases, and logically connecting ideas. It demands curiosity, scepticism, and an open mind. By continuously challenging one’s beliefs and considering alternative viewpoints, one cultivates the ability to think clearly, rationally, and independently.

What is the purpose of critical thinking?

The purpose of critical thinking is to enable informed decisions by analysing and evaluating information objectively. It fosters understanding, problem-solving, and clarity, reducing the influence of biases and misconceptions. Through critical thinking, individuals discern truth, make reasoned judgments, and engage more effectively in discussions and debates.

How to improve critical thinking?

  • Cultivate curiosity by asking questions.
  • Practice active listening.
  • Read widely and diversely.
  • Engage in discussions and debates.
  • Reflect on your thought processes.
  • Identify biases and challenge assumptions.
  • Solve problems systematically.

What are some critical thinking skills?

  • Analysis: breaking concepts into parts.
  • Evaluation: judging information’s validity.
  • Inference: drawing logical conclusions.
  • Explanation: articulating reasons.
  • Interpretation: understanding meaning.
  • Problem-solving: devising effective solutions.
  • Decision-making: choosing the best options.

What is information literacy?

Information literacy is the ability to find, evaluate, and use information effectively. It encompasses understanding where to locate information, determining its credibility, distinguishing between facts and opinions, and using it responsibly. Essential in the digital age, it equips individuals to navigate the vast sea of data and make informed decisions.

What makes a credible source?

  • Authorship by experts or professionals.
  • Reliable publisher or institution backing.
  • Transparent sourcing and references.
  • Absence of bias or clear disclosure of it.
  • Recent publications or timely updates.
  • Peer review or editorial oversight.
  • Clear, logical arguments.
  • Reputability in its field or domain.

How do I analyse information critically?

  • Determine the source’s credibility.
  • Identify the main arguments or points.
  • Examine the evidence provided.
  • Spot inconsistencies or fallacies.
  • Detect biases or unspoken assumptions.
  • Cross-check facts with other sources.
  • Evaluate the relevance to your context.
  • Reflect on your own biases or beliefs.

You May Also Like

Information literacy is more than just the ability to find information; it encompasses the skills to recognise when information is needed and the competence to locate, evaluate, use, and ethically disseminate it.

When researching or exploring a new topic, the distinction between primary and secondary sources is paramount. The validity, reliability, and relevance of the information you gather will heavily depend on the type of source you consult. 

In today’s information age, where vast amounts of knowledge are easily accessible, it is crucial to know how to use and represent that knowledge correctly and how to cite sources properly.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

Library Home

Critical Thinking in Academic Research - Second Edition

(4 reviews)

how essential is critical thinking and communication skills in academic research

Cindy Gruwell, University of West Florida

Robin Ewing, St. Cloud State University

Copyright Year: 2022

Last Update: 2023

Publisher: Minnesota State Colleges and Universities

Language: English

Formats Available

Conditions of use.

Attribution-ShareAlike

Learn more about reviews.

Reviewed by Julie Jaszkowiak, Community Faculty, Metropolitan State University on 12/22/23

Organized in 11 parts, this his textbook includes introductory information about critical thinking and details about the academic research process. The basics of critical thinking related to doing academic research in Parts I and II. Parts III –... read more

Comprehensiveness rating: 5 see less

Organized in 11 parts, this his textbook includes introductory information about critical thinking and details about the academic research process. The basics of critical thinking related to doing academic research in Parts I and II. Parts III – XI provide specifics on various steps in doing academic research including details on finding and citing source material. There is a linked table of contents so the reader is able to jump to a specific section as needed. There is also a works cited page with information and links to works used for this textbook.

Content Accuracy rating: 5

The content of this textbook is accurate and error free. It contains examples that demonstrate concepts from a variety of disciplines such as “hard science” or “popular culture” that assist in eliminating bias. The authors are librarians so it is clear that their experience as such leads to clear and unbiased content.

Relevance/Longevity rating: 5

General concepts about critical thinking and academic research methodology is well defined and should not become obsolete. Specific content regarding use of citation tools and attribution structure may change but the links to various research sites allow for simple updates.

Clarity rating: 5

This textbook is written in a conversational manner that allows for a more personal interaction with the textbook. It is like the reader is having a conversation with a librarian. Each part has an introduction section that fully defines concepts and terms used for that part.

Consistency rating: 5

In addition to the written content, this textbook contains links to short quizzes at the end of each section. This is consistent throughout each part. Embedded links to additional information are included as necessary.

Modularity rating: 4

This textbook is arranged in 11 modular parts with each part having multiple sections. All of these are linked so a reader can go to a distinct part or section to find specific information. There are some links that refer back to previous sections in the document. It can be challenging to return to where you were once you have jumped to a different section.

Organization/Structure/Flow rating: 5

There is clear definition as to what information is contained within each of the parts and subsequent sections. The textbook follows the logical flow of the process of researching and writing a research paper.

Interface rating: 4

The pictures have alternative text that appears when you hover over the text. There is one picture on page 102 that is a link to where the downloaded picture is from. The pictures are clear and supportive of the text for a visual learner. All the links work and go to either the correct area of the textbook or to a valid website. If you are going to use the embedded links to go to other sections of the textbook you need to keep track of where you are as it can sometimes get confusing as to where you went based on clicking links.

Grammatical Errors rating: 4

This is not really a grammatical error but I did notice on some of the quizzes if you misspelled a work for fill in the blank it was incorrect. It was also sometimes challenging to come up with the correct word for the fill in the blanks.

Cultural Relevance rating: 5

There are no examples or text that are culturally insensitive or offensive. The examples are general and would be applicable to a variety of students study many different academic subjects. There are references and information to many research tools from traditional such as checking out books and articles from the library to more current such as blogs and other electronic sources. This information appeals to a wide expanse of student populations.

I really enjoyed the quizzes at the end of each section. It is very beneficial to test your knowledge and comprehension of what you just read. Often I had to return and reread the content more critically based on my quiz results! They are just the right length to not disrupt the overall reading of the textbook and cover the important content and learning objectives.

Reviewed by Sara Stigberg, Adjunct Reference Librarian, Truman College, City Colleges of Chicago on 3/15/23

Critical Thinking in Academic Research thoroughly covers the basics of academic research for undergraduates, including well-guided deeper dives into relevant areas. The authors root their introduction to academic research principles and practices... read more

Critical Thinking in Academic Research thoroughly covers the basics of academic research for undergraduates, including well-guided deeper dives into relevant areas. The authors root their introduction to academic research principles and practices in the Western philosophical tradition, focused on developing students' critical thinking skills and habits around inquiry, rationales, and frameworks for research.

This text conforms to the principles and frames of the Framework for Information Literacy for Higher Education, published by the Association of College and Research Libraries. It includes excellent, clear, step-by-step guides to help students understand rationales and techniques for academic research.

Essential for our current information climate, the authors present relevant information for students who may be new to academic research, in ways and with content that is not too broad or too narrow, or likely to change drastically in the near future.

The authors use clear and well-considered language and explanations of ideas and terms, contextualizing the scholarly research process and tools in a relatable manner. As mentioned earlier, this text includes excellent step-by-step guides, as well as illustrations, visualizations, and videos to instruct students in conducting academic research.

(4.75) The terminology and framework of this text are consistent. Early discussions of critical thinking skills are tied in to content in later chapters, with regard to selecting different types of sources and search tools, as well as rationales for choosing various formats of source references. Consciously making the theme of critical thinking as applied to the stages of academic research more explicit and frequent within the text would further strengthen it, however.

Modularity rating: 5

Chapters are divided in a logical, progressive manner throughout the text. The use of embedded links to further readings and some other relevant sections of the text are an excellent way of providing references and further online information, without overwhelming or side-tracking the reader.

Topics in the text are organized in logical, progressive order, transitioning cleanly from one focus to the next. Each chapter begins with a helpful outline of topics that will be covered within it.

There are no technical issues with the interface for this text. Interactive learning tools such as the many self-checks and short quizzes that are included throughout the text are a great bonus for reinforcing student learning, and the easily-accessible table of contents was very helpful. There are some slight inconsistencies across chapters, however, relative to formatting images and text and spacing, and an image was missing in the section on Narrowing a Topic. Justifying copy rather than aligning-left would prevent hyphenation, making the text more streamlined.

Grammatical Errors rating: 5

(4.75) A few minor punctuation errors are present.

The authors of this text use culturally-relevant examples and inclusive language. The chapter on Barriers to Critical Thinking works directly to break down bias and preconceived notions.

Overall, Critical Thinking in Academic Research is an excellent general textbook for teaching the whys and hows of academic research to undergraduates. A discussion of annotated bibliographies would be a great addition for future editions of the text. ---- (As an aside for the authors, I am curious if the anonymous data from the self-checks and quizzes is being collected and analyzed for assessment purposes. I'm sure it would be interesting!)

Reviewed by Ann Bell-Pfeifer, Program Director/ Instructor, Minnesota State Community and Technical College on 2/15/23

The book has in depth coverage of academic research. A formal glossary and index were not included. read more

Comprehensiveness rating: 4 see less

The book has in depth coverage of academic research. A formal glossary and index were not included.

The book appears error free and factual.

The content is current and would support students who are pursuing writing academic research papers.

Excellent explanations for specific terms were included throughout the text.

The text is easy to follow with a standardized format and structure.

The text contains headings and topics in each section.

It is easy to follow the format and review each section.

Interface rating: 5

The associated links were useful and not distracting.

No evidence of grammatical errors were found in the book.

The book is inclusive.

The book was informative, easy to follow, and sequential allowing the reader to digest each section before moving into another.

Reviewed by Jenny Inker, Assistant Professor, Virginia Commonwealth University on 8/23/22

This book provides a comprehensive yet easily comprehensible introduction to critical thinking in academic research. The author lays a foundation with an introduction to the concepts of critical thinking and analyzing and making arguments, and... read more

This book provides a comprehensive yet easily comprehensible introduction to critical thinking in academic research. The author lays a foundation with an introduction to the concepts of critical thinking and analyzing and making arguments, and then moves into the details of developing research questions and identifying and appropriately using research sources. There are many wonderful links to other open access publications for those who wish to read more or go deeper.

The content of the book appears to be accurate and free of bias.

The examples used throughout the book are relevant and up-to-date, making it easy to see how to apply the concepts in real life.

The text is very accessibly written and the content is presented in a simple, yet powerful way that helps the reader grasp the concepts easily. There are many short, interactive exercises scattered throughout each chapter of the book so that the reader can test their own knowledge as they go along. It would be even better if the author had provided some simple feedback explaining why quiz answers are correct or incorrect in order to bolster learning, but this is a very minor point and the interactive exercises still work well without this.

The book appears consistent throughout with regard to use of terminology and tone of writing. The basic concepts introduced in the early chapters are used consistently throughout the later chapters.

This book has been wonderfully designed into bite sized chunks that do not overwhelm the reader. This is perhaps its best feature, as this encourages the reader to take in a bit of information, digest it, check their understanding of it, and then move on to the next concept. I loved this!

The book is organized in a manner that introduces the basic architecture of critical thinking first, and then moves on to apply it to the subject of academic research. While the entire book would be helpful for college students (undergraduates particularly), the earlier chapters on critical thinking and argumentation also stand well on their own and would be of great utility to students in general.

This book was extremely easy to navigate with a clear, drop down list of chapters and subheadings on the left side of the screen. When the reader clicks on links to additional material, these open up in a new tab which keeps things clear and organized. Images and charts were clear and the overall organization is very easy to follow.

I came across no grammatical errors in the text.

Cultural Relevance rating: 4

This is perhaps an area where the book could do a little more. I did not come across anything that seemed culturally insensitive or offensive but on the other hand, the book might have taken more opportunities to represent a greater diversity of races, ethnicities, and backgrounds.

This book seems tailor made for undergraduate college students and I would highly recommend it. I think it has some use for graduate students as well, although some of the examples are perhaps little basic for this purpose. As well as using this book to guide students on doing academic research, I think it could also be used as a very helpful introduction to the concept of critical thinking by focusing solely on chapters 1-4.

Table of Contents

  • Introduction
  • Part I. What is Critical Thinking?
  • Part II. Barriers to Critical Thinking
  • Part III. Analyzing Arguments
  • Part IV. Making an Argument
  • Part V. Research Questions
  • Part VI. Sources and Information Needs
  • Part VII. Types of Sources
  • Part VIII. Precision Searching
  • Part IX. Evaluating Sources
  • Part X. Ethical Use and Citing Sources
  • Part XI. Copyright Basics
  • Works Cited
  • About the Authors

Ancillary Material

About the book.

Critical Thinking in Academic Research - 2nd Edition provides examples and easy-to-understand explanations to equip students with the skills to develop research questions, evaluate and choose the right sources, search for information, and understand arguments. This 2nd Edition includes new content based on student feedback as well as additional interactive elements throughout the text.

About the Contributors

Cindy Gruwell is an Assistant Librarian/Coordinator of Scholarly Communication at the University of West Florida. She is the library liaison to the department of biology and the College of Health which has extensive nursing programs, public health, health administration, movement, and medical laboratory sciences. In addition to supporting health sciences faculty, she oversees the Argo IRCommons (Institutional Repository) and provides scholarly communication services to faculty across campus. Cindy graduated with her BA (history) and MLS from the University of California, Los Angeles and has a Masters in Education from Bemidji State University. Cindy’s research interests include academic research support, publishing, and teaching.

Robin Ewing is a Professor/Collections Librarian at St. Cloud State University. Robin is the liaison to the College of Education and Learning Design. She oversees content selection for the Library’s collections. Robin graduated with her BBA (Management) and MLIS from the University of Oklahoma. She also has a Masters of Arts in Teaching from Bemidji State University. Robin’s research interests include collection analysis, assessment, and online teaching.

Contribute to this Page

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Working with sources
  • What Is Critical Thinking? | Definition & Examples

What Is Critical Thinking? | Definition & Examples

Published on May 30, 2022 by Eoghan Ryan . Revised on May 31, 2023.

Critical thinking is the ability to effectively analyze information and form a judgment .

To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources .

Critical thinking skills help you to:

  • Identify credible sources
  • Evaluate and respond to arguments
  • Assess alternative viewpoints
  • Test hypotheses against relevant criteria

Table of contents

Why is critical thinking important, critical thinking examples, how to think critically, other interesting articles, frequently asked questions about critical thinking.

Critical thinking is important for making judgments about sources of information and forming your own arguments. It emphasizes a rational, objective, and self-aware approach that can help you to identify credible sources and strengthen your conclusions.

Critical thinking is important in all disciplines and throughout all stages of the research process . The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both.

In academic writing , critical thinking can help you to determine whether a source:

  • Is free from research bias
  • Provides evidence to support its research findings
  • Considers alternative viewpoints

Outside of academia, critical thinking goes hand in hand with information literacy to help you form opinions rationally and engage independently and critically with popular media.

Scribbr Citation Checker New

The AI-powered Citation Checker helps you avoid common mistakes such as:

  • Missing commas and periods
  • Incorrect usage of “et al.”
  • Ampersands (&) in narrative citations
  • Missing reference entries

how essential is critical thinking and communication skills in academic research

Critical thinking can help you to identify reliable sources of information that you can cite in your research paper . It can also guide your own research methods and inform your own arguments.

Outside of academia, critical thinking can help you to be aware of both your own and others’ biases and assumptions.

Academic examples

However, when you compare the findings of the study with other current research, you determine that the results seem improbable. You analyze the paper again, consulting the sources it cites.

You notice that the research was funded by the pharmaceutical company that created the treatment. Because of this, you view its results skeptically and determine that more independent research is necessary to confirm or refute them. Example: Poor critical thinking in an academic context You’re researching a paper on the impact wireless technology has had on developing countries that previously did not have large-scale communications infrastructure. You read an article that seems to confirm your hypothesis: the impact is mainly positive. Rather than evaluating the research methodology, you accept the findings uncritically.

Nonacademic examples

However, you decide to compare this review article with consumer reviews on a different site. You find that these reviews are not as positive. Some customers have had problems installing the alarm, and some have noted that it activates for no apparent reason.

You revisit the original review article. You notice that the words “sponsored content” appear in small print under the article title. Based on this, you conclude that the review is advertising and is therefore not an unbiased source. Example: Poor critical thinking in a nonacademic context You support a candidate in an upcoming election. You visit an online news site affiliated with their political party and read an article that criticizes their opponent. The article claims that the opponent is inexperienced in politics. You accept this without evidence, because it fits your preconceptions about the opponent.

There is no single way to think critically. How you engage with information will depend on the type of source you’re using and the information you need.

However, you can engage with sources in a systematic and critical way by asking certain questions when you encounter information. Like the CRAAP test , these questions focus on the currency , relevance , authority , accuracy , and purpose of a source of information.

When encountering information, ask:

  • Who is the author? Are they an expert in their field?
  • What do they say? Is their argument clear? Can you summarize it?
  • When did they say this? Is the source current?
  • Where is the information published? Is it an academic article? Is it peer-reviewed ?
  • Why did the author publish it? What is their motivation?
  • How do they make their argument? Is it backed up by evidence? Does it rely on opinion, speculation, or appeals to emotion ? Do they address alternative arguments?

Critical thinking also involves being aware of your own biases, not only those of others. When you make an argument or draw your own conclusions, you can ask similar questions about your own writing:

  • Am I only considering evidence that supports my preconceptions?
  • Is my argument expressed clearly and backed up with credible sources?
  • Would I be convinced by this argument coming from someone else?

If you want to know more about ChatGPT, AI tools , citation , and plagiarism , make sure to check out some of our other articles with explanations and examples.

  • ChatGPT vs human editor
  • ChatGPT citations
  • Is ChatGPT trustworthy?
  • Using ChatGPT for your studies
  • What is ChatGPT?
  • Chicago style
  • Paraphrasing

 Plagiarism

  • Types of plagiarism
  • Self-plagiarism
  • Avoiding plagiarism
  • Academic integrity
  • Consequences of plagiarism
  • Common knowledge

Don't submit your assignments before you do this

The academic proofreading tool has been trained on 1000s of academic texts. Making it the most accurate and reliable proofreading tool for students. Free citation check included.

how essential is critical thinking and communication skills in academic research

Try for free

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Critical thinking skills include the ability to:

You can assess information and arguments critically by asking certain questions about the source. You can use the CRAAP test , focusing on the currency , relevance , authority , accuracy , and purpose of a source of information.

Ask questions such as:

  • Who is the author? Are they an expert?
  • How do they make their argument? Is it backed up by evidence?

A credible source should pass the CRAAP test  and follow these guidelines:

  • The information should be up to date and current.
  • The author and publication should be a trusted authority on the subject you are researching.
  • The sources the author cited should be easy to find, clear, and unbiased.
  • For a web source, the URL and layout should signify that it is trustworthy.

Information literacy refers to a broad range of skills, including the ability to find, evaluate, and use sources of information effectively.

Being information literate means that you:

  • Know how to find credible sources
  • Use relevant sources to inform your research
  • Understand what constitutes plagiarism
  • Know how to cite your sources correctly

Confirmation bias is the tendency to search, interpret, and recall information in a way that aligns with our pre-existing values, opinions, or beliefs. It refers to the ability to recollect information best when it amplifies what we already believe. Relatedly, we tend to forget information that contradicts our opinions.

Although selective recall is a component of confirmation bias, it should not be confused with recall bias.

On the other hand, recall bias refers to the differences in the ability between study participants to recall past events when self-reporting is used. This difference in accuracy or completeness of recollection is not related to beliefs or opinions. Rather, recall bias relates to other factors, such as the length of the recall period, age, and the characteristics of the disease under investigation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, May 31). What Is Critical Thinking? | Definition & Examples. Scribbr. Retrieved June 24, 2024, from https://www.scribbr.com/working-with-sources/critical-thinking/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, student guide: information literacy | meaning & examples, what are credible sources & how to spot them | examples, applying the craap test & evaluating sources, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Enago Academy

The Importance of Critical Thinking Skills in Research

' src=

Why is Critical Thinking Important: A Disruptive Force

Research anxiety seems to be taking an increasingly dominant role in the world of academic research. The pressure to publish or perish can warp your focus into thinking that the only good research is publishable research!

Today, your role as the researcher appears to take a back seat to the perceived value of the topic and the extent to which the results of the study will be cited around the world. Due to financial pressures and a growing tendency of risk aversion, studies are increasingly going down the path of applied research rather than basic or pure research . The potential for breakthroughs is being deliberately limited to incremental contributions from researchers who are forced to worry more about job security and pleasing their paymasters than about making a significant contribution to their field.

A Slow Decline

So what lead the researchers to their love of science and scientific research in the first place? The answer is critical thinking skills. The more that academic research becomes governed by policies outside of the research process, the less opportunity there will be for researchers to exercise such skills.

True research demands new ideas , perspectives, and arguments based on willingness and confidence to revisit and directly challenge existing schools of thought and established positions on theories and accepted codes of practice. Success comes from a recursive approach to the research question with an iterative refinement based on constant reflection and revision.

The importance of critical thinking skills in research is therefore huge, without which researchers may even lack the confidence to challenge their own assumptions.

A Misunderstood Skill

Critical thinking is widely recognized as a core competency and as a precursor to research. Employers value it as a requirement for every position they post, and every survey of potential employers for graduates in local markets rate the skill as their number one concern.

Related: Do you have questions on research idea or manuscript drafting? Get personalized answers on the FREE Q&A Forum!

When asked to clarify what critical thinking means to them, employers will use such phrases as “the ability to think independently,” or “the ability to think on their feet,” or “to show some initiative and resolve a problem without direct supervision.” These are all valuable skills, but how do you teach them?

For higher education institutions in particular, when you are being assessed against dropout, graduation, and job placement rates, where does a course in critical thinking skills fit into the mix? Student Success courses as a precursor to your first undergraduate course will help students to navigate the campus and whatever online resources are available to them (including the tutoring center), but that doesn’t equate to raising critical thinking competencies.

The Dependent Generation

As education becomes increasingly commoditized and broken-down into components that can be delivered online for maximum productivity and profitability, we run the risk of devaluing academic discourse and independent thought. Larger class sizes preclude substantive debate, and the more that content is broken into sound bites that can be tested in multiple-choice questions, the less requirement there will be for original thought.

Academic journals value citation above all else, and so content is steered towards the type of articles that will achieve high citation volume. As such, students and researchers will perpetuate such misuse by ensuring that their papers include only highly cited works. And the objective of high citation volume is achieved.

We expand the body of knowledge in any field by challenging the status quo. Denying the veracity of commonly accepted “facts” or playing devil’s advocate with established rules supports a necessary insurgency that drives future research. If we do not continue to emphasize the need for critical thinking skills to preserve such rebellion, academic research may begin to slowly fade away.

Rate this article Cancel Reply

Your email address will not be published.

how essential is critical thinking and communication skills in academic research

Enago Academy's Most Popular Articles

Content Analysis vs Thematic Analysis: What's the difference?

  • Reporting Research

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation

In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…

Cross-sectional and Longitudinal Study Design

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach

The process of choosing the right research design can put ourselves at the crossroads of…

Networking in Academic Conferences

  • Career Corner

Unlocking the Power of Networking in Academic Conferences

Embarking on your first academic conference experience? Fear not, we got you covered! Academic conferences…

Research recommendation

Research Recommendations – Guiding policy-makers for evidence-based decision making

Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of…

how essential is critical thinking and communication skills in academic research

  • AI in Academia

Disclosing the Use of Generative AI: Best practices for authors in manuscript preparation

The rapid proliferation of generative and other AI-based tools in research writing has ignited an…

Intersectionality in Academia: Dealing with diverse perspectives

Meritocracy and Diversity in Science: Increasing inclusivity in STEM education

Avoiding the AI Trap: Pitfalls of relying on ChatGPT for PhD applications

how essential is critical thinking and communication skills in academic research

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

how essential is critical thinking and communication skills in academic research

What would be most effective in reducing research misconduct?

  • Archives & Special Collections home
  • Art Library home
  • Ekstrom Library home
  • Kornhauser Health Sciences Library home
  • Law Library home
  • Music Library home
  • University of Louisville Hospital home
  • Interlibrary Loan
  • Off-Campus Login
  • Renew Books
  • Cardinal Card
  • My Print Center
  • Business Ops
  • Cards Career Connection

Search Site

Search catalog, critical thinking and academic research: information.

  • Information
  • Point of View
  • Assumptions
  • Implications

Gather the Information

Research involves gathering and interpreting information. To answer a question or understand the complexity of an issue, you have to seek relevant information, which helps you develop your own point of view.

It's important to remember, though, that information from outside sources should not stand in for your thinking. Sometimes, people think that gathering information and summarizing it in a paper is all there is to the research process. But finding information is just part of the process.

Research involves applying critical thinking to information, whether it comes from an encyclopedia entry, a journal article, a website, or a documentary. A researcher analyzes the material and develops a perspective on it. The goal is to think critically about the information, not simply repeat its ideas.

The purpose of your research and the questions you're trying to answer will determine what information is relevant and useful. If you're trying to understand public opinion on an issue, it might be worthwhile to look at news articles and blog entries. On the other hand, such sources may not be appropriate for a formal philosophical argument or a medical study.

Sources used in academic papers might include scholarly journals, books, research reports, government documents, films, comic books, magazines, newspapers, maps, statistics, letters, diaries, dictionaries, musical recordings, and more. It all depends on your purpose.

The Complexity of the Information Universe

The information universe is very complex, so it's important to understand the differences among information sources. For instance, online information includes commercial websites, personal blogs, subscription databases, professional news sites, government resources, Wikipedia entries, Facebook profiles, Twitter feeds, YouTube videos, and much more. Different research projects require different types of sources. In many cases, you will need to look beyond the free web to find scholarly information in subscription library databases such as ProQuest Direct and EBSCO Academic Search Premier.

Understanding varying levels of complexity in information sources is also important. For example, a reference encyclopedia might provide useful background information on postmodernism, but it will not provide the level of sophistication and depth offered in an original work of postmodern theory or a scholarly article that applies that theory.

While background sources are useful and will help you understand more complex material, most professors expect you to explore in-depth, scholarly sources, most of which are not available on the free web. That's one reason why learning to use library resources is crucial.

Critical Questions

  • What information do I need to address this question or understand this topic?
  • How much information do I need?
  • Where can I find this information?
  • How do I know this information is reliable and authoritative?
  • Is this information relevant to my purpose?
  • Who is the audience for this information?
  • What perspective does this information come from? What are its biases?
  • Is the information current enough?
  • " More on Evaluating Sources
  • << Previous: Questions
  • Next: Concepts >>
  • Last Updated: Jul 10, 2023 11:50 AM
  • Librarian Login

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 11 January 2023

The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature

  • Enwei Xu   ORCID: orcid.org/0000-0001-6424-8169 1 ,
  • Wei Wang 1 &
  • Qingxia Wang 1  

Humanities and Social Sciences Communications volume  10 , Article number:  16 ( 2023 ) Cite this article

16k Accesses

18 Citations

3 Altmetric

Metrics details

  • Science, technology and society

Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field of education as well as a key competence for learners in the 21st century. However, the effectiveness of collaborative problem-solving in promoting students’ critical thinking remains uncertain. This current research presents the major findings of a meta-analysis of 36 pieces of the literature revealed in worldwide educational periodicals during the 21st century to identify the effectiveness of collaborative problem-solving in promoting students’ critical thinking and to determine, based on evidence, whether and to what extent collaborative problem solving can result in a rise or decrease in critical thinking. The findings show that (1) collaborative problem solving is an effective teaching approach to foster students’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]); (2) in respect to the dimensions of critical thinking, collaborative problem solving can significantly and successfully enhance students’ attitudinal tendencies (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI[0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI[0.58, 0.82]); and (3) the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have an impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. On the basis of these results, recommendations are made for further study and instruction to better support students’ critical thinking in the context of collaborative problem-solving.

Similar content being viewed by others

how essential is critical thinking and communication skills in academic research

A meta-analysis of the effects of design thinking on student learning

how essential is critical thinking and communication skills in academic research

Fostering twenty-first century skills among primary school students through math project-based learning

how essential is critical thinking and communication skills in academic research

A meta-analysis to gauge the impact of pedagogies employed in mixed-ability high school biology classrooms

Introduction.

Although critical thinking has a long history in research, the concept of critical thinking, which is regarded as an essential competence for learners in the 21st century, has recently attracted more attention from researchers and teaching practitioners (National Research Council, 2012 ). Critical thinking should be the core of curriculum reform based on key competencies in the field of education (Peng and Deng, 2017 ) because students with critical thinking can not only understand the meaning of knowledge but also effectively solve practical problems in real life even after knowledge is forgotten (Kek and Huijser, 2011 ). The definition of critical thinking is not universal (Ennis, 1989 ; Castle, 2009 ; Niu et al., 2013 ). In general, the definition of critical thinking is a self-aware and self-regulated thought process (Facione, 1990 ; Niu et al., 2013 ). It refers to the cognitive skills needed to interpret, analyze, synthesize, reason, and evaluate information as well as the attitudinal tendency to apply these abilities (Halpern, 2001 ). The view that critical thinking can be taught and learned through curriculum teaching has been widely supported by many researchers (e.g., Kuncel, 2011 ; Leng and Lu, 2020 ), leading to educators’ efforts to foster it among students. In the field of teaching practice, there are three types of courses for teaching critical thinking (Ennis, 1989 ). The first is an independent curriculum in which critical thinking is taught and cultivated without involving the knowledge of specific disciplines; the second is an integrated curriculum in which critical thinking is integrated into the teaching of other disciplines as a clear teaching goal; and the third is a mixed curriculum in which critical thinking is taught in parallel to the teaching of other disciplines for mixed teaching training. Furthermore, numerous measuring tools have been developed by researchers and educators to measure critical thinking in the context of teaching practice. These include standardized measurement tools, such as WGCTA, CCTST, CCTT, and CCTDI, which have been verified by repeated experiments and are considered effective and reliable by international scholars (Facione and Facione, 1992 ). In short, descriptions of critical thinking, including its two dimensions of attitudinal tendency and cognitive skills, different types of teaching courses, and standardized measurement tools provide a complex normative framework for understanding, teaching, and evaluating critical thinking.

Cultivating critical thinking in curriculum teaching can start with a problem, and one of the most popular critical thinking instructional approaches is problem-based learning (Liu et al., 2020 ). Duch et al. ( 2001 ) noted that problem-based learning in group collaboration is progressive active learning, which can improve students’ critical thinking and problem-solving skills. Collaborative problem-solving is the organic integration of collaborative learning and problem-based learning, which takes learners as the center of the learning process and uses problems with poor structure in real-world situations as the starting point for the learning process (Liang et al., 2017 ). Students learn the knowledge needed to solve problems in a collaborative group, reach a consensus on problems in the field, and form solutions through social cooperation methods, such as dialogue, interpretation, questioning, debate, negotiation, and reflection, thus promoting the development of learners’ domain knowledge and critical thinking (Cindy, 2004 ; Liang et al., 2017 ).

Collaborative problem-solving has been widely used in the teaching practice of critical thinking, and several studies have attempted to conduct a systematic review and meta-analysis of the empirical literature on critical thinking from various perspectives. However, little attention has been paid to the impact of collaborative problem-solving on critical thinking. Therefore, the best approach for developing and enhancing critical thinking throughout collaborative problem-solving is to examine how to implement critical thinking instruction; however, this issue is still unexplored, which means that many teachers are incapable of better instructing critical thinking (Leng and Lu, 2020 ; Niu et al., 2013 ). For example, Huber ( 2016 ) provided the meta-analysis findings of 71 publications on gaining critical thinking over various time frames in college with the aim of determining whether critical thinking was truly teachable. These authors found that learners significantly improve their critical thinking while in college and that critical thinking differs with factors such as teaching strategies, intervention duration, subject area, and teaching type. The usefulness of collaborative problem-solving in fostering students’ critical thinking, however, was not determined by this study, nor did it reveal whether there existed significant variations among the different elements. A meta-analysis of 31 pieces of educational literature was conducted by Liu et al. ( 2020 ) to assess the impact of problem-solving on college students’ critical thinking. These authors found that problem-solving could promote the development of critical thinking among college students and proposed establishing a reasonable group structure for problem-solving in a follow-up study to improve students’ critical thinking. Additionally, previous empirical studies have reached inconclusive and even contradictory conclusions about whether and to what extent collaborative problem-solving increases or decreases critical thinking levels. As an illustration, Yang et al. ( 2008 ) carried out an experiment on the integrated curriculum teaching of college students based on a web bulletin board with the goal of fostering participants’ critical thinking in the context of collaborative problem-solving. These authors’ research revealed that through sharing, debating, examining, and reflecting on various experiences and ideas, collaborative problem-solving can considerably enhance students’ critical thinking in real-life problem situations. In contrast, collaborative problem-solving had a positive impact on learners’ interaction and could improve learning interest and motivation but could not significantly improve students’ critical thinking when compared to traditional classroom teaching, according to research by Naber and Wyatt ( 2014 ) and Sendag and Odabasi ( 2009 ) on undergraduate and high school students, respectively.

The above studies show that there is inconsistency regarding the effectiveness of collaborative problem-solving in promoting students’ critical thinking. Therefore, it is essential to conduct a thorough and trustworthy review to detect and decide whether and to what degree collaborative problem-solving can result in a rise or decrease in critical thinking. Meta-analysis is a quantitative analysis approach that is utilized to examine quantitative data from various separate studies that are all focused on the same research topic. This approach characterizes the effectiveness of its impact by averaging the effect sizes of numerous qualitative studies in an effort to reduce the uncertainty brought on by independent research and produce more conclusive findings (Lipsey and Wilson, 2001 ).

This paper used a meta-analytic approach and carried out a meta-analysis to examine the effectiveness of collaborative problem-solving in promoting students’ critical thinking in order to make a contribution to both research and practice. The following research questions were addressed by this meta-analysis:

What is the overall effect size of collaborative problem-solving in promoting students’ critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills)?

How are the disparities between the study conclusions impacted by various moderating variables if the impacts of various experimental designs in the included studies are heterogeneous?

This research followed the strict procedures (e.g., database searching, identification, screening, eligibility, merging, duplicate removal, and analysis of included studies) of Cooper’s ( 2010 ) proposed meta-analysis approach for examining quantitative data from various separate studies that are all focused on the same research topic. The relevant empirical research that appeared in worldwide educational periodicals within the 21st century was subjected to this meta-analysis using Rev-Man 5.4. The consistency of the data extracted separately by two researchers was tested using Cohen’s kappa coefficient, and a publication bias test and a heterogeneity test were run on the sample data to ascertain the quality of this meta-analysis.

Data sources and search strategies

There were three stages to the data collection process for this meta-analysis, as shown in Fig. 1 , which shows the number of articles included and eliminated during the selection process based on the statement and study eligibility criteria.

figure 1

This flowchart shows the number of records identified, included and excluded in the article.

First, the databases used to systematically search for relevant articles were the journal papers of the Web of Science Core Collection and the Chinese Core source journal, as well as the Chinese Social Science Citation Index (CSSCI) source journal papers included in CNKI. These databases were selected because they are credible platforms that are sources of scholarly and peer-reviewed information with advanced search tools and contain literature relevant to the subject of our topic from reliable researchers and experts. The search string with the Boolean operator used in the Web of Science was “TS = (((“critical thinking” or “ct” and “pretest” or “posttest”) or (“critical thinking” or “ct” and “control group” or “quasi experiment” or “experiment”)) and (“collaboration” or “collaborative learning” or “CSCL”) and (“problem solving” or “problem-based learning” or “PBL”))”. The research area was “Education Educational Research”, and the search period was “January 1, 2000, to December 30, 2021”. A total of 412 papers were obtained. The search string with the Boolean operator used in the CNKI was “SU = (‘critical thinking’*‘collaboration’ + ‘critical thinking’*‘collaborative learning’ + ‘critical thinking’*‘CSCL’ + ‘critical thinking’*‘problem solving’ + ‘critical thinking’*‘problem-based learning’ + ‘critical thinking’*‘PBL’ + ‘critical thinking’*‘problem oriented’) AND FT = (‘experiment’ + ‘quasi experiment’ + ‘pretest’ + ‘posttest’ + ‘empirical study’)” (translated into Chinese when searching). A total of 56 studies were found throughout the search period of “January 2000 to December 2021”. From the databases, all duplicates and retractions were eliminated before exporting the references into Endnote, a program for managing bibliographic references. In all, 466 studies were found.

Second, the studies that matched the inclusion and exclusion criteria for the meta-analysis were chosen by two researchers after they had reviewed the abstracts and titles of the gathered articles, yielding a total of 126 studies.

Third, two researchers thoroughly reviewed each included article’s whole text in accordance with the inclusion and exclusion criteria. Meanwhile, a snowball search was performed using the references and citations of the included articles to ensure complete coverage of the articles. Ultimately, 36 articles were kept.

Two researchers worked together to carry out this entire process, and a consensus rate of almost 94.7% was reached after discussion and negotiation to clarify any emerging differences.

Eligibility criteria

Since not all the retrieved studies matched the criteria for this meta-analysis, eligibility criteria for both inclusion and exclusion were developed as follows:

The publication language of the included studies was limited to English and Chinese, and the full text could be obtained. Articles that did not meet the publication language and articles not published between 2000 and 2021 were excluded.

The research design of the included studies must be empirical and quantitative studies that can assess the effect of collaborative problem-solving on the development of critical thinking. Articles that could not identify the causal mechanisms by which collaborative problem-solving affects critical thinking, such as review articles and theoretical articles, were excluded.

The research method of the included studies must feature a randomized control experiment or a quasi-experiment, or a natural experiment, which have a higher degree of internal validity with strong experimental designs and can all plausibly provide evidence that critical thinking and collaborative problem-solving are causally related. Articles with non-experimental research methods, such as purely correlational or observational studies, were excluded.

The participants of the included studies were only students in school, including K-12 students and college students. Articles in which the participants were non-school students, such as social workers or adult learners, were excluded.

The research results of the included studies must mention definite signs that may be utilized to gauge critical thinking’s impact (e.g., sample size, mean value, or standard deviation). Articles that lacked specific measurement indicators for critical thinking and could not calculate the effect size were excluded.

Data coding design

In order to perform a meta-analysis, it is necessary to collect the most important information from the articles, codify that information’s properties, and convert descriptive data into quantitative data. Therefore, this study designed a data coding template (see Table 1 ). Ultimately, 16 coding fields were retained.

The designed data-coding template consisted of three pieces of information. Basic information about the papers was included in the descriptive information: the publishing year, author, serial number, and title of the paper.

The variable information for the experimental design had three variables: the independent variable (instruction method), the dependent variable (critical thinking), and the moderating variable (learning stage, teaching type, intervention duration, learning scaffold, group size, measuring tool, and subject area). Depending on the topic of this study, the intervention strategy, as the independent variable, was coded into collaborative and non-collaborative problem-solving. The dependent variable, critical thinking, was coded as a cognitive skill and an attitudinal tendency. And seven moderating variables were created by grouping and combining the experimental design variables discovered within the 36 studies (see Table 1 ), where learning stages were encoded as higher education, high school, middle school, and primary school or lower; teaching types were encoded as mixed courses, integrated courses, and independent courses; intervention durations were encoded as 0–1 weeks, 1–4 weeks, 4–12 weeks, and more than 12 weeks; group sizes were encoded as 2–3 persons, 4–6 persons, 7–10 persons, and more than 10 persons; learning scaffolds were encoded as teacher-supported learning scaffold, technique-supported learning scaffold, and resource-supported learning scaffold; measuring tools were encoded as standardized measurement tools (e.g., WGCTA, CCTT, CCTST, and CCTDI) and self-adapting measurement tools (e.g., modified or made by researchers); and subject areas were encoded according to the specific subjects used in the 36 included studies.

The data information contained three metrics for measuring critical thinking: sample size, average value, and standard deviation. It is vital to remember that studies with various experimental designs frequently adopt various formulas to determine the effect size. And this paper used Morris’ proposed standardized mean difference (SMD) calculation formula ( 2008 , p. 369; see Supplementary Table S3 ).

Procedure for extracting and coding data

According to the data coding template (see Table 1 ), the 36 papers’ information was retrieved by two researchers, who then entered them into Excel (see Supplementary Table S1 ). The results of each study were extracted separately in the data extraction procedure if an article contained numerous studies on critical thinking, or if a study assessed different critical thinking dimensions. For instance, Tiwari et al. ( 2010 ) used four time points, which were viewed as numerous different studies, to examine the outcomes of critical thinking, and Chen ( 2013 ) included the two outcome variables of attitudinal tendency and cognitive skills, which were regarded as two studies. After discussion and negotiation during data extraction, the two researchers’ consistency test coefficients were roughly 93.27%. Supplementary Table S2 details the key characteristics of the 36 included articles with 79 effect quantities, including descriptive information (e.g., the publishing year, author, serial number, and title of the paper), variable information (e.g., independent variables, dependent variables, and moderating variables), and data information (e.g., mean values, standard deviations, and sample size). Following that, testing for publication bias and heterogeneity was done on the sample data using the Rev-Man 5.4 software, and then the test results were used to conduct a meta-analysis.

Publication bias test

When the sample of studies included in a meta-analysis does not accurately reflect the general status of research on the relevant subject, publication bias is said to be exhibited in this research. The reliability and accuracy of the meta-analysis may be impacted by publication bias. Due to this, the meta-analysis needs to check the sample data for publication bias (Stewart et al., 2006 ). A popular method to check for publication bias is the funnel plot; and it is unlikely that there will be publishing bias when the data are equally dispersed on either side of the average effect size and targeted within the higher region. The data are equally dispersed within the higher portion of the efficient zone, consistent with the funnel plot connected with this analysis (see Fig. 2 ), indicating that publication bias is unlikely in this situation.

figure 2

This funnel plot shows the result of publication bias of 79 effect quantities across 36 studies.

Heterogeneity test

To select the appropriate effect models for the meta-analysis, one might use the results of a heterogeneity test on the data effect sizes. In a meta-analysis, it is common practice to gauge the degree of data heterogeneity using the I 2 value, and I 2  ≥ 50% is typically understood to denote medium-high heterogeneity, which calls for the adoption of a random effect model; if not, a fixed effect model ought to be applied (Lipsey and Wilson, 2001 ). The findings of the heterogeneity test in this paper (see Table 2 ) revealed that I 2 was 86% and displayed significant heterogeneity ( P  < 0.01). To ensure accuracy and reliability, the overall effect size ought to be calculated utilizing the random effect model.

The analysis of the overall effect size

This meta-analysis utilized a random effect model to examine 79 effect quantities from 36 studies after eliminating heterogeneity. In accordance with Cohen’s criterion (Cohen, 1992 ), it is abundantly clear from the analysis results, which are shown in the forest plot of the overall effect (see Fig. 3 ), that the cumulative impact size of cooperative problem-solving is 0.82, which is statistically significant ( z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]), and can encourage learners to practice critical thinking.

figure 3

This forest plot shows the analysis result of the overall effect size across 36 studies.

In addition, this study examined two distinct dimensions of critical thinking to better understand the precise contributions that collaborative problem-solving makes to the growth of critical thinking. The findings (see Table 3 ) indicate that collaborative problem-solving improves cognitive skills (ES = 0.70) and attitudinal tendency (ES = 1.17), with significant intergroup differences (chi 2  = 7.95, P  < 0.01). Although collaborative problem-solving improves both dimensions of critical thinking, it is essential to point out that the improvements in students’ attitudinal tendency are much more pronounced and have a significant comprehensive effect (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]), whereas gains in learners’ cognitive skill are slightly improved and are just above average. (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

The analysis of moderator effect size

The whole forest plot’s 79 effect quantities underwent a two-tailed test, which revealed significant heterogeneity ( I 2  = 86%, z  = 12.78, P  < 0.01), indicating differences between various effect sizes that may have been influenced by moderating factors other than sampling error. Therefore, exploring possible moderating factors that might produce considerable heterogeneity was done using subgroup analysis, such as the learning stage, learning scaffold, teaching type, group size, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, in order to further explore the key factors that influence critical thinking. The findings (see Table 4 ) indicate that various moderating factors have advantageous effects on critical thinking. In this situation, the subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), learning scaffold (chi 2  = 9.03, P  < 0.01), and teaching type (chi 2  = 7.20, P  < 0.05) are all significant moderators that can be applied to support the cultivation of critical thinking. However, since the learning stage and the measuring tools did not significantly differ among intergroup (chi 2  = 3.15, P  = 0.21 > 0.05, and chi 2  = 0.08, P  = 0.78 > 0.05), we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving. These are the precise outcomes, as follows:

Various learning stages influenced critical thinking positively, without significant intergroup differences (chi 2  = 3.15, P  = 0.21 > 0.05). High school was first on the list of effect sizes (ES = 1.36, P  < 0.01), then higher education (ES = 0.78, P  < 0.01), and middle school (ES = 0.73, P  < 0.01). These results show that, despite the learning stage’s beneficial influence on cultivating learners’ critical thinking, we are unable to explain why it is essential for cultivating critical thinking in the context of collaborative problem-solving.

Different teaching types had varying degrees of positive impact on critical thinking, with significant intergroup differences (chi 2  = 7.20, P  < 0.05). The effect size was ranked as follows: mixed courses (ES = 1.34, P  < 0.01), integrated courses (ES = 0.81, P  < 0.01), and independent courses (ES = 0.27, P  < 0.01). These results indicate that the most effective approach to cultivate critical thinking utilizing collaborative problem solving is through the teaching type of mixed courses.

Various intervention durations significantly improved critical thinking, and there were significant intergroup differences (chi 2  = 12.18, P  < 0.01). The effect sizes related to this variable showed a tendency to increase with longer intervention durations. The improvement in critical thinking reached a significant level (ES = 0.85, P  < 0.01) after more than 12 weeks of training. These findings indicate that the intervention duration and critical thinking’s impact are positively correlated, with a longer intervention duration having a greater effect.

Different learning scaffolds influenced critical thinking positively, with significant intergroup differences (chi 2  = 9.03, P  < 0.01). The resource-supported learning scaffold (ES = 0.69, P  < 0.01) acquired a medium-to-higher level of impact, the technique-supported learning scaffold (ES = 0.63, P  < 0.01) also attained a medium-to-higher level of impact, and the teacher-supported learning scaffold (ES = 0.92, P  < 0.01) displayed a high level of significant impact. These results show that the learning scaffold with teacher support has the greatest impact on cultivating critical thinking.

Various group sizes influenced critical thinking positively, and the intergroup differences were statistically significant (chi 2  = 8.77, P  < 0.05). Critical thinking showed a general declining trend with increasing group size. The overall effect size of 2–3 people in this situation was the biggest (ES = 0.99, P  < 0.01), and when the group size was greater than 7 people, the improvement in critical thinking was at the lower-middle level (ES < 0.5, P  < 0.01). These results show that the impact on critical thinking is positively connected with group size, and as group size grows, so does the overall impact.

Various measuring tools influenced critical thinking positively, with significant intergroup differences (chi 2  = 0.08, P  = 0.78 > 0.05). In this situation, the self-adapting measurement tools obtained an upper-medium level of effect (ES = 0.78), whereas the complete effect size of the standardized measurement tools was the largest, achieving a significant level of effect (ES = 0.84, P  < 0.01). These results show that, despite the beneficial influence of the measuring tool on cultivating critical thinking, we are unable to explain why it is crucial in fostering the growth of critical thinking by utilizing the approach of collaborative problem-solving.

Different subject areas had a greater impact on critical thinking, and the intergroup differences were statistically significant (chi 2  = 13.36, P  < 0.05). Mathematics had the greatest overall impact, achieving a significant level of effect (ES = 1.68, P  < 0.01), followed by science (ES = 1.25, P  < 0.01) and medical science (ES = 0.87, P  < 0.01), both of which also achieved a significant level of effect. Programming technology was the least effective (ES = 0.39, P  < 0.01), only having a medium-low degree of effect compared to education (ES = 0.72, P  < 0.01) and other fields (such as language, art, and social sciences) (ES = 0.58, P  < 0.01). These results suggest that scientific fields (e.g., mathematics, science) may be the most effective subject areas for cultivating critical thinking utilizing the approach of collaborative problem-solving.

The effectiveness of collaborative problem solving with regard to teaching critical thinking

According to this meta-analysis, using collaborative problem-solving as an intervention strategy in critical thinking teaching has a considerable amount of impact on cultivating learners’ critical thinking as a whole and has a favorable promotional effect on the two dimensions of critical thinking. According to certain studies, collaborative problem solving, the most frequently used critical thinking teaching strategy in curriculum instruction can considerably enhance students’ critical thinking (e.g., Liang et al., 2017 ; Liu et al., 2020 ; Cindy, 2004 ). This meta-analysis provides convergent data support for the above research views. Thus, the findings of this meta-analysis not only effectively address the first research query regarding the overall effect of cultivating critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills) utilizing the approach of collaborative problem-solving, but also enhance our confidence in cultivating critical thinking by using collaborative problem-solving intervention approach in the context of classroom teaching.

Furthermore, the associated improvements in attitudinal tendency are much stronger, but the corresponding improvements in cognitive skill are only marginally better. According to certain studies, cognitive skill differs from the attitudinal tendency in classroom instruction; the cultivation and development of the former as a key ability is a process of gradual accumulation, while the latter as an attitude is affected by the context of the teaching situation (e.g., a novel and exciting teaching approach, challenging and rewarding tasks) (Halpern, 2001 ; Wei and Hong, 2022 ). Collaborative problem-solving as a teaching approach is exciting and interesting, as well as rewarding and challenging; because it takes the learners as the focus and examines problems with poor structure in real situations, and it can inspire students to fully realize their potential for problem-solving, which will significantly improve their attitudinal tendency toward solving problems (Liu et al., 2020 ). Similar to how collaborative problem-solving influences attitudinal tendency, attitudinal tendency impacts cognitive skill when attempting to solve a problem (Liu et al., 2020 ; Zhang et al., 2022 ), and stronger attitudinal tendencies are associated with improved learning achievement and cognitive ability in students (Sison, 2008 ; Zhang et al., 2022 ). It can be seen that the two specific dimensions of critical thinking as well as critical thinking as a whole are affected by collaborative problem-solving, and this study illuminates the nuanced links between cognitive skills and attitudinal tendencies with regard to these two dimensions of critical thinking. To fully develop students’ capacity for critical thinking, future empirical research should pay closer attention to cognitive skills.

The moderating effects of collaborative problem solving with regard to teaching critical thinking

In order to further explore the key factors that influence critical thinking, exploring possible moderating effects that might produce considerable heterogeneity was done using subgroup analysis. The findings show that the moderating factors, such as the teaching type, learning stage, group size, learning scaffold, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, could all support the cultivation of collaborative problem-solving in critical thinking. Among them, the effect size differences between the learning stage and measuring tool are not significant, which does not explain why these two factors are crucial in supporting the cultivation of critical thinking utilizing the approach of collaborative problem-solving.

In terms of the learning stage, various learning stages influenced critical thinking positively without significant intergroup differences, indicating that we are unable to explain why it is crucial in fostering the growth of critical thinking.

Although high education accounts for 70.89% of all empirical studies performed by researchers, high school may be the appropriate learning stage to foster students’ critical thinking by utilizing the approach of collaborative problem-solving since it has the largest overall effect size. This phenomenon may be related to student’s cognitive development, which needs to be further studied in follow-up research.

With regard to teaching type, mixed course teaching may be the best teaching method to cultivate students’ critical thinking. Relevant studies have shown that in the actual teaching process if students are trained in thinking methods alone, the methods they learn are isolated and divorced from subject knowledge, which is not conducive to their transfer of thinking methods; therefore, if students’ thinking is trained only in subject teaching without systematic method training, it is challenging to apply to real-world circumstances (Ruggiero, 2012 ; Hu and Liu, 2015 ). Teaching critical thinking as mixed course teaching in parallel to other subject teachings can achieve the best effect on learners’ critical thinking, and explicit critical thinking instruction is more effective than less explicit critical thinking instruction (Bensley and Spero, 2014 ).

In terms of the intervention duration, with longer intervention times, the overall effect size shows an upward tendency. Thus, the intervention duration and critical thinking’s impact are positively correlated. Critical thinking, as a key competency for students in the 21st century, is difficult to get a meaningful improvement in a brief intervention duration. Instead, it could be developed over a lengthy period of time through consistent teaching and the progressive accumulation of knowledge (Halpern, 2001 ; Hu and Liu, 2015 ). Therefore, future empirical studies ought to take these restrictions into account throughout a longer period of critical thinking instruction.

With regard to group size, a group size of 2–3 persons has the highest effect size, and the comprehensive effect size decreases with increasing group size in general. This outcome is in line with some research findings; as an example, a group composed of two to four members is most appropriate for collaborative learning (Schellens and Valcke, 2006 ). However, the meta-analysis results also indicate that once the group size exceeds 7 people, small groups cannot produce better interaction and performance than large groups. This may be because the learning scaffolds of technique support, resource support, and teacher support improve the frequency and effectiveness of interaction among group members, and a collaborative group with more members may increase the diversity of views, which is helpful to cultivate critical thinking utilizing the approach of collaborative problem-solving.

With regard to the learning scaffold, the three different kinds of learning scaffolds can all enhance critical thinking. Among them, the teacher-supported learning scaffold has the largest overall effect size, demonstrating the interdependence of effective learning scaffolds and collaborative problem-solving. This outcome is in line with some research findings; as an example, a successful strategy is to encourage learners to collaborate, come up with solutions, and develop critical thinking skills by using learning scaffolds (Reiser, 2004 ; Xu et al., 2022 ); learning scaffolds can lower task complexity and unpleasant feelings while also enticing students to engage in learning activities (Wood et al., 2006 ); learning scaffolds are designed to assist students in using learning approaches more successfully to adapt the collaborative problem-solving process, and the teacher-supported learning scaffolds have the greatest influence on critical thinking in this process because they are more targeted, informative, and timely (Xu et al., 2022 ).

With respect to the measuring tool, despite the fact that standardized measurement tools (such as the WGCTA, CCTT, and CCTST) have been acknowledged as trustworthy and effective by worldwide experts, only 54.43% of the research included in this meta-analysis adopted them for assessment, and the results indicated no intergroup differences. These results suggest that not all teaching circumstances are appropriate for measuring critical thinking using standardized measurement tools. “The measuring tools for measuring thinking ability have limits in assessing learners in educational situations and should be adapted appropriately to accurately assess the changes in learners’ critical thinking.”, according to Simpson and Courtney ( 2002 , p. 91). As a result, in order to more fully and precisely gauge how learners’ critical thinking has evolved, we must properly modify standardized measuring tools based on collaborative problem-solving learning contexts.

With regard to the subject area, the comprehensive effect size of science departments (e.g., mathematics, science, medical science) is larger than that of language arts and social sciences. Some recent international education reforms have noted that critical thinking is a basic part of scientific literacy. Students with scientific literacy can prove the rationality of their judgment according to accurate evidence and reasonable standards when they face challenges or poorly structured problems (Kyndt et al., 2013 ), which makes critical thinking crucial for developing scientific understanding and applying this understanding to practical problem solving for problems related to science, technology, and society (Yore et al., 2007 ).

Suggestions for critical thinking teaching

Other than those stated in the discussion above, the following suggestions are offered for critical thinking instruction utilizing the approach of collaborative problem-solving.

First, teachers should put a special emphasis on the two core elements, which are collaboration and problem-solving, to design real problems based on collaborative situations. This meta-analysis provides evidence to support the view that collaborative problem-solving has a strong synergistic effect on promoting students’ critical thinking. Asking questions about real situations and allowing learners to take part in critical discussions on real problems during class instruction are key ways to teach critical thinking rather than simply reading speculative articles without practice (Mulnix, 2012 ). Furthermore, the improvement of students’ critical thinking is realized through cognitive conflict with other learners in the problem situation (Yang et al., 2008 ). Consequently, it is essential for teachers to put a special emphasis on the two core elements, which are collaboration and problem-solving, and design real problems and encourage students to discuss, negotiate, and argue based on collaborative problem-solving situations.

Second, teachers should design and implement mixed courses to cultivate learners’ critical thinking, utilizing the approach of collaborative problem-solving. Critical thinking can be taught through curriculum instruction (Kuncel, 2011 ; Leng and Lu, 2020 ), with the goal of cultivating learners’ critical thinking for flexible transfer and application in real problem-solving situations. This meta-analysis shows that mixed course teaching has a highly substantial impact on the cultivation and promotion of learners’ critical thinking. Therefore, teachers should design and implement mixed course teaching with real collaborative problem-solving situations in combination with the knowledge content of specific disciplines in conventional teaching, teach methods and strategies of critical thinking based on poorly structured problems to help students master critical thinking, and provide practical activities in which students can interact with each other to develop knowledge construction and critical thinking utilizing the approach of collaborative problem-solving.

Third, teachers should be more trained in critical thinking, particularly preservice teachers, and they also should be conscious of the ways in which teachers’ support for learning scaffolds can promote critical thinking. The learning scaffold supported by teachers had the greatest impact on learners’ critical thinking, in addition to being more directive, targeted, and timely (Wood et al., 2006 ). Critical thinking can only be effectively taught when teachers recognize the significance of critical thinking for students’ growth and use the proper approaches while designing instructional activities (Forawi, 2016 ). Therefore, with the intention of enabling teachers to create learning scaffolds to cultivate learners’ critical thinking utilizing the approach of collaborative problem solving, it is essential to concentrate on the teacher-supported learning scaffolds and enhance the instruction for teaching critical thinking to teachers, especially preservice teachers.

Implications and limitations

There are certain limitations in this meta-analysis, but future research can correct them. First, the search languages were restricted to English and Chinese, so it is possible that pertinent studies that were written in other languages were overlooked, resulting in an inadequate number of articles for review. Second, these data provided by the included studies are partially missing, such as whether teachers were trained in the theory and practice of critical thinking, the average age and gender of learners, and the differences in critical thinking among learners of various ages and genders. Third, as is typical for review articles, more studies were released while this meta-analysis was being done; therefore, it had a time limit. With the development of relevant research, future studies focusing on these issues are highly relevant and needed.

Conclusions

The subject of the magnitude of collaborative problem-solving’s impact on fostering students’ critical thinking, which received scant attention from other studies, was successfully addressed by this study. The question of the effectiveness of collaborative problem-solving in promoting students’ critical thinking was addressed in this study, which addressed a topic that had gotten little attention in earlier research. The following conclusions can be made:

Regarding the results obtained, collaborative problem solving is an effective teaching approach to foster learners’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]). With respect to the dimensions of critical thinking, collaborative problem-solving can significantly and effectively improve students’ attitudinal tendency, and the comprehensive effect is significant (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

As demonstrated by both the results and the discussion, there are varying degrees of beneficial effects on students’ critical thinking from all seven moderating factors, which were found across 36 studies. In this context, the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have a positive impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. Since the learning stage (chi 2  = 3.15, P  = 0.21 > 0.05) and measuring tools (chi 2  = 0.08, P  = 0.78 > 0.05) did not demonstrate any significant intergroup differences, we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving.

Data availability

All data generated or analyzed during this study are included within the article and its supplementary information files, and the supplementary information files are available in the Dataverse repository: https://doi.org/10.7910/DVN/IPFJO6 .

Bensley DA, Spero RA (2014) Improving critical thinking skills and meta-cognitive monitoring through direct infusion. Think Skills Creat 12:55–68. https://doi.org/10.1016/j.tsc.2014.02.001

Article   Google Scholar  

Castle A (2009) Defining and assessing critical thinking skills for student radiographers. Radiography 15(1):70–76. https://doi.org/10.1016/j.radi.2007.10.007

Chen XD (2013) An empirical study on the influence of PBL teaching model on critical thinking ability of non-English majors. J PLA Foreign Lang College 36 (04):68–72

Google Scholar  

Cohen A (1992) Antecedents of organizational commitment across occupational groups: a meta-analysis. J Organ Behav. https://doi.org/10.1002/job.4030130602

Cooper H (2010) Research synthesis and meta-analysis: a step-by-step approach, 4th edn. Sage, London, England

Cindy HS (2004) Problem-based learning: what and how do students learn? Educ Psychol Rev 51(1):31–39

Duch BJ, Gron SD, Allen DE (2001) The power of problem-based learning: a practical “how to” for teaching undergraduate courses in any discipline. Stylus Educ Sci 2:190–198

Ennis RH (1989) Critical thinking and subject specificity: clarification and needed research. Educ Res 18(3):4–10. https://doi.org/10.3102/0013189x018003004

Facione PA (1990) Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations. Eric document reproduction service. https://eric.ed.gov/?id=ed315423

Facione PA, Facione NC (1992) The California Critical Thinking Dispositions Inventory (CCTDI) and the CCTDI test manual. California Academic Press, Millbrae, CA

Forawi SA (2016) Standard-based science education and critical thinking. Think Skills Creat 20:52–62. https://doi.org/10.1016/j.tsc.2016.02.005

Halpern DF (2001) Assessing the effectiveness of critical thinking instruction. J Gen Educ 50(4):270–286. https://doi.org/10.2307/27797889

Hu WP, Liu J (2015) Cultivation of pupils’ thinking ability: a five-year follow-up study. Psychol Behav Res 13(05):648–654. https://doi.org/10.3969/j.issn.1672-0628.2015.05.010

Huber K (2016) Does college teach critical thinking? A meta-analysis. Rev Educ Res 86(2):431–468. https://doi.org/10.3102/0034654315605917

Kek MYCA, Huijser H (2011) The power of problem-based learning in developing critical thinking skills: preparing students for tomorrow’s digital futures in today’s classrooms. High Educ Res Dev 30(3):329–341. https://doi.org/10.1080/07294360.2010.501074

Kuncel NR (2011) Measurement and meaning of critical thinking (Research report for the NRC 21st Century Skills Workshop). National Research Council, Washington, DC

Kyndt E, Raes E, Lismont B, Timmers F, Cascallar E, Dochy F (2013) A meta-analysis of the effects of face-to-face cooperative learning. Do recent studies falsify or verify earlier findings? Educ Res Rev 10(2):133–149. https://doi.org/10.1016/j.edurev.2013.02.002

Leng J, Lu XX (2020) Is critical thinking really teachable?—A meta-analysis based on 79 experimental or quasi experimental studies. Open Educ Res 26(06):110–118. https://doi.org/10.13966/j.cnki.kfjyyj.2020.06.011

Liang YZ, Zhu K, Zhao CL (2017) An empirical study on the depth of interaction promoted by collaborative problem solving learning activities. J E-educ Res 38(10):87–92. https://doi.org/10.13811/j.cnki.eer.2017.10.014

Lipsey M, Wilson D (2001) Practical meta-analysis. International Educational and Professional, London, pp. 92–160

Liu Z, Wu W, Jiang Q (2020) A study on the influence of problem based learning on college students’ critical thinking-based on a meta-analysis of 31 studies. Explor High Educ 03:43–49

Morris SB (2008) Estimating effect sizes from pretest-posttest-control group designs. Organ Res Methods 11(2):364–386. https://doi.org/10.1177/1094428106291059

Article   ADS   Google Scholar  

Mulnix JW (2012) Thinking critically about critical thinking. Educ Philos Theory 44(5):464–479. https://doi.org/10.1111/j.1469-5812.2010.00673.x

Naber J, Wyatt TH (2014) The effect of reflective writing interventions on the critical thinking skills and dispositions of baccalaureate nursing students. Nurse Educ Today 34(1):67–72. https://doi.org/10.1016/j.nedt.2013.04.002

National Research Council (2012) Education for life and work: developing transferable knowledge and skills in the 21st century. The National Academies Press, Washington, DC

Niu L, Behar HLS, Garvan CW (2013) Do instructional interventions influence college students’ critical thinking skills? A meta-analysis. Educ Res Rev 9(12):114–128. https://doi.org/10.1016/j.edurev.2012.12.002

Peng ZM, Deng L (2017) Towards the core of education reform: cultivating critical thinking skills as the core of skills in the 21st century. Res Educ Dev 24:57–63. https://doi.org/10.14121/j.cnki.1008-3855.2017.24.011

Reiser BJ (2004) Scaffolding complex learning: the mechanisms of structuring and problematizing student work. J Learn Sci 13(3):273–304. https://doi.org/10.1207/s15327809jls1303_2

Ruggiero VR (2012) The art of thinking: a guide to critical and creative thought, 4th edn. Harper Collins College Publishers, New York

Schellens T, Valcke M (2006) Fostering knowledge construction in university students through asynchronous discussion groups. Comput Educ 46(4):349–370. https://doi.org/10.1016/j.compedu.2004.07.010

Sendag S, Odabasi HF (2009) Effects of an online problem based learning course on content knowledge acquisition and critical thinking skills. Comput Educ 53(1):132–141. https://doi.org/10.1016/j.compedu.2009.01.008

Sison R (2008) Investigating Pair Programming in a Software Engineering Course in an Asian Setting. 2008 15th Asia-Pacific Software Engineering Conference, pp. 325–331. https://doi.org/10.1109/APSEC.2008.61

Simpson E, Courtney M (2002) Critical thinking in nursing education: literature review. Mary Courtney 8(2):89–98

Stewart L, Tierney J, Burdett S (2006) Do systematic reviews based on individual patient data offer a means of circumventing biases associated with trial publications? Publication bias in meta-analysis. John Wiley and Sons Inc, New York, pp. 261–286

Tiwari A, Lai P, So M, Yuen K (2010) A comparison of the effects of problem-based learning and lecturing on the development of students’ critical thinking. Med Educ 40(6):547–554. https://doi.org/10.1111/j.1365-2929.2006.02481.x

Wood D, Bruner JS, Ross G (2006) The role of tutoring in problem solving. J Child Psychol Psychiatry 17(2):89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

Wei T, Hong S (2022) The meaning and realization of teachable critical thinking. Educ Theory Practice 10:51–57

Xu EW, Wang W, Wang QX (2022) A meta-analysis of the effectiveness of programming teaching in promoting K-12 students’ computational thinking. Educ Inf Technol. https://doi.org/10.1007/s10639-022-11445-2

Yang YC, Newby T, Bill R (2008) Facilitating interactions through structured web-based bulletin boards: a quasi-experimental study on promoting learners’ critical thinking skills. Comput Educ 50(4):1572–1585. https://doi.org/10.1016/j.compedu.2007.04.006

Yore LD, Pimm D, Tuan HL (2007) The literacy component of mathematical and scientific literacy. Int J Sci Math Educ 5(4):559–589. https://doi.org/10.1007/s10763-007-9089-4

Zhang T, Zhang S, Gao QQ, Wang JH (2022) Research on the development of learners’ critical thinking in online peer review. Audio Visual Educ Res 6:53–60. https://doi.org/10.13811/j.cnki.eer.2022.06.08

Download references

Acknowledgements

This research was supported by the graduate scientific research and innovation project of Xinjiang Uygur Autonomous Region named “Research on in-depth learning of high school information technology courses for the cultivation of computing thinking” (No. XJ2022G190) and the independent innovation fund project for doctoral students of the College of Educational Science of Xinjiang Normal University named “Research on project-based teaching of high school information technology courses from the perspective of discipline core literacy” (No. XJNUJKYA2003).

Author information

Authors and affiliations.

College of Educational Science, Xinjiang Normal University, 830017, Urumqi, Xinjiang, China

Enwei Xu, Wei Wang & Qingxia Wang

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Enwei Xu or Wei Wang .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Additional information.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary tables, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Xu, E., Wang, W. & Wang, Q. The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature. Humanit Soc Sci Commun 10 , 16 (2023). https://doi.org/10.1057/s41599-023-01508-1

Download citation

Received : 07 August 2022

Accepted : 04 January 2023

Published : 11 January 2023

DOI : https://doi.org/10.1057/s41599-023-01508-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Impacts of online collaborative learning on students’ intercultural communication apprehension and intercultural communicative competence.

  • Hoa Thi Hoang Chau
  • Hung Phu Bui
  • Quynh Thi Huong Dinh

Education and Information Technologies (2024)

Exploring the effects of digital technology on deep learning: a meta-analysis

Sustainable electricity generation and farm-grid utilization from photovoltaic aquaculture: a bibliometric analysis.

  • A. A. Amusa
  • M. Alhassan

International Journal of Environmental Science and Technology (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

how essential is critical thinking and communication skills in academic research

Empowering students to develop research skills

February 8, 2021

This post is republished from   Into Practice ,  a biweekly communication of Harvard’s  Office of the Vice Provost for Advances in Learning

Terence Capellini standing next to a human skeleton

Terence D. Capellini, Richard B Wolf Associate Professor of Human Evolutionary Biology, empowers students to grow as researchers in his Building the Human Body course through a comprehensive, course-long collaborative project that works to understand the changes in the genome that make the human skeleton unique. For instance, of the many types of projects, some focus on the genetic basis of why human beings walk on two legs. This integrative “Evo-Devo” project demands high levels of understanding of biology and genetics that students gain in the first half of class, which is then applied hands-on in the second half of class. Students work in teams of 2-3 to collect their own morphology data by measuring skeletons at the Harvard Museum of Natural History and leverage statistics to understand patterns in their data. They then collect and analyze DNA sequences from humans and other animals to identify the DNA changes that may encode morphology. Throughout this course, students go from sometimes having “limited experience in genetics and/or morphology” to conducting their own independent research. This project culminates in a team presentation and a final research paper.

The benefits: Students develop the methodological skills required to collect and analyze morphological data. Using the UCSC Genome browser  and other tools, students sharpen their analytical skills to visualize genomics data and pinpoint meaningful genetic changes. Conducting this work in teams means students develop collaborative skills that model academic biology labs outside class, and some student projects have contributed to published papers in the field. “Every year, I have one student, if not two, join my lab to work on projects developed from class to try to get them published.”

“The beauty of this class is that the students are asking a question that’s never been asked before and they’re actually collecting data to get at an answer.”

The challenges:  Capellini observes that the most common challenge faced by students in the course is when “they have a really terrific question they want to explore, but the necessary background information is simply lacking. It is simply amazing how little we do know about human development, despite its hundreds of years of study.” Sometimes, for instance, students want to learn about the evolution, development, and genetics of a certain body part, but it is still somewhat a mystery to the field. In these cases, the teaching team (including co-instructor Dr. Neil Roach) tries to find datasets that are maximally relevant to the questions the students want to explore. Capellini also notes that the work in his class is demanding and hard, just by the nature of the work, but students “always step up and perform” and the teaching team does their best to “make it fun” and ensure they nurture students’ curiosities and questions.

Takeaways and best practices

  • Incorporate previous students’ work into the course. Capellini intentionally discusses findings from previous student groups in lectures. “They’re developing real findings and we share that when we explain the project for the next groups.” Capellini also invites students to share their own progress and findings as part of class discussion, which helps them participate as independent researchers and receive feedback from their peers.
  • Assign groups intentionally.  Maintaining flexibility allows the teaching team to be more responsive to students’ various needs and interests. Capellini will often place graduate students by themselves to enhance their workload and give them training directly relevant to their future thesis work. Undergraduates are able to self-select into groups or can be assigned based on shared interests. “If two people are enthusiastic about examining the knee, for instance, we’ll match them together.”
  • Consider using multiple types of assessments.  Capellini notes that exams and quizzes are administered in the first half of the course and scaffolded so that students can practice the skills they need to successfully apply course material in the final project. “Lots of the initial examples are hypothetical,” he explains, even grounded in fiction and pop culture references, “but [students] have to eventually apply the skills they learned in addressing the hypothetical example to their own real example and the data they generate” for the Evo-Devo project. This is coupled with a paper and a presentation treated like a conference talk.

Bottom line:  Capellini’s top advice for professors looking to help their own students grow as researchers is to ensure research projects are designed with intentionality and fully integrated into the syllabus. “You can’t simply tack it on at the end,” he underscores. “If you want this research project to be a substantive learning opportunity, it has to happen from Day 1.” That includes carving out time in class for students to work on it and make the connections they need to conduct research. “Listen to your students and learn about them personally” so you can tap into what they’re excited about. Have some fun in the course, and they’ll be motivated to do the work.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • PMC10054602

Logo of jintell

Creativity, Critical Thinking, Communication, and Collaboration: Assessment, Certification, and Promotion of 21st Century Skills for the Future of Work and Education

Branden thornhill-miller.

1 Faculty of Philosophy, University of Oxford, Oxford OX2 6GG, UK

2 International Institute for Competency Development, 75001 Paris, France

Anaëlle Camarda

3 LaPEA, Université Paris Cité and Univ Gustave Eiffel, 92100 Boulogne-Billancourt, France

4 Institut Supérieur Maria Montessori, 94130 Nogent-Sur-Marne, France

Maxence Mercier

Jean-marie burkhardt.

5 LaPEA, Univ Gustave Eiffel and Université Paris Cité, CEDEX, 78008 Versailles, France

Tiffany Morisseau

6 Strane Innovation, 91190 Gif-sur-Yvette, France

Samira Bourgeois-Bougrine

Florent vinchon, stephanie el hayek.

7 AFNOR International, 93210 Saint-Denis, France

Myriam Augereau-Landais

Florence mourey, cyrille feybesse.

8 Centre Hospitalier Guillaume Regnier, Université de Rennes 1, 35200 Rennes, France

Daniel Sundquist

Todd lubart, associated data.

Not Applicable.

This article addresses educational challenges posed by the future of work, examining “21st century skills”, their conception, assessment, and valorization. It focuses in particular on key soft skill competencies known as the “4Cs”: creativity, critical thinking, collaboration, and communication. In a section on each C, we provide an overview of assessment at the level of individual performance, before focusing on the less common assessment of systemic support for the development of the 4Cs that can be measured at the institutional level (i.e., in schools, universities, professional training programs, etc.). We then present the process of official assessment and certification known as “labelization”, suggesting it as a solution both for establishing a publicly trusted assessment of the 4Cs and for promoting their cultural valorization. Next, two variations of the “International Institute for Competency Development’s 21st Century Skills Framework” are presented. The first of these comprehensive systems allows for the assessment and labelization of the extent to which development of the 4Cs is supported by a formal educational program or institution. The second assesses informal educational or training experiences, such as playing a game. We discuss the overlap between the 4Cs and the challenges of teaching and institutionalizing them, both of which may be assisted by adopting a dynamic interactionist model of the 4Cs—playfully entitled “Crea-Critical-Collab-ication”—for pedagogical and policy-promotion purposes. We conclude by briefly discussing opportunities presented by future research and new technologies such as artificial intelligence and virtual reality.

1. Introduction

There are many ways of describing the massive educational challenges faced in the 21st century. With the appearance of computers and digital technologies, new means of interacting between people, and a growing competitiveness on the international level, organizations are now requiring new skills from their employees, leaving educational systems struggling to provide appropriate ongoing training. Indeed, according to the World Economic Forum’s 2020 “Future of Jobs Report”, studying 15 industries in 26 advanced and emerging countries, up to 50% of employees will need some degree of “reskilling” by 2025 ( World Economic Forum 2020 ). Although many national and international educational efforts and institutions now explicitly put the cultivation of new kinds of skills on their educational agendas, practical means of assessing such skills remains underdeveloped, thus hampering the valorization of these skills and the development of guidance for relevant pedagogy ( Care et al. 2018 ; Vincent-Lancrin et al. 2019 ; for overviews and discussion of higher education in global developmental context, see Blessinger and Anchan 2015 ; Salmi 2017 ).

This article addresses some of these challenges and related issues for the future of education and work, by focusing on so-called “21st Century Skills” and key “soft skills” known as the “4Cs” (creativity, critical thinking, communication, and collaboration), more particularly. It begins with a brief discussion of these skills, outlining their conceptual locations and potential roles in the modern educational context. A section on each “C” then follows, defining the C, summarizing research and methods for its scientific assessment at the individual level, and then outlining some means and avenues at the systemic level for fostering its development (e.g., important aspects of curriculum, institutional structure, or of the general environment, as well as pedagogical methods) that might be leveraged by an institution or program in order to promote the development of that C among its students/trainees. In the next section, the certification-like process of “labelization” is outlined and proposed as one of the best available solutions both for valorizing the 4Cs and moving them towards the center of the modern educational enterprise, as well as for benchmarking and monitoring institutions’ progress in fostering their development. The International Institute for Competency Development’s 4Cs Framework is then outlined as an example of such a comprehensive system for assessing and labelizing the extent to which educational institutions and programs support the development of the 4Cs. We further demonstrate the possibility of labelizing and promoting support for the development of the 4Cs by activities or within less formal educational settings, presenting a second framework for assessment of the 4Cs in games and similar training activities. Our discussion section begins with the challenges to implementing educational change in the direction of 21st century skills, focusing on the complex and overlapping nature of the 4Cs. Here, we propose that promoting a “Dynamic Interactionist Model of the 4Cs” not only justifies grouping them together, but it might also assist more directly with some of the challenges of pedagogy, assessment, policy promotion, and ultimately, institutionalization, faced by the 4Cs and related efforts to modernize education. We conclude by suggesting some important future work for the 4Cs individually and also as an interrelated collective of vital skills for the future of education and work.

“21st Century Skills”, “Soft Skills”, and the “4Cs”

For 40 years, so-called “21st century skills” have been promoted as those necessary for success in a modern work environment that the US Army War College ( Barber 1992 ) has accurately described as increasingly “VUCA”—“volatile, uncertain, complex and ambiguous”. Various lists of skills and competencies have been formulated on their own or as part of comprehensive overarching educational frameworks. Although a detailed overview of this background material is outside the scope of this article (see Lamri et al. 2022 ; Lucas 2022 for summaries), one of the first prominent examples of this trend was the Partnership for 21st Century Skills (P21), whose comprehensive “Framework for 21st Century Learning” is presented in Figure 1 ( Battelle for Kids 2022 ). This framework for future-oriented education originated the idea of the “4Cs”, placing them at its center and apex as “Learning and Innovation Skills” that are in need of much broader institutional support at the foundational level in the form of new standards and assessments, curriculum and instructional development, ongoing professional development, and appropriately improved learning environments ( Partnership for 21st Century Skills 2008 ). These points are also consistent with the approach and assessment frameworks presented later in this article.

An external file that holds a picture, illustration, etc.
Object name is jintelligence-11-00054-g001.jpg

The P21 Framework for 21st Century Learning. (© 2019, Battelle for Kids. All Rights Reserved. https://www.battelleforkids.org/ ; accessed on 17 January 2023).

Other important organizations such as the World Economic Forum ( 2015 ) have produced similar overarching models of “21st century skills’’ with the 4Cs at their center, but the term “21st century skills’’ has been rightly criticized for a several reasons: the skills referred to are not actually all unique to, or uniquely important to, the 21st century, and it is a term that is often used more as an advertising or promotional label for systems that sometimes conflate and confuse different kinds of skills with other concepts that users lump together ( Lucas 2019 ). Indeed, though there is no absolute consensus on the definition of a “skill”, they are often described as being multidimensional and involve the ability to solve problems in context and to perform tasks using appropriate resources at the right time and in the right combination ( Lamri and Lubart 2021 ). At its simplest, a skill is a “learned capacity to do something useful” ( Lucas and Claxton 2009 ), or an ability to perform a given task at a specified performance level, which develops through practice, experience. and training ( Lamri et al. 2022 ).

The idea of what skills “are’’, however, has also evolved to some extent over time in parallel to the nature of the abilities required to make valued contributions to society. The digital and information age, in particular, has seen the replacement by machines of much traditional work sometimes referred to as “hard skills’’—skills such as numerical calculation or driving, budget-formulating, or copyediting abilities, which entail mastery of fixed sets of knowledge and know-how of standard procedures, and which are often learned on the job. Such skills are more routine, machine-related, or technically oriented and not as likely to be centered on human interaction. In contrast, the work that has been increasingly valued in the 21st century involves the more complex, human interactive, and/or non-routine skills that Whitmore ( 1972 ) first referred to as “soft skills”.

Unfortunately, researchers, educators, and consultants have defined, redefined, regrouped, and expanded soft skills—sometimes labeling them “transversal competencies”, “generic competencies”, or even “life skills” in addition to “21st century skills”—in so many different ways within and across different domains of research and education (as well as languages and national educational systems) that much progress towards these goals has literally been “lost in translation” ( Cinque 2016 ).

Indeed, there is also a long-standing ambiguity and confusion between the terms “competency” (also competence) and “skill” due to their use across different domains (e.g., learning research, education, vocational training, personnel selection) as well as different epistemological backgrounds and cultural specificities ( Drisko 2014 ; Winterton et al. 2006 ; van Klink and Boon 2003 ). The term “competency” is, however, often used as a broader concept that encompasses skills, abilities, and attitudes, whereas, in a narrower sense, the term “skill” has been defined as “goal-directed, well-organized behavior that is acquired through practice and performed with economy of effort” ( Proctor and Dutta 1995, p. 18 ). For example, whereas the command of a spoken language or the ability to write are skills (hard skills, to be precise), the ability to communicate effectively is a competence that may draw on an individual’s knowledge of language, writing skills, practical IT skills, and emotional intelligence, as well as attitudes towards those with whom one is communicating ( Rychen and Hersch 2003 ). Providing high-quality customer service is a competency that relies on listening skills, social perception skills, and contextual knowledge of products. Beyond these potential distinctions, the term “competency” is predominant in Europe, whereas “skill” is more commonly used in the US. Yet it also frequently occurs that both are used as rough synonyms. For example, Voogt and Roblin ( 2012, p. 299 ) examine the “21st century competences and the recommended strategies for the implementation of these skills”, and Graesser et al. ( 2022, p. 568 ) state that twenty-first-century skills “include self-regulated learning, collaborative problem solving, communication (…) and other competencies”. In conclusion, the term “competencies” is often used interchangeably with “skills” (and can have a particularly large overlap with “soft skills”), but it is also often considered in a broader sense as a set of skills, knowledge, and attitudes that, together, meet a complex demand ( Ananiadoui and Claro 2009 ). From this perspective, one could argue that the 4Cs, as complex, “higher-order” soft skills, might best be labeled competencies. For ease and convenience, however, in this text, we consider the two terms interchangeable but favor the term “skills”, only using “competency” in some instances to avoid cumbersome repetition.

Even having defined soft skills as a potentially more narrow and manageable focus, we are still aware of no large-scale study that has employed a comprehensive enough range of actual psychometric measures of soft skills in a manner that might help produce a definitive empirical taxonomy. Some more recent taxonomic efforts have, however, attempted to provide additional empirical grounding for the accurate identification of key soft skills (see e.g., Joie-La Marle et al. 2022 ). Further, recent research by JobTeaser (see Lamri et al. 2022 ) surveying a large, diverse sample of young workers about a comprehensive, systematic list of soft skills as actually used in their professional roles represents a good step towards some clarification and mapping of this domain on an empirical basis. Despite the fact that both these studies necessarily involved assumptions and interpretive grouping of variables, the presence and importance of the 4Cs as higher-order skills is evident in both sets of empirical results.

Various comprehensive “21st century skills” systems proposed in the past without much empirical verification also seem to have been found too complex and cumbersome for implementation. The 4Cs, on the other hand, seem to provide a relatively simple, persuasive, targetable core that has been found to constitute a pedagogically and policy-friendly model by major organizations, and that also now seems to be gaining some additional empirical validity. Gathering support from researchers and industry alike, we suggest that the 4Cs can be seen as highest-level transversal skills—or “meta-competencies”—that allow individuals to remain competent and to develop their potential in a rapidly changing professional world. Thus, in the end, they may also be one of the most useful ways of summarizing and addressing the critical challenges faced by the future of work and education ( National Education Association 2011 ).

Taking them as our focus, we note, however, that the teaching and development of the 4Cs will require a complex intervention and mobilization of educational and socio-economic resources—both a major shift in pedagogical techniques and even more fundamental changes in institutional structures ( Ananiadoui and Claro 2009 ). One very important issue for understanding the 4Cs and their educational implementation related to this, which can simultaneously facilitate their teaching but be a challenge for their assessment, is the multidimensionality, interrelatedness, and transdisciplinary relevance of the 4Cs. Thus, we address the relationships between the Cs in the different C sections and later in our Discussion, we present a “Dynamic Interactionist Model of the 4Cs’’ that we hope will assist in their understanding, in the further development of pedagogical processes related to them, and in their public promotion and related policy. Ultimately, it is partly due to their complexity and interrelationships, we argue, that it is important and expedient that the 4Cs are taught, assessed, and promoted together.

2. The 4Cs, Assessment, and Support for Development

2.1. creativity.

In psychology, creativity is usually defined as the capacity to produce novel, original work that fits with task constraints and has value in its context (for a recent overview, see Lubart and Thornhill-Miller 2019 ). This basic definition, though useful for testing and measurement, is largely incomplete, as it does not contain any information about the individual or groups doing the creating or the nature of physical and social contexts ( Glăveanu 2014 ). Moreover, Corazza ( 2016 ) challenged this standard definition of creativity, arguing that as it focuses solely on the existence of an original and effective outcome, it misses the dynamics of the creative process, which is frequently associated with periods of creative inconclusiveness and limited occasions of creative achievements. To move away from the limitations of the standard definition of creativity, we can consider Bruner’s description of creativity as “figuring out how to use what you already know in order to go beyond what you currently think” (p. 183 in Weick 1993 ). This description echoes the notion of potential, which refers to a latent state that may be put to use if a person has the opportunity.

Creativity is a multifaceted phenomenon that can be approached from many different angles. There are three main frameworks for creativity studies: the 4Ps ( Rhodes 1961 ), the 5As ( Glăveanu 2013 ), and the 7Cs model ( Lubart 2017 ). These frameworks share at least four fundamental and measurable dimensions: the act of creating (process), the outcome of the creative process (product), the characteristics of creative actor(s) enacting the process (person), and the social and physical environment that enable or hinder the creative process (press). Contrary to many traditional beliefs, however, creativity can be trained and taught in a variety of different ways, both through direct, active teaching of creativity concepts and techniques and through more passive and indirect means such as the development of creativity-supporting contexts ( Chiu 2015 ; Thornhill-Miller and Dupont 2016 ). Alongside intelligence, with which it shares some common mechanisms, creativity is now recognized as an indispensable element for the flexibility and adaptation of individuals in challenging situations ( Sternberg 1986 ).

2.1.1. Individual Assessment of Creativity

Drawing upon previous efforts to structure creativity research, Batey ( 2012 ) proposed a taxonomic framework for creativity measurement that takes the form of a three-dimensional matrix: (a) the level at which creativity may be measured (the individual, the team, the organization, and the culture), (b) the facets of creativity that may be assessed (person/trait, process, press, and product), and (c) the measurement approach (objective, self-rating, other ratings). It is beyond the scope of this article to offer a literature review of all these dimensions, but for the purposes of this paper, we address some important aspects of individual-level and institutional-level assessment here.

Assessing creativity at an individual level encompasses two major approaches: (1) creative accomplishment based on production and (2) creative potential. Regarding the first approach focusing on creative accomplishment , there are at least four main assessment techniques (or tools representing variations of assessment techniques): (a) the historiometric approach, which applies quantitative analysis to historically available data (such as the number of prizes won or times cited) in an effort to understand eminent, field-changing creativity ( Simonton 1999 ); (b) the Consensual Assessment Technique (CAT) ( Amabile 1982 ), which offers a method for combining and validating judges’ subjective evaluations of a set of (potentially) creative productions or ideas; (c) the Creative Achievement Questionnaire ( Carson et al. 2005 ), which asks individuals to supply a self-reported assessment of their publicly recognizable achievement in ten different creative domains; and (d) the Inventory of Creative Activities and Achievements (ICAA) ( Jauk et al. 2014 ; Diedrich et al. 2018 ), which includes self-report scales assessing the frequency of engagement in creative activity and also levels of achievement in eight different domains.

The second major approach to individual assessment is based on creative potential, which measures the cognitive abilities and/or personality traits that are important for creative work. The two most popular assessments of creative potential are the Remote Associations Test (RAT) and the Alternative Uses Task (AUT). The RAT, which involves identifying the fourth word that is somehow associated with each of three given words, underscores the role that the ability to convergently associate disparate ideas plays as a key capacity for creativity. In contrast, the AUT, which requires individuals to generate a maximum number of ideas based on a prompt (e.g., different uses for a paperclip), is used to assess divergent thinking capacity. According to multivariate models of creative potential ( Lubart et al. 2013 ), there are cognitive factors (e.g., divergent thinking, mental flexibility, convergent thinking, associative thinking, selective combination), conative factors (openness, tolerance of ambiguity, intuitive thinking, risk taking, motivation to create), and environmental factors that all support creativity. Higher creative potential is predicted by having more of the ingredients for creativity. However, multiple different profiles among a similar set of these important ingredients exist, and their weighting for optimal creative potential varies according to the profession, the domain, and the task under consideration. For example, Lubart and Thornhill-Miller ( 2021 ) and Lubin et al. ( forthcoming ) have taken this creativity profiling approach, exploring the identification and training of the components of creative potential among lawyers and clinical psychologists, respectively. For a current example of this sort of comprehensive, differentiated measurement of creative potential in adults in different domains and professions, see CreativityProfiling.org. For a recent battery of tests that are relevant for children, including domain-relevant divergent-exploratory and convergent-integrative tasks, see Lubart et al. ( 2019 ). Underscoring the growing recognition of the importance of creativity assessment, measures of creative potential for students were introduced internationally for the first time in the PISA 2022 assessment ( OECD 2019a ).

2.1.2. Institutional and Environmental Support for Development of Creativity

The structural support that institutions and programs can provide to promote the development of creativity can be described as coming through three main paths: (1) through design of the physical environment in a manner that supports creativity, (2) through teaching about creativity, the creative process, and creativity techniques, and (3) through training opportunities to help students/employees develop personal habits, characteristics, and other ingredients associated with creative achievement and potential.

Given the multi-dimensionality of the notion of creativity, the environment can positively influence and help develop creative capacities. Studies have shown that the physical environment in which individuals work can enhance their positive emotions and mood and thus their creativity. For example, stimulating working environments might have unusual furniture and spaces that have natural light, windows open to nature, plants and flowers, a relaxing atmosphere and colors in the room (e.g., green and blue), or positive sounds (e.g., calm music or silence), as well as inspiring and energizing colors (e.g., yellow, pink, orange). Furthermore, the arrangement of physical space to promote interpersonal exchange rather than isolation, as well as the presence of tools, such as whiteboards, that support and show the value of exchange, are also important (for reviews, see Dul and Ceylan 2011 ; Samani et al. 2014 ).

Although it has been claimed that “creativity is intelligence having fun” ( Scialabba 1984 ; Reiman 1992 ), for most people, opportunities for fun and creativity, especially in their work environment, appear rather limited. In fact, the social and physical environment often hinders creativity. Corazza et al. ( 2021 )’s theoretical framework concerning the “Space-Time Continuum”, related to support for creativity, suggests that traditional education systems are an example of an environment that is “tight” both in the conceptual “space” it affords for creativity and in the available time allowed for creativity to happen—essentially leaving little room for original ideas to emerge. Indeed, though world-wide data suggest that neither money nor mere time spent in class correlate well with educational outcomes, both policies and pedagogy that direct the ways in which time is spent make a significant difference ( Schleicher 2022 ). Research and common sense suggest that teachers, students, and employees need more space and time to invest energy in the creative process and the development of creative potential.

Underscoring the importance of teaching the creative process and creativity techniques is the demonstration, in a number of contexts, that groups of individuals who generate ideas without a specific method are often negatively influenced by their social environment. For example, unless guarded against, the presence of others tends to reduce the number of ideas generated and to induce a fixation on a limited number of ideas conforming to those produced by others ( Camarda et al. 2021 ; Goldenberg and Wiley 2011 ; Kohn and Smith 2011 ; Paulus and Dzindolet 1993 ; Putman and Paulus 2009 ; Rietzschel et al. 2006 ). To overcome these cognitive and social biases, different variants of brainstorming techniques have shown positive effects (for reviews of methods, see Al-Samarraie and Hurmuzan 2018 ; Paulus and Brown 2007 ). These include: using ( Osborn 1953 ) initial brainstorming rules (which aim to reduce spontaneous self-judgment of ideas and fear of this judgment by others); drawing attention to ideas generated by others by writing them down independently (e.g., the technique known as “brainwriting”); and requiring incubation periods between work sessions by forcing members of a problem-solving group to take breaks ( Paulus and Yang 2000 ; Paulus and Kenworthy 2019 ).

It is also possible to use design methods that are structured to guide the creative process and the exploration of ideas, as well as to avoid settling on uncreative solution paths ( Chulvi et al. 2012 ; Edelman et al. 2022 ; Kowaltowski et al. 2010 ; see Cotter et al. 2022 for a valuable survey of best practices for avoiding the suppression of creativity and fostering creative interaction and metacognition in the classroom). Indeed, many helpful design thinking-related programs now exist around the world and have been shown to have a substantial impact on creative outcomes ( Bourgeois-Bougrine 2022 ).

Research and experts suggest the utility of many additional creativity enhancement techniques (see, e.g., Thornhill-Miller and Dupont 2016 ), and the largest and most rapid effects are often attributed to these more method- or technique-oriented approaches ( Scott et al. 2004 ). More long-term institutional and environmental support for the development of creativity, however, should also include targeted training and understanding of personality and emotional traits associated with the “creative person” (e.g., empathy and exploratory habits that can expand knowledge, as well as increase tolerance of ambiguity, openness, and mental flexibility; see Lubart and Thornhill-Miller 2021 ). Complementing these approaches and focusing on a more systemic level, recent work conducted by the OECD exemplifies efforts aimed to foster creativity (and critical thinking) by focusing simultaneously on curriculum, educational activities, and teacher support and development at the primary, secondary, and higher education levels (see Vincent-Lancrin et al. 2019 ; Saroyan 2022 ).

2.2. Critical Thinking

Researchers, teachers, employers, and public policymakers around the world have long ranked the development of critical thinking (CT) abilities as one of the highest educational priorities and public needs in modern democratic societies ( Ahern et al. 2019 ; Dumitru et al. 2018 ; Pasquinelli et al. 2021 ). CT is central to better outcomes in daily life and general problem solving ( Hitchcock 2020 ), to intelligence and adaptability ( Halpern and Dunn 2021 ), and to academic achievement ( Ren et al. 2020 ). One needs to be aware of distorted or erroneous information in the media, of the difference between personal opinions and proven facts, and how to handle increasingly large bodies of information required to understand and evaluate information in the modern age.

Although much research has addressed both potentially related constructs, such as intelligence and wisdom, and lists of potential component aspects of human thought, such as inductive or deductive reasoning (for reviews of all of these, see Sternberg and Funke 2019 ), reaching a consensus on a definition has been difficult, because CT relies on the coordination of many different skills ( Bellaera et al. 2021 ; Dumitru et al. 2018 ) and is involved in, and sometimes described from the perspective of, many different domains ( Lewis and Smith 1993 ). Furthermore, as a transversal competency, having the skills to perform aspects of critical thinking in a given domain does not necessarily entail also having the metacognitive ability to know when to engage in which of its aspects, or having the disposition, attitude, or “mindset” that motivates one to actually engage in them—all of which are actually required to be a good critical thinker ( Facione 2011 ).

As pointed out by the American Philosophical Association’s consensus definition, the ideal “critical thinker” is someone who is inquisitive, open-minded, flexible, fair-minded, and keeps well-informed, thus understanding different points of view and perspectives ( Facione 1990b ). These characteristics, one might note, are also characteristic of the “creative individual” ( Facione 1990b ; Lai 2011 ), as is the ability to imagine alternatives, which is often cited as a component of critical thinking ability ( Facione 1990b ; Halpern 1998 ). Conversely, creative production in any domain needs to be balanced by critical appraisal and thought at each step of the creative process ( Bailin 1988 ). Indeed, it can be argued that creativity and critical thinking are inextricably linked and are often two sides of the same coin. Representing different aspects of “good thought” that are linked and develop in parallel, it seems reasonable that they should, in practice, be taught and considered together in teaching and learning ( Paul and Elder 2006 ).

Given its complexity, many definitions of critical thinking have been offered. However, some more recent work has helpfully defined critical thinking as “the capacity of assessing the epistemic quality of available information and—as a consequence of this assessment—of calibrating one’s confidence in order to act upon such information” ( Pasquinelli et al. 2021 ). This definition, unlike others proposed in the field (for a review, see: Bellaera et al. 2021 ; Liu et al. 2014 ), is specific (i.e., it limits the use of poorly defined concepts), as well as consensual and operational (i.e., it has clear and direct implications for the education and assessment of critical thinking skills; Pasquinelli et al. 2021 ; Pasquinelli and Bronner 2021 ). Thus, this approach assumes that individuals possess better or worse cognitive processes and strategies that make it possible to judge the reliability of the information received, by determining, for example, what the arguments provided actually are. Are the arguments convincing? Is the source of information identifiable and reliable? Does the information conflict with other information held by the individual?

It should also be noted that being able to apply critical thinking is necessary to detect and overcome the cognitive biases that can constrain one’s reasoning. Indeed, when solving a problem, it is widely recognized that people tend to automate the application of strategies that are usually relevant in similar and analogous situations that have already been encountered. However, these heuristics (i.e., automatisms) can be a source of errors, in particular, in tricky reasoning situations, as demonstrated in the field of reasoning, arithmetic problems ( Kahneman 2003 ) or even divergent thinking tasks ( Cassotti et al. 2016 ; for a review of biases, see Friedman 2017 ). Though some cognitive biases can even be seen as normal ways of thinking and feeling, sometimes shaping human beliefs and ideologies in ways that make it completely normal—and even definitely human— not to be objective (see Thornhill-Miller and Millican 2015 ), the mobilization of cognitive resources such as those involved in critical reasoning on logical bases usually makes it possible to overcome cognitive biases and adjust one’s reasoning ( West et al. 2008 ).

According to Pasquinelli et al. ( 2021 ), young children already possess cognitive functions underlying critical thinking, such as the ability to determine that information is false. However, until late adolescence, studies have demonstrated an underdevelopment of executive functions involved in resistance to biased reasoning ( Casey et al. 2008 ) as well as some other higher-order skills that underlie the overall critical thinking process ( Bloom 1956 ). According to Facione and the landmark American Philosophical Association’s task force on critical thinking ( Facione 1990b ; Facione 2011 ), these components of critical thinking can be organized into six measurable skills: the ability to (1) interpret information (i.e., meaning and context); (2) analyze information (i.e., make sense of why this information has been provided, identify pro and con arguments, and decide whether we can accept the conclusion of the information); (3) make inferences (i.e., determine the implications of the evidence, its reliability, the undesirable consequences); (4) evaluate the strength of the information (i.e., its credibility, determine the trust in the person who provides it); (5) provide explanations (i.e., summarize the findings, determine how the information can be interpreted, and offer verification of the reasoning); (6) self-regulate (i.e., evaluate the strength of the methods applied, determine the conflict between different conclusions, clarify the conclusions, and verify missing elements).

2.2.1. Individual Assessment of Critical Thinking

The individual assessment of critical thinking skills presents a number of challenges, because it is a multi-task ability and involves specific knowledge in the different areas in which it is applied ( Liu et al. 2014 ; Willingham 2008 ). However, the literature provides several tools with which to measure different facets of cognitive functions and skills involved in the overarching critical thinking process ( Lai 2011 ; Liu et al. 2014 ). Most assessments involve multiple-choice questions requiring reasoning within a particular situation based upon a constrained set of information provided. For example, in one of the most widely used tests, the California Critical Thinking Skills Test ( Facione 1990a ), participants are provided with everyday scenarios and have to answer multiple questions targeting the six higher-order skills described previously. Similarly, the Watson–Glaser Critical Thinking Appraisal ( Watson 1980 ; Watson and Glaser 2010 ) presents test takers with passages and scenarios measuring their competencies at recognizing assumptions, evaluating arguments, and drawing conclusions. Although the Watson–Glaser is one of the oldest and most frequently used assessments internationally for hiring and promotion in professional contexts, its construct validity, like many other measures of this challenging topic, has some limitations ( Possin 2014 ).

Less frequently, case study or experiential methods of assessment are also used. This approach may involve asking participants to reflect on past experiences, analyze the situations they faced and the way they behaved or made judgments and decisions and then took action ( Bandyopadhyay and Szostek 2019 ; Brookfield 1997 ). These methods, often employed by teachers or employers on students and employees, usually involve the analysis of qualitative data that can cast doubt on the reliability of the results. Consequently, various researchers have suggested ways to improve analytic methods, and they emphasize the need to create more advanced evaluation methods ( Brookfield 1997 ; Liu et al. 2014 ).

For example, Liu et al. ( 2014 ) reviewed current assessment methods and suggest that future work improves the operational definition of critical thinking, aiming to assess it both in different specific contexts and in different formats. Specifically, assessments could be contextualized within the major areas addressed by education programs (e.g., social sciences, humanities, and/or natural sciences), and the tasks themselves should be as practically connected to the “real world” as possible (e.g., categorizing a set of features, opinions, or facts based on whether or not they support an initial statement). Moreover, as Brookfield ( 1997 ) argues, because critical thinking is a social process that takes place in specific contexts of knowledge and culture, it should be assessed as a social process, therefore, involving a multiplicity of experiences, perceptions, and contributions. Thus, Brookfield makes three recommendations for improving the assessment of critical thinking that are still relevant today: (1) to assess critical thinking in specific situations, so one can study the process and the discourse related to it; (2) to involve students/peers in the evaluation of critical thinking abilities, so that the evaluation is not provided only by the instructor; and (3) to allow learners or participants in an experiment to document, demonstrate, and justify their engagement in critical thinking, because this learning perspective can provide insight into basic dimensions of the critical thinking process.

Finally, another more recent and less widely used form of assessment targets the specific executive functions that underlie logical reasoning and resistance to cognitive biases, as well as the ability of individuals to resist these biases. This form of assessment is usually done through specific experimental laboratory tasks that vary depending on the particular executive function and according to the domain of interest ( Houdé and Borst 2014 ; Kahneman 2011 ; West et al. 2008 ).

2.2.2. Institutional and Environmental Support for Development of Critical Thinking Skills

The executive functions underlying general critical thinking, the ability to overcome bias ( Houdé 2000 ; Houdé and Borst 2014 ), and meta-cognitive processes (i.e., meta information about our cognitive strategies) can all be trained and enhanced by educational programs ( Abrami et al. 2015 ; Ahern et al. 2019 ; Alsaleh 2020 ; Bellaera et al. 2021 ; Uribe-Enciso et al. 2017 ; Popil 2011 ; Pasquinelli and Bronner 2021 ; Yue et al. 2017 ).

Educational programs and institutions can support the development of critical thinking in several different ways. The process of developing critical thinking focuses on the interaction between personal dispositions (attitudes and habits), skills (evaluation, reasoning, self-regulation), and finally, knowledge (general and specific knowledge, as well as experience) ( Thomas and Lok 2015 ). It is specifically in regard to skills and knowledge that institutions are well suited to develop critical thinking through pedagogical elements such as rhetoric training, relevance of information evaluation (e.g., media literacy, where and how to check information on the internet, dealing with “fake news”, etc.), deductive thinking skills, and inductive reasoning ( Moore and Parker 2016 ). A few tools, such as case studies or concept mapping, can also be used in conjunction with a problem-based learning method, both in individual and team contexts and in person or online ( Abrami et al. 2015 ; Carmichael and Farrell 2012 ; Popil 2011 ; Thorndahl and Stentoft 2020 ). According to Marin and Halpern ( 2011 ), training critical thinking should include explicit instruction involving at least the four following components and objectives: (1) working on attitudes and encouraging individuals to think; (2) teaching and practicing critical thinking skills; (3) training for transfer between contexts, identifying concrete situations in which to adopt the strategies learned; and (4) suggesting metacognition through reflection on one’s thought processes. Supporting these propositions, Pasquinelli and Bronner ( 2021 ), in a French national educational report, proposed practical advice for creating workshops to stimulate critical thinking in school classrooms, which appear relevant even in non-school intervention situations. For example, the authors suggest combining concrete examples and exercises with general and abstract explanations, rules and strategies, which can be transferred to other areas beyond the one studied. They also suggest inviting learners to create examples of situations (e.g., case studies) in order to increase the opportunities to practice and for the learner to actively participate. Finally, they suggest making the process of reflection explicit by asking the learner to pay attention to the strategies adopted by others in order to stimulate the development of metacognition.

2.3. Communication

In its most basic definition, communication consists of exchanging information to change the epistemic context of others. In cooperative contexts, it aims at the smooth and efficient exchange of information contributing to the achievement of a desired outcome or goal ( Schultz 2010 ). But human communication involves multiple dimensions. Both verbal and non-verbal communication can involve large quantities of information that have to be both formulated and deciphered with a range of purposes and intentions in mind ( Jones and LeBaron 2002 ). These dimensions of communication have as much to do with the ability to express oneself, both orally and in writing and the mastering of a language (linguistic competences), as with the ability to use this communication system appropriately (pragmatic skills; see Grassmann 2014 ; Matthews 2014 ), and with social skills, based on the knowledge of how to behave in society and on the ability to connect with others, to understand the intentions and perspectives of others ( Tomasello 2005 ).

Like the other 4Cs, according to most authorities, communication skills are ranked by both students and teachers as skills of the highest priority for acquisition in order to be ready for the workforce in 2030 ( OECD 2019b ; Hanover Research 2012 ). Teaching students how to communicate efficiently and effectively in all the new modalities of information exchange is an important challenge faced by all pedagogical organizations today ( Morreale et al. 2017 ). All dimensions of communication (linguistic, pragmatic, and social) are part of what is taught in school curricula at different levels. But pragmatic and social competencies are rarely explicitly taught as such. Work on social/emotional intelligence (and on its role in students’ personal and professional success) shows that these skills are both disparate and difficult to assess ( Humphrey et al. 2007 ). Research on this issue is, however, becoming increasingly rigorous, with the potential to provide usable data for the development of science-based practice ( Keefer et al. 2018 ). Teachers and pedagogical teams also have an important, changing role to play: they also need to master new information and communication technologies and the transmission of information through them ( Zlatić et al. 2014 ).

Communication has an obvious link with the three other Cs. Starting with critical thinking, sound communication implies fostering the conditions for a communicative exchange directed towards a common goal, which is, at least in educational and professional contexts, based on a fair evaluation of reality ( Pornpitakpan 2004 ). Collaboration too has a strong link with communication, because successful collaboration is highly dependent on the quality of knowledge sharing and trust that emerges between group members. Finally, creativity involves the communication of an idea to an audience and can involve high-quality communication when creative work occurs in a team context.

2.3.1. Individual Assessment of Communication

Given the vast field of communication, an exhaustive list of its evaluation methods is difficult to establish. A number of methods have been reported in the literature to assess an individual’s ability to communicate non-verbally and verbally. But although these two aspects are intrinsically linked, they are rarely measured together with a single tool. Moreover, as Spitzberg ( 2003 ) pointed out, communication skills are supported by different abilities, classically conceptualized as motivational functions (e.g., confidence and goal-orientation), knowledge (e.g., content and procedural knowledge), or cognitive and socio-cognitive functions (e.g., theory of mind, verbal cognition, emotional intelligence, and empathy; McDonald et al. 2014 ; Rothermich 2020 ), implying different specific types of evaluations. Finally, producing vs. receiving communication involve different skills and abilities, which can also vary according to the context ( Landa 2005 ).

To overcome these challenges, Spitzberg ( 2003 ) recommends the use of different assessment criteria. These criteria include the clarity of interaction, the understanding of what was involved in the interaction, the satisfaction of having interacted (expected to be higher when communication is effective), the efficiency of the interaction (the more competent someone is, the less effort, complexity, and resources will be needed to achieve their goal), its effectiveness or appropriateness (i.e., its relevance according to the context), as well as criteria relative to the quality of the dialogue (which involves coordination, cooperation, coherence, reciprocity, and mutuality in the exchange with others). Different forms of evaluation are also called for, such as self-reported questionnaires, hetero-reported questionnaires filled out by parents, teachers, or other observers, and tasks involving exposure to role-playing games, scenarios or videos (for a review of these assessment tools, see Cömert et al. 2016 ; Landa 2005 ; Sigafoos et al. 2008 ; Spitzberg 2003 ; van der Vleuten et al. 2019 ). Results from these tools must then be associated with others assessing underlying abilities, such as theory of mind and metacognition.

2.3.2. Institutional and Environmental Support for Development of Communication Skills

Although communication appears to be a key employability skill, the proficiency acquired during studies rarely meets the expectations of employers ( Jackson 2014 ). Communication must therefore become a priority in the training of students, beyond the sectors in which it is already known as essential (e.g., in medicine, nursing, engineering, etc.; Bourke et al. 2021 ; D’Alimonte et al. 2019 ; Peddle et al. 2018 ; Riemer 2007 ), and also through professional development ( Jackson 2014 ). Training programs involving, for example, communication theory classes ( Kruijver et al. 2000 ) and self-assessment tools that can be used in specific situations ( Curtis et al. 2013 ; Rider and Keefer 2006 ) have had convincingly positive results. The literature suggests that interactive approaches in small groups, in which competencies are practiced explicitly in an open and feedback-safe environment, are more effective ( Bourke et al. 2021 ; D’Alimonte et al. 2019 ; AbuSeileek 2012 ; Fryer-Edwards et al. 2006 ). These can take different forms: project-based work, video reviews, simulation or role-play games (see Hathaway et al. 2022 for a review; Schlegel et al. 2012 ). Finally, computer-assisted learning methods can be relevant for establishing a secure framework (especially, for example, when learning another language): anonymity indeed helps to overcome anxiety or social blockages linked to fear of public speaking or showing one’s difficulties ( AbuSeileek 2012 ). Each of these methods tackles one or more dimensions of communication that must then be assessed as such, by means of tools specifically developed and adapted to the contexts in which these skills are expressed (e.g., see the two 4Cs evaluation grids for institutions and for games outlined in Section 4 and Section 5 , below).

2.4. Collaboration

Collaborative problem solving—and more generally, collaboration—has gained increasing attention in national and international assessments (e.g., PISA) as an educational priority encompassing social, emotional, and cognitive skills critical to efficiency, effectiveness, and innovation in the modern global economy ( Graesser et al. 2018 ; OECD 2017 ). Understanding what makes effective collaboration is of crucial importance for professional practice and training ( Détienne et al. 2012 ; Graesser et al. 2018 ), as evidenced by the long line of research on group or team collaboration over the past 40 years (for a review, see e.g., Salas et al. 2004 ; Mathieu et al. 2017 ). Although there is no consensus on a definition of collaboration, scholars often see it as mutual engagement in a coordinated effort to achieve a common goal that involves the sharing of goals, resources, and representations relating to the joint activity of participants; and other important aspects relate to mutual respect, trust, responsibilities, and accountability within situational rules and norms ( Détienne et al. 2012 ).

In the teamwork research literature, skills are commonly described across three classes most often labeled Knowledge, Behavior, and Attitudes (e.g., Cannon-Bowers et al. 1995 ). Knowledge competencies refer to the skills related to elaborating the knowledge content required for the group to process and successfully achieve the task/goal to which they are assigned. Behavior includes skills related to the actualization of actions, coordination, communication, and interactions within the group as well as with any other relevant interlocutors for the task at hand. Note here that effective collaboration involves skills that have also been identified elsewhere as essential competencies, including communication, creativity, and critical thinking. Finally, several attitudes have been evidenced or hypothesized as desirable competencies in the team context, for example, attitude towards teamwork, collective orientation, cohesion/team morale, etc. Another common distinction lies between teamwork and taskwork. Teamwork refers to the collaborative, communicative, or social skills required to coordinate the work within the participants in order to achieve the task, whereas taskwork refers to specific aspects related to solving the task such as using the tools and knowing the procedure, policies, and any other task-related activities ( Salas et al. 2015 ; Graesser et al. 2018 ). Furthermore, collaborative competences can have specific (to a group of people or to a task) and general dimensions (i.e., easily transferable to any group or team situation and to other tasks). For example, skills related to communication, information exchange, conflict management, maintaining attention and motivation, leadership, etc. are present and transferable to a large number of group work situations and tasks (team-generic and task-contingent skills). Other skills can, on the other hand, be more specific to a team or group, such as internal organization, motivation, knowledge of the skills distributed in the team, etc.

2.4.1. Individual Assessment of Collaboration

Assessing collaboration requires capturing the dynamic and multi-level nature of the collaboration process, which is not as easily quantifiable as group/team inputs and outputs (task performance, satisfaction, and changes at group/team and individual level). There are indeed multiple interactions between the context, the collaboration processes, the task processes, and their (various) outcomes ( Détienne et al. 2012 ). The integrative concept of “quality of collaboration” ( Burkhardt et al. 2009 ) encapsulates much of what is currently known about collaborative processes and what constitutes effective collaboration. According to this approach, collaborative processes can be grouped along several dimensions concerning communication processes such as grounding, task-related processes (e.g., exchanges of knowledge relevant for the task at hand), and organization/coordination processes ( Burkhardt et al. 2009 ). Communication processes are most important for ensuring the construction of a common referential within a group of collaborators. Task-related processes relate to how the group resolves the task at hand by sharing and co-elaborating knowledge, by confronting their various perspectives, and by converging toward negotiated solutions. Collaboration also involves group management activities such as: (a) common goal management and coordination activities, e.g., allocation and planning of tasks; (b) meeting/interaction management activities, e.g., ordering and postponing of topics in the meeting. Finally, the ability to pursue reflexive activity, in the sense of reflecting not only on the content of a problem or solution but on one’s collaboration and problem-solving strategies, is critical for the development of the team and supports them in changing and improving their practices. Graesser et al. ( 2018 ) identify collaborative skills based on the combination of these dimensions with a step in the problem-solving process.

A large body of methodology developed to assess collaboration processes and collaborative tools has been focused on quantifying a restricted subset of fine-grained interactions (e.g., number of speakers’ turns; number of words spoken; number of interruptions; amount of grounding questions). This approach has at least two limitations. First, because these categories of analysis are often ad hoc with respect to the considered situation, they are difficult to apply in all situations and make it difficult to compare between studies. Second, quantitative variations of most of these indicators are non-univocal: any increase or decrease of them could signify either an interactive–intensive collaboration or else evidence of major difficulties in establishing and/or maintaining the collaboration ( Détienne et al. 2012 ). Alternatively, qualitative approaches based on multidimensional views of collaboration provide a more elaborated or nuanced view of collaboration and are useful for identifying potential relationships between distinctive dimensions of collaboration and aspects of team performance, in order to identify processes that could be improved. Based on the method of Spada et al. ( 2005 ) in Computer-Supported Collaborative Learning (CSCL) research, Burkhardt et al. ( 2009 ) have proposed a multi-dimensional rating scheme for evaluating the quality of collaboration (QC) in technology-mediated design. QC distinguishes seven dimensions, grouped along five aspects, identified as central for collaboration in a problem-solving task such as design: communication (1, 2), task-oriented processes (3, 4), group-oriented processes (5), symmetry in interaction—an orthogonal dimension—(6), and individual task orientation (7). This method has recently been adapted for use in the context of assessing games as a support to collaborative skills learning.

2.4.2. Institutional and Environmental Support for Development of Collaboration and Collaborative Skills

Support for individuals’ development of collaborative skills provided by institutions and programs can take a variety of forms: (a) through the social impact of the physical structure of the organization, (b) the nature of the work required within the curriculum, (c) content within the curriculum focusing on collaboration and collaborative skills, and (d) the existence and promotion of extracurricular and inter-institutional opportunities for collaboration.

For instance, institutional support for collaboration has taken a variety of forms in various fields such as healthcare, engineering, public participation, and education. Training and education programs such as Interprofessional Education or Team Sciences in the health domain ( World Health Organization 2010 ; Hager et al. 2016 ; O’Carroll et al. 2021 ), Peer-Led Team Learning in chemistry and engineering domains ( Wilson and Varma-Nelson 2016 ), or Collaborative Problem Solving in education ( Peña-López 2017 ; Taddei 2009 ) are notable examples.

Contextual support recently arose from the deployment of online digital media and new mixed realities in the workplace, in the learning environments and in society at large—obviously stimulated and accentuated with the COVID-19 pandemic. This has led many organizations to invest in proposing support for synchronous and asynchronous collaboration (notably remote, between employees, between students and educators or within group members, etc.) in various ways, including the provision of communication hardware and software, computer-supported cooperative work and computer-supported collaborative learning platforms, training and practical guides, etc. Users can collaborate through heterogeneous hybrid collaborative interaction spaces that can be accessed through virtual or augmented reality, but also simple video conferencing or even a voice-only or text-only interface. These new spaces for collaboration are, however, often difficult to use and less satisfactory than face-to-face interactions, suggesting the need for more research on collaborative activities and on how to support them ( Faidley 2018 ; Karl et al. 2022 ; Kemp and Grieve 2014 ; Singh et al. 2022 ; Waizenegger et al. 2020 ).

A substantive body of literature on teams, collaborative learning, and computer-supported technologies provides evidence related to individual, contextual, and technological factors impacting the collaboration quality and efficiency. For example, teacher-based skills that are critical for enhancing collaboration are, among others, the abilities to plan, monitor, support, consolidate, and reflect upon student interaction in group work ( Kaendler et al. 2016 ). Research focuses also on investigating the most relevant tasks and evaluating the possibilities offered by technology to support, to assess (e.g., Nouri et al. 2017 ; Graesser et al. 2018 ), and/or to learn the skills involved in pursuing effective and satisfying collaboration (see e.g., Schneider et al. 2018 ; Doyle 2021 ; Ainsworth and Chounta 2021 ).

3. Labelization: Valorization of the 4Cs and Assessing Support for Their Development

Moving from the nature of the 4Cs and their individual assessment and towards the ways in which institutions can support their development in individuals, we can now address the fundamentally important question of how best to support and promote this 21st century educational mission within and among institutions themselves. This also raises the question of the systemic recognition of educational settings that are conducive to the development of the 4Cs. In response to these questions, the nature and value of labelization is now presented.

A label is “a special mark created by a trusted third party and displayed on a product intended for sale, to certify its origin, to guarantee its quality and to ensure its conformity with the standards of practices in force” ( Renard 2005 ). A label is therefore a way of informing the public about the objective properties and qualities of a product, service, or system. The label is usually easily identifiable and can be seen as a proof that a product or service, a company, or an organization complies with defined criteria. Its effectiveness is therefore closely linked to the choice of requirements set out in its specifications, as well as to the independence and rigor of the body that verifies compliance with the criteria.

3.1. Labeling as a Means of Trust and Differentiation

As a sign of recognition established by a third party, the label or certification can constitute a proof of trust aiming to reassure the final consumer. According to Sutter ( 2005 ), there are different means of signaling trust. First, the brand name of a product or service and its reputation can, in itself, constitute a label when this brand name is recognized on the market. Second, various forms of self-declaration, such as internal company charters, though not statements assessed by a third party, show an internal commitment that can provide reassurance. Finally, there is certification or labeling, which is awarded by an external body and requires a third-party assessment by a qualified expert, according to criteria set out in a specific reference framework. It is this external body, a trusted third party, which guarantees the reliability of the label and constitutes a guarantee of credibility. Its objectivity and impartiality are meant to guarantee that the company, organization, product, or service meets defined quality or reliability criteria ( Jahn et al. 2005 ).

Research on populations around the world (e.g., Amron 2018 ; Sasmita and Suki 2015 ) show that the buying decisions of consumers are heavily influenced by the trust they have in a brand. More specifically, third-party assurances and labelization have been shown to strongly influence customer buying intentions and purchasing behavior (e.g., Kimery and McCord 2002 ; Lee et al. 2004 ). Taking France as an example, research shows that quality certification is seen as “important” or “significant” by 76% of companies ( Chameroy and Veran 2014 ), and decision makers feel more confident and are more willing to invest with the support of third-party approval than if their decision is merely based on the brand’s reputation or its demonstrated level of social responsibility ( Etilé and Teyssier 2016 ). Indeed, French companies with corporate social responsibility labels have been shown to have higher than average growth rates, and the adoption of quality standards is linked with a 7% increase in the share of export turnover ( Restout 2020 ).

3.2. Influence on Choice and Adoption of Goods and Services

Studies diverge in this area, but based on the seminal work of Parkinson ( 1975 ); Chameroy and Veran ( 2014 ), in their research on the effect of labels on willingness to pay, found that in 75% of cases, products with labels are chosen and preferred to those without labels, demonstrating the impact of the label on customer confidence—provided that it is issued by a recognized third party. Thus, brands that have good reputations tend to be preferred over cheaper new brands, because they are more accepted and valued by the individual social network ( Zielke and Dobbelstein 2007 ).

3.3. Process of Labelizing Products and Services

The creation of a label may be the result of a customer or market need, a request from a private sector of activity or from the government. Creating a label involves setting up a working group including stakeholders who are experts in the field, product managers, and a certification body in order to elaborate a reference framework. This is then reviewed by a specialized committee and validated by the stakeholders. The standard includes evaluation criteria that must be clearly defined ( Mourad 2017 ). An audit system is set up by a trusted third party. It must include the drafting of an audit report, a system for making decisions on labeling, and a system for identifying qualified assessors. The validity of the assessment process is reinforced by this double evaluation: a first level of audit carried out by a team of experts according to a clearly defined set of criteria and a second level of decision making assuring that the methodology and the result of the audit are in conformity with the defined reference framework.

3.4. Labelization of 21st Century Skills

The world of education is particularly concerned by the need to develop and assess 21st century skills, because it represents the first link in the chain of skills acquisition, preparing the human resources of tomorrow. One important means of simultaneously offering a reliable, independent assessment of 21st century skills and valorizing them by making them a core target within an educational system (schools, universities, and teaching and training programs of all kinds) is labelization. Two examples of labelization processes related to 21st century skills were recently developed by the International Institute for Competency Development ( 2021 ; see iicd.net; accessed on 20 November 2022) working with international experts, teachers, and researchers from the University of Paris Cité (formerly Université Sorbonne Paris Cité), Oxford University, and AFNOR UK (an accredited certification body and part of AFNOR International, a subsidiary of the AFNOR group, the only standards body in France).

The last two or three decades has seen the simultaneous rise of international ranking systems and an interest in quality assurance and assessment in an increasingly competitive educational market ( Sursock 2021 ). The aim of these labelization frameworks is to assist in the development of “quality culture” in education by offering individual programs, institutions, and systems additional independent, reliable means of benchmarking, charting progress, and distinguishing themselves based on their capacity to support and promote the development of crucial skills. Importantly, the external perspectives provided by such assessment system should be capable of being individually adapted and applied in a manner that can resist becoming rigidly imposed external standards ( Sursock and Vettori 2017 ). Similarly, as we have seen in the literature review, the best approach to understanding and assessing a particular C is from a combination of different levels and perspectives in context. For example, important approaches to critical thinking have been made from educationally, philosophically, and psychologically focused vantage points ( Lai 2011 ). We can also argue that understandings of creativity are also results of different approaches: the major models in the literature (e.g., the “4Ps” and “7Cs” models; see Lubart and Thornhill-Miller 2019 ) explicitly result from and include the objectives of different education-focused, process-focused, and “ingredient” or component-focused approaches.

The two assessment frameworks outlined in the sections that follow were formulated with these different perspectives and objective needs in mind. Given the complexity and very different natures of their respective targets (i.e., one assessing entire formal educational contexts such as institutions or programs, whereas the other targets the less multi-dimensional, informal educational activities represented by games), the assessment of the individual Cs also represents what experts consider a target-appropriate balance of education- and curriculum-focused, process-focused, and component-focused criteria for assessing each different C.

4. The International Institute for Competency Development’s 21st Century Competencies 4Cs Assessment Framework for Institutions and Programs

One comprehensive attempt to operationalize programmatic-level and institutional-level support for the development of the 4Cs is the International Institute for Competency Development’s 4Cs Assessment Framework ( International Institute for Competency Development 2021 ). Based upon expert opinion and a review of the available literature, this evaluation grid is a practical tool that divides each of the 4Cs into three “user-friendly” but topic-covering components (see Table 1 and definitions and further discussion in the sections that follow). Each of these components is then assessed across seven dimensions (see Table 2 , below), designed to cover concisely the pedagogical process and the educational context. Examples for each point level are provided within the evaluation grid in order to offer additional clarity for educational stakeholders and expert assessors.

Three different components of each C in IICD’s 21st Century Skills 4Cs Assessment Framework.

Creative ProcessCreative EnvironmentCreative Product
Critical thinking
about the world
Critical thinking
about oneself
Critical action and
decision making
Engagement and
participation
Perspective taking
and openness
Social regulation
Message formulationMessage deliveryMessage and
communication feedback

Seven dimensions evaluated for the 3 different components of each C.

Aspects of the overall educational program teaching, emphasizing, and promoting the 4Cs
Availability and access to different means, materials, space, and expertise, digital technologies, mnemonic and heuristic methods, etc. to assist in the proper use and exercise of the 4Cs
Actual student and program use of available resources promoting the 4Cs
Critical reflection and metacognition on the process being engaged in around the 4Cs
The formal and informal training, skills, and abilities of teachers/trainers and staff and their program of development as promoters of the 4Cs
Use and integration of the full range of resources external to the institution available to enhance the 4Cs
Availability of resources for students to create and actualize products, programs, events, etc. that require the exercise, promotion, or manifestation of the 4Cs

* Educational-level dependent and potentially less available for younger students or in some contexts.

The grid itself can be used in several important and different ways by different educational stakeholders: (1) by the institution itself in its self-evaluation and possible preparation for a certification or labelization process, (2) as an explicit list of criteria for external evaluation of the institution and its 4Cs-related programs, and (3) as a potential long-term development targeting tool for the institution or the institution in dialogue with the labelization process.

4.1. Evaluation Grid for Creativity

Dropping the component of “creative person” that is not relevant at the institutional level, this evaluation grid is based on Rhodes’ ( 1961 ) classic “4P” model of creativity, which remains the most concise model today ( Lubart and Thornhill-Miller 2019 ). The three “P” components retained are: creative process , creative environment , and creative product . Creative process refers to the acquisition of a set of tools and techniques that students can use to enhance the creativity of their thinking and work. Creative environment (also called “Press” in earlier literature) is about how the physical and social surroundings of students can help them be more creative. Finally, creative product refers to the evaluation of actual “productions” (e.g., a piece of art, text, speech, etc.) generated through the creative process.

4.2. Evaluation Grid for Critical Thinking

Our evaluation grid divides critical thinking into three main components: critical thinking about the world , critical thinking about oneself (self-reflection), as well as critical action and decision making . The first component refers to having an evidence-based view of the exterior world, notably by identifying and evaluating sources of information and using them to question current understandings and solve problems. Self-reflection refers to thinking critically about one’s own life situation, values, and actions; it presupposes the autonomy of thought and a certain distance as well as the most objective observation possible with regard to one’s own knowledge (“meta-cognition”). The third and final component, critical action and decision making, is about using critical thinking skills more practically in order to make appropriate life decisions as well as to be open to different points of view. This component also addresses soft skills and attitudes such as trusting information.

Our evaluation framework for critical thinking was in part inspired by Barnett’s “curriculum for critical being” (2015), whose model distinguishes two axes: one defined by the qualitative differences in the level of criticality attained and the second comprised of three different domains of application: formal knowledge, the self, and the world. The first two components of our framework (and the seven dimensions on which they are rated) reflect and encompass these three domains. Similar to Barrett’s proposal, our third rubric moves beyond the “skills-plus-dispositions” model of competency implicit in much theorizing about critical thinking and adds the importance of “action”—not just the ability to think critically and the disposition to do so, but the central importance of training and practicing “critical doing” ( Barnett 2015 ). Critical thinking should also be exercised collectively by involving students in collective thinking, facilitating the exchange of ideas and civic engagement ( Huber and Kuncel 2016 ).

4.3. Evaluation Grid for Collaboration

The first component of collaboration skills in the IICD grid is engagement and participation , referring to the active engagement in group work. Perspective taking and openness concerns the flexibility to work with and accommodate other group members and their points of view. The final dimension— social regulation —is about being able to reach for a common goal, notably through compromise and negotiation, as well as being aware of the different types of roles that group members can hold ( Hesse et al. 2015 ; Rusdin and Ali 2019 ; Care et al. 2016 ). (These last two components include elements of leadership, character, and emotional intelligence as sometimes described in other soft-skill and competency-related systems.) Participation, social regulation, and perspective taking have been identified as central social skills in collaborative problem solving ( Hesse et al. 2015 ). Regarding social regulation in this context, recognizing and profiting from group diversity is key ( Graesser et al. 2018 ). When describing an assessment in an educational setting of collaborative problem solving (with a task in which two or more students have to collaborate in order to solve it, each using a different set of resources), two main underpinning skills were described for the assessment: the social skill of audience awareness (“how to adapt one’s own behavior to suit the needs of the task and the partner’s requirements”, Care et al. 2016, p. 258 ) and the cognitive skill of planning and executing (developing a plan to reach for a goal) ( Care et al. 2016 ). The former is included in the perspective taking and openness rubric and the latter in the social regulation component in the IICD grid. Evans ( 2020 ) identified four main collaboration skills consistently mentioned in the scientific literature that are assessed in the IICD grid: the ability to plan and make group decisions (example item from the IICD grid: teachers provide assistance to students to overcome differences and reach a common goal during group work); the ability to communicate about thinking with the group (assessed notably in the meta-reflection strand of the IICD grid); the ability to contribute resources, ideas, and efforts and support group members (included notably in the engagement and participation as well as the social regulation components); and finally, the ability to monitor, reflect, and adapt individual and group processes to benefit the group (example item from the IICD grid: students use perspective-taking tools and techniques in group activities).

4.4. Evaluation Grid for Communication

The evaluation grid for communication is also composed of three dimensions: message formulation, message delivery, and message and communication feedback . Message formulation refers to the ability to design and structure a message to be sent, such as outlining the content of an argument. Message delivery is about effectively transmitting verbal and non-verbal aspects of a message. Finally, message and communication feedback refers to the ability of students and teachers to understand their audience, analyze their social surroundings, and interpret information in context. Other components of communication skills such as theory of mind, empathy, or emotional intelligence are also relevant and included in the process of applying the grid. Thompson ( 2020 ) proposes a four-component operationalized definition of communication for its assessment in students. First, they describe a comprehension strand covering the understanding and selection of adequate information from a range of sources. Message formulation in the IICD grid captures this dimension through its focus on content analysis and generation. Second, the presentation of information and ideas is mentioned in several different modes, adjusted to the intended audience, verbally as well as non-verbally. The message delivery component of the IICD grid focuses on these points. Third, the authors note the importance of communication technology and its advanced use. The IICD grid also covers the importance of technology use in its tools and techniques category, with, for example, an item that reads: students learn to effectively use a variety of formats of communication (social media, make a video, e-mail, letter writing, creating a document). Finally, Thompson ( 2020 ) describes the recognition of cultural and other differences as an important aspect of communication. The IICD grid aims at incorporating these aspects, notably in the meta-reflection category under each of the three dimensions.

5. Assessing the 4Cs in Informal Educational Contexts: The Example of Games

5.1. the 4cs in informal educational contexts.

So far, the focus has been on rather formal ways of nurturing the 4Cs. Although institutions and training programs are perhaps the most significant and necessary avenues of education, they are not the sole context in which 4Cs’ learning and improvement can manifest. One other important potential learning context is game play. Games are activities that are present and participated in throughout human society—by those of all ages, genders, and socio-economic statuses ( Bateson and Martin 2013 ; Huizinga 1949 ; Malaby 2007 ). This informal setting can also provide favorable conditions to help improve the 4Cs ( van Rosmalen et al. 2014 ) and should not be under-appreciated. Games provide a unique environment for learning, as they can foster a space to freely explore possibilities and one’s own potential ( de Freitas 2006 ). We argue that games are a significant potential pathway for the improvement of the 4Cs, and as such, they merit the same attention as more formal ways of learning and developing competencies.

5.2. 4Cs Evaluation Framework for Games

Compared to schools and educational institutions, the focus of IICD’s evaluation framework for games (see International Institute for Competency Development 2021 ) is more narrow. Thus, it is fundamentally different from the institutional grid: games, complex and deep as they can sometimes be, cannot directly be compared to the complexity of a school curriculum and all the programs it contains. The evaluation of a game’s effectiveness for training/improving a given C rests on the following principle: if a game presents affordances conducive to exercising a given skill, engaged playing of that game should help improve that skill.

The game’s evaluation grid is scored based on two criteria. For example, as a part of a game’s rating as a tool for the development of creativity, we determine the game must first meet two conditions. First, whether or not the game allows the opportunity for creativity to manifest itself: if creativity cannot occur in the game, it is obviously not eligible to receive ratings for that C. Second, whether or not creativity is needed in order to perform well in the game: if the players can win or achieve success in the game without needing creativity, this also means it cannot receive a rating for that C. If both conditions are met, however, the game will be considered potentially effective to improve creativity through the practice of certain components of creative behavior. This basic principle applies for all four of the Cs.

As outlined in Table 3 , below, the evaluation grid for each of the four Cs is composed of five components relevant to games that are different for each of the Cs. The grid works as follows: for each of the five components of each C, we evaluate the game on a list of sub-components using two yes/no scales: one for whether it is “possible” for that subcomponent to manifest and one for whether that sub-component is “required for success” in the game. This evaluation is done for all sub-components. After this, each general component is rated on the same two indicators. If 60% (i.e., three out of five) or more sub-components are positively rated as required, the general component is considered required. Then, the game is evaluated on its effectiveness for training and improving each of the 4Cs. If 60% or more components are positively rated as required, the game will be labelized as having the potential to be effective for training and improving the corresponding C.

Five different components evaluated for each C by the 4Cs assessment framework for games.

OriginalityDivergent ThinkingConvergent ThinkingMental FlexibilityCreative Dispositions
Goal-adequate judgment/ discernmentObjective thinkingMetacognitionElaborate eeasoningUncertainty management
Collaboration fluencyWell-argued deliberation and consensus-based decisionBalance of contributionOrganization and coordinationCognitive syncing, input, and support
Social InteractionsSocial cognitionMastery of written and spoken languageVerbal communicationNon-verbal communication

The evaluation grid for creativity is based on the multivariate model of creative potential (see Section 2.1.1 and Lubart et al. 2013 for more information) and is composed of four cognitive factors and one conative factor: originality , divergent thinking , convergent thinking , mental flexibility , and creative dispositions . Originality refers to the generation of ideas that are novel or unexpected, depending on the context. Divergent thinking corresponds to the generation of multiple ideas or solutions. Convergent thinking refers to the combination of multiple ideas and the selection of the most creative idea. Mental flexibility entails changing perspectives on a given problem and breaking away from initial ideas. Finally, creative dispositions concerns multiple personality-related factors conducive to creativity, such as openness to experience or risk taking.

The evaluation grid for critical thinking echoes Halpern’s ( 1998 ) as well as Marin and Halpern’s ( 2011 ) considerations for teaching this skill, that is, taking into consideration thinking skills, metacognition, and dispositions. The five components of the critical thinking grid are: goal-adequate discernment, objective thinking, metacognition, elaborate reasoning, and uncertainty management. Goal-adequate discernment entails the formulation of inferences and the discernment of contradictions when faced with a problem. Objective thinking corresponds to the suspension of one’s own judgment and the analysis of affirmations and sources in the most objective manner possible. Metacognition, here, is about questioning and reassessing information, as well as the awareness of one’s own cognitive biases. Elaborate reasoning entails reasoning in a way that is cautious, thorough, and serious. Finally, uncertainty management refers to the dispositional propensity to tolerate ambiguity and accept doubt.

The evaluation grid for collaboration is based on the quality of collaboration (QC) method ( Burkhardt et al. 2009 ; see Section 2.4.2 for more details) and is composed of the following five components: collaboration fluidity, well-argued deliberation and consensus-based decision, balance of contribution, organization and coordination, and cognitive syncing, input, and support. Collaboration fluidity entails the absence of speech overlap and the presence of a good flow in terms of turns to speak. Well-argued deliberation and consensus-based decision is about contributing to the discussion and task at hand, as well as participating in discussions and arguments, in order to obtain a consensus. Balance of contribution refers to having equal or equivalent contributions to organization, coordination, and decision making. Organization and coordination refers to effective management of roles, time, and “deadlines”, as well as the attribution of roles depending on participants’ skills. Finally, cognitive syncing, input, and support is about bringing ideas and resources to the group, as well as supporting and reinforcing other members of the group.

The five components used to evaluate communication in games include both linguistic, pragmatic, and social aspects. Linguistic skills per se are captured by the mastery of written and spoken language component. This component assesses language comprehension and the appropriate use of vocabulary. Pragmatic skills are captured by the verbal and non-verbal communication components and refer to the efficient use of verbal and body signals in the context of the game to achieve one’s communicative goals ( Grassmann 2014 ; Matthews 2014 ). Finally, the grid also evaluates social skills with its two last components, social interactions and social cognition, which, respectively, refer to the ability to interact with others appropriately—including by complying with the rules of the game—and to the understanding of other people’ mental states ( Tomasello 2005 ).

6. Discussion and Conclusions

Each of the 4Cs is a broad, multi-faceted concept that is the subject of a tremendous amount of research and discussion by a wide range of stakeholders in different disciplines, professions, and parts of the educational establishment. The development of evaluation frameworks to allow support for the 4Cs to be assessed and publicly recognized, using a label, is an important step for promoting and fostering these skills in educational contexts. As illustrated by IICD’s 4Cs Framework for educational institutions and programs, as well as its games/activities evaluation grid, the specific criteria to detect support for each C can vary depending upon the educational context (e.g., formal and institutional level or informal and at the activity level). Yet considering the 4Cs together highlights some additional observations, current challenges, and opportunities for the future that are worthy of discussion.

6.1. Interrelationships between the 4Cs and a New Model for Use in Pedagogy and Policy Promotion

One very important issue for understanding the 4Cs and their educational implementation that can be simultaneously a help and a hindrance for teaching them—and also a challenge when assessing them—is their multidimensionality and interrelatedness. In other words, the 4Cs are not entirely separate entities but instead, as Figure 2 shows, should be seen as four interlinked basic “elements” for future-oriented education that can help individuals in their learning process and, together, synergistically “bootstrap” the development of their cognitive potentials. Lamri and Lubart ( 2021 ), for example, found a certain base level of creativity was a necessary but not sufficient condition for success in managerial tasks, but that high-level performance required a combination of all four Cs. Some thinkers have argued that one cannot be creative without critical thinking, which also requires creativity, for example, to come up with alternative arguments (see Paul and Elder 2006 ). Similarly, among many other interrelationships, there is no collaboration without communication—and even ostensibly individual creativity is a “collaboration” of sorts with the general culture and precursors in a given field. As a result, it ranges from impossible to suboptimal to teach (or teach towards) one of the 4Cs without involving one or more of the others, and this commingling also underscores the genuine need and appropriateness of assessing them together.

An external file that holds a picture, illustration, etc.
Object name is jintelligence-11-00054-g002.jpg

“‘Crea-Critical-Collab-ication’: a Dynamic Interactionist Model of the 4Cs”. (Illustration of the interplay and interpenetration of creativity, critical thinking, collaboration, and communication shown in dimensional space according to their differing cognitive/individual vs. social/interpersonal emphases; (© 2023, Branden Thornhill-Miller. All Rights Reserved. thornhill-miller.com; accessed on 20 January 2023)).

From this perspective, Thornhill-Miller ( 2021 ) proposed a “dynamic interactionist model of the 4Cs” and their interrelated contributions to the future of education and work. Presented in Figure 2 , this model is meant to serve as a visual and conceptual aid for understanding the 4Cs and their interrelationships, thereby also promoting better use and understanding of them in pedagogical and policy settings. In addition to suggesting the portmanteau of “crea-critical thinking” as a new term to describe the overlap of much of the creative and critical thinking processes, the title of this model, “Crea-Critical-Collab-ication”, is a verbal representation of the fluid four-way interrelationship between the 4Cs visually represented in Figure 2 (a title meant to playfully repackage the 4Cs for important pedagogical and policy uses). This model goes further to suggest some dimensional differences in emphases that, roughly speaking, also often exist among the 4Cs: that is to say, the frequently greater emphasis on cognitive or individual elements at play in creativity and critical thinking in comparison to the social and interpersonal aspects more central to communication and collaboration ( Thornhill-Miller 2021 ).

Similarly focused on the need to promote a phase change towards future-oriented education, Lucas ( 2019 ) and colleagues have suggested conflating creative thinking and critical thinking in order to propose “3Cs” (creative thinking, communication, and collaboration) as new “foundational literacies” to symmetrically add to the 3Rs (Reading, wRiting, and aRithmetic) of previous educational eras. Although we applaud these efforts, from our applied research perspective, we believe that the individual importance of, and distinct differences between, creative thinking and critical thinking support preserving them both as separate constructs in order to encourage the greatest development of each of them. Moreover, if only three categories were somehow required or preferable, one could argue that uniting communication and collaboration (as “collab-ication” suggests) might be preferable—particularly also given the fact that substantial aspects of communication are already covered within the 3Rs. In any case, we look forward to more such innovations and collaborations in this vibrant and important area of work at the crossroads between research, pedagogy, and policy development.

6.2. Limitations and Future Work

The rich literature in each of the 4Cs domains shows the positive effects of integrating these dimensions into educational and professional curricula. At the same time, the complexity of their definitions makes them difficult to assess, both in terms of reliability (assessment must not vary from one measurement to another) and of validity (tests must measure that which they are intended to measure). However, applied research in this area is becoming increasingly rigorous, with a growing capacity to provide the necessary tools for evidence-based practice. The development of these practices should involve interdisciplinary teams of teachers and other educational practitioners who are equipped and trained accordingly. Similarly, on the research side, further exploration and clarification of subcomponents of the 4Cs and other related skills will be important. Recent efforts to clarify the conceptual overlap and hierarchical relations of soft skills for the future of education and work, for example, have been helpful and promising (e.g., Joie-La Marle et al. 2022 ; Lamri et al. 2022 ). But the most definitive sort of taxonomy and measurement model that we are currently lacking might only be established based on the large-scale administration of a comprehensive battery of skill-measuring psychometric tests on appropriate cross sections of society.

The rapid development and integration of new technologies will also aid and change the contexts, resources, and implementation of the 4Cs. For example, the recent developments make it clear that the 4Cs will be enhanced and changed by interaction with artificially intelligence, even as 4Cs-related skills will probably, for the same reason, increasingly constitute the core of available human work in the future (see, e.g., Ross 2018 ). Similarly, research on virtual reality and creativity suggest that VR environments assist and expand individual and collaborative creativity ( Bourgeois-Bougrine et al. 2022 ). Because VR technologies offer the possibility of enhanced and materially enriched communication, collaboration, and information availability, they not only allow for the enhancement of creativity techniques but also for similar expansions and improvements on almost all forms of human activity (see Thornhill-Miller and Dupont 2016 )—including the other three Cs.

6.3. Conclusion: Labelization of the 4Cs and the Future of Education and Work

Traditional educational approaches cannot meet the educational needs of our emergent societies if they do not teach, promote, and assess in line with the new learner characteristics and contexts of the 21st century ( Sahin 2009 ). The sort of future-oriented change and development required by this shift in institutional practices, programming, and structure will likely meet with significant resistance from comfortably entrenched (and often outdated) segments of traditional educational and training establishments. Additional external evaluation and monitoring is rarely welcome by workers in any context. We believe, however, that top-down processes from the innovative and competition-conscious administrative levels will be met by bottom-up demands from students and education consumers to support these institutional changes. And we contend that efforts such as labelizing 4C processes will serve to push educators and institutions towards more relevant offerings, oriented towards the future of work and helping build a more successful future for all.

In the end, the 4Cs framework seems to be a manageable, focused model for modernizing education, and one worthy of its growing prevalence in the educational and research marketplace for a number of reasons. These reasons include the complexity and cumbersome nature of larger alternative systems and the 4Cs’ persuasive presence at the core of a number of early and industry-driven frameworks. In addition, the 4Cs have benefitted from their subsequent promotion by organizations such as the OECD and the World Economic Forum, as well as some more direct support from recent empirical research. The promotion, teaching, and assessment of the 4Cs will require a complex social intervention and mobilization of educational resources—a major shift in pedagogy and institutional structures. Yet the same evolving digital technologies that have largely caused the need for these massive, rapid changes can also assist in the implementation of solutions ( van Laar et al. 2017 ). To the extent that future research also converges on such a model (that has already been found pedagogically useful and policy-friendly by so many individuals and organizations), the 4Cs framework has the potential to become a manageable core for 21st century skills and the future of education and work—one that stakeholders with various agendas can already begin building on for a better educational and economic future together.

Funding Statement

This research received no external funding.

Author Contributions

Conceptualization, B.T.-M. and T.L.; writing—original draft preparation, B.T.-M., A.C., M.M., J.-M.B., T.M., S.B.-B., S.E.H., F.V., M.A.-L., C.F., D.S., F.M.; writing—review and editing, B.T.-M., A.C., T.L., J.-M.B., C.F.; visualization, B.T.-M.; supervision, B.T.-M., T.L.; project administration, B.T.-M., T.L. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Data availability statement, conflicts of interest.

B.T.-M. and T.L. are unpaid academic co-founder and project collaborator for the International Institute for Competency Development, whose labelization frameworks (developed in cooperation with Afnor International and the LaPEA lab of Université Paris Cité and Université Gustave Eiffel) are used as examples in this review. S.E.H. and M.A.-L. are employees of AFNOR International. No funding was received to support this research or article, which reflects the views of the scientists and researchers and not their organizations or companies.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

  • Abrami Philip C., Bernard Robert M., Borokhovski Eugene, Waddington David I., Wade C. Anne, Persson Tonje. Strategies for Teaching Students to Think Critically: A Meta-Analysis. Review of Educational Research. 2015; 85 :275–314. doi: 10.3102/0034654314551063. [ CrossRef ] [ Google Scholar ]
  • AbuSeileek Ali Farhan. The Effect of Computer-Assisted Cooperative Learning Methods and Group Size on the EFL Learners’ Achievement in Communication Skills. Computers & Education. 2012; 58 :231–39. doi: 10.1016/j.compedu.2011.07.011. [ CrossRef ] [ Google Scholar ]
  • Ahern Aoife, Dominguez Caroline, McNally Ciaran, O’Sullivan John J., Pedrosa Daniela. A Literature Review of Critical Thinking in Engineering Education. Studies in Higher Education. 2019; 44 :816–28. doi: 10.1080/03075079.2019.1586325. [ CrossRef ] [ Google Scholar ]
  • Ainsworth Shaaron E., Chounta Irene-Angelica. The roles of representation in computer-supported collaborative learning. In: Cress Ulrike, Rosé Carolyn, Wise Alyssa Friend, Oshima Jun., editors. International Handbook of Computer-Supported Collaborative Learning. Springer; Cham: 2021. pp. 353–69. [ CrossRef ] [ Google Scholar ]
  • Alsaleh Nada J. Teaching Critical Thinking Skills: Literature Review. [(accessed on 1 November 2022)]; The Turkish Online Journal of Educational Technology. 2020 19 :21–39. Available online: http://files.eric.ed.gov/fulltext/EJ1239945.pdf [ Google Scholar ]
  • Al-Samarraie Hosam, Hurmuzan Shuhaila. A Review of Brainstorming Techniques in Higher Education. Thinking Skills and Creativity. 2018; 27 :78–91. doi: 10.1016/j.tsc.2017.12.002. [ CrossRef ] [ Google Scholar ]
  • Amabile Teresa M. Social Psychology of Creativity: A Consensual Assessment Technique. Journal of Personality and Social Psychology. 1982; 43 :997–1013. doi: 10.1037/0022-3514.43.5.997. [ CrossRef ] [ Google Scholar ]
  • Amron Manajemen Pemasaran. The influence of brand image, brand trust, product quality, and price on the consumer’s buying decision of MPV cars. European Scientific Journal. 2018; 14 :228–39. doi: 10.19044/esj.2018.v14n13p228. [ CrossRef ] [ Google Scholar ]
  • Ananiadoui Katerina, Claro Magdalean. 21st Century Skills and Competences for New Millennium Learners in OECD Countries. OECD Publishing; Paris: 2009. OECD Education Working Papers, No. 41. [ CrossRef ] [ Google Scholar ]
  • Bailin Sharon. Achieving Extraordinary Ends: An Essay on Creativity. Springer; Dordrecht: 1988. [ CrossRef ] [ Google Scholar ]
  • Bandyopadhyay Subir, Szostek Jana. Thinking Critically about Critical Thinking: Assessing Critical Thinking of Business Students Using Multiple Measures. Journal of Education for Business. 2019; 94 :259–70. doi: 10.1080/08832323.2018.1524355. [ CrossRef ] [ Google Scholar ]
  • Barber Herbert F. Developing Strategic Leadership: The US Army War College Experience. Journal of Management Development. 1992; 11 :4–12. doi: 10.1108/02621719210018208. [ CrossRef ] [ Google Scholar ]
  • Barnett Ronald. The Palgrave Handbook of Critical Thinking in Higher Education. Palgrave Macmillan US; New York: 2015. A Curriculum for Critical Being; pp. 63–76. [ CrossRef ] [ Google Scholar ]
  • Bateson Patrick, Martin Paul. Play, Playfulness, Creativity and Innovation. Cambridge University Press; Cambridge: 2013. [ CrossRef ] [ Google Scholar ]
  • Batey Mark. The Measurement of Creativity: From Definitional Consensus to the Introduction of a New Heuristic Framework. Creativity Research Journal. 2012; 24 :55–65. doi: 10.1080/10400419.2012.649181. [ CrossRef ] [ Google Scholar ]
  • Battelle for Kids Framework for 21st Century Learning Definitions. 2022. [(accessed on 1 November 2022)]. Available online: http://static.battelleforkids.org/documents/p21/P21_Framework_DefinitionsBFK.pdf
  • Bellaera Lauren, Weinstein-Jones Yana, Ilie Sonia, Baker Sara T. Critical Thinking in Practice: The Priorities and Practices of Instructors Teaching in Higher Education. Thinking Skills and Creativity. 2021; 41 :100856. doi: 10.1016/j.tsc.2021.100856. [ CrossRef ] [ Google Scholar ]
  • Blessinger Patrick, Anchan John P. In: Democratizing Higher Education: International Comparative Perspectives. 1st ed. Blessinger Patrick, Anchan John P., editors. Routledge; London: 2015. [(accessed on 1 November 2022)]. Available online: https://www.routledge.com/Democratizing-Higher-Education-International-Comparative-Perspectives/Blessinger-Anchan/p/book/9781138020955 [ Google Scholar ]
  • Bloom Benjamin Samuel., editor. Taxonomy of Educational Objectives: The Classification of Educational Goals: Handbook I, Cognitive Domain. Longmans; New York: 1956. [ Google Scholar ]
  • Bourgeois-Bougrine Samira. The Palgrave Encyclopedia of the Possible. Springer International Publishing; Cham: 2022. Design Thinking. [ CrossRef ] [ Google Scholar ]
  • Bourgeois-Bougrine Samira, Bonnardel Nathalie, Burkhardt Jean-Marie, Thornhill-Miller Branden, Pahlavan Farzaneh, Buisine Stéphanie, Guegan Jérôme, Pichot Nicolas, Lubart Todd. Immersive Virtual Environments’ Impact on Individual and Collective Creativity: A Review of Recent Research. European Psychologist. 2022; 27 :237–53. doi: 10.1027/1016-9040/a000481. [ CrossRef ] [ Google Scholar ]
  • Bourke Sharon L., Cooper Simon, Lam Louisa, McKenna Lisa. Undergraduate Health Professional Students’ Team Communication in Simulated Emergency Settings: A Scoping Review. Clinical Simulation in Nursing. 2021; 60 :42–63. doi: 10.1016/j.ecns.2021.07.004. [ CrossRef ] [ Google Scholar ]
  • Brookfield Stephen D. Assessing Critical Thinking. New Directions for Adult and Continuing Education. 1997; 75 :17–29. doi: 10.1002/ace.7502. [ CrossRef ] [ Google Scholar ]
  • Burkhardt Jean-Marie, Détienne Françoise, Hébert Anne-Marie, Perron Laurence. Human-Computer Interaction—INTERACT 2009. Springer; Berlin/Heidelberg: 2009. Assessing the ‘Quality of Collaboration’ in Technology-Mediated Design Situations with Several Dimensions; pp. 157–60. [ CrossRef ] [ Google Scholar ]
  • Camarda Anaëlle, Bouhours Lison, Osmont Anaïs, Masson Pascal Le, Weil Benoît, Borst Grégoire, Cassotti Mathieu. Opposite Effect of Social Evaluation on Creative Idea Generation in Early and Middle Adolescents. Creativity Research Journal. 2021; 33 :399–410. doi: 10.1080/10400419.2021.1902174. [ CrossRef ] [ Google Scholar ]
  • Cannon-Bowers Janis, Tannenbaum Scott I., Salas Eduardo, Volpe Catherine E. Defining team competencies and establishing team training requirements. In: Guzzo Richard A., Salas Eduardo., editors. Team Effectiveness and Decision Making in Organizations. Jossey-Bass; San Francisco: 1995. pp. 333–80. [ Google Scholar ]
  • Care Esther, Scoular Claire, Griffin Patrick. Assessment of Collaborative Problem Solving in Education Environments. Applied Measurement in Education. 2016; 29 :250–64. doi: 10.1080/08957347.2016.1209204. [ CrossRef ] [ Google Scholar ]
  • Care Esther, Kim Helyn, Vista Alvin, Anderson Kate. Education System Alignment for 21st Century Skills: Focus on Assessment. Brookings Institution; Washington, DC: 2018. [ Google Scholar ]
  • Carmichael Erst, Farrell Helen. Evaluation of the Effectiveness of Online Resources in Developing Student Critical Thinking: Review of Literature and Case Study of a Critical Thinking Online Site. Journal of University Teaching and Learning Practice. 2012; 9 :38–55. doi: 10.53761/1.9.1.4. [ CrossRef ] [ Google Scholar ]
  • Carson Shelley H., Peterson Jordan B., Higgins Daniel M. Reliability, Validity, and Factor Structure of the Creative Achievement Questionnaire. Creativity Research Journal. 2005; 17 :37–50. doi: 10.1207/s15326934crj1701_4. [ CrossRef ] [ Google Scholar ]
  • Casey Betty J., Getz Sarah, Galvan Adriana. The Adolescent Brain. Developmental Review: DR. 2008; 28 :62–77. doi: 10.1016/j.dr.2007.08.003. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cassotti Mathieu, Camarda Anaëlle, Poirel Nicolas, Houdé Olivier, Agogué Marine. Fixation Effect in Creative Ideas Generation: Opposite Impacts of Example in Children and Adults. Thinking Skills and Creativity. 2016; 19 :146–52. doi: 10.1016/j.tsc.2015.10.008. [ CrossRef ] [ Google Scholar ]
  • Chameroy Fabienne, Veran Lucien. Immatérialité de La Qualité et Effet Des Labels Sur Le Consentement à Payer. Management International. 2014; 18 :32–44. doi: 10.7202/1025088ar. [ CrossRef ] [ Google Scholar ]
  • Chiu Fa-Chung. Improving Your Creative Potential without Awareness: Overinclusive Thinking Training. Thinking Skills and Creativity. 2015; 15 :1–12. doi: 10.1016/j.tsc.2014.11.001. [ CrossRef ] [ Google Scholar ]
  • Chulvi Vicente, Mulet Elena, Chakrabarti Amaresh, López-Mesa Belinda, González-Cruz Carmen. Comparison of the Degree of Creativity in the Design Outcomes Using Different Design Methods. Journal of Engineering Design. 2012; 23 :241–69. doi: 10.1080/09544828.2011.624501. [ CrossRef ] [ Google Scholar ]
  • Cinque Maria. ‘Lost in Translation’. Soft Skills Development in European Countries. Tuning Journal for Higher Education. 2016; 3 :389–427. doi: 10.18543/tjhe-3(2)-2016pp389-427. [ CrossRef ] [ Google Scholar ]
  • Cömert Musa, Zill Jördis Maria, Christalle Eva, Dirmaier Jörg, Härter Martin, Scholl Isabelle. Assessing Communication Skills of Medical Students in Objective Structured Clinical Examinations (OSCE) - A Systematic Review of Rating Scales. PLoS ONE. 2016; 11 :e0152717. doi: 10.1371/journal.pone.0152717. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Corazza Giovanni Emanuele. Potential Originality and Effectiveness: The Dynamic Definition of Creativity. Creativity Research Journal. 2016; 28 :258–67. doi: 10.1080/10400419.2016.1195627. [ CrossRef ] [ Google Scholar ]
  • Corazza Giovanni Emanuele, Darbellay Frédéric, Lubart Todd, Panciroli Chiara. Developing Intelligence and Creativity in Education: Insights from the Space–Time Continuum. In: Lemmetty Soila, Collin Kaija, Glăveanu Vlad, Forsman Panu., editors. Creativity and Learning. Springer International Publishing; Cham: 2021. pp. 69–87. [ CrossRef ] [ Google Scholar ]
  • Cotter Katherine N., Beghetto Ronald A., Kaufman James C. Creativity in the Classroom: Advice for Best Practices. In: Lubart Todd, Botella Marion, Bourgeois-Bougrine Samira, Caroff Xavier, Guégan Jérôme, Mouchiroud Christohe, Nelson Julien, Zenasni Franck., editors. Homo Creativus. Springer International Publishing; Cham: 2022. pp. 249–64. [ CrossRef ] [ Google Scholar ]
  • Curtis J. Randall, Back Anthony L., Ford Dee W., Downey Lois, Shannon Sarah E., Doorenbos Ardith Z., Kross Erin K., Reinke Lynn F., Feemster Laura C., Edlund Barbara, et al. Effect of Communication Skills Training for Residents and Nurse Practitioners on Quality of Communication with Patients with Serious Illness: A Randomized Trial. JAMA: The Journal of the American Medical Association. 2013; 310 :2271. doi: 10.1001/jama.2013.282081. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • D’Alimonte Laura, McLaney Elizabeth, Prospero Lisa Di. Best Practices on Team Communication: Interprofessional Practice in Oncology. Current Opinion in Supportive and Palliative Care. 2019; 13 :69–74. doi: 10.1097/SPC.0000000000000412. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • de Freitas Sara. Learning in Immersive Worlds: A Review of Game-Based Learning. JISC; Bristol: 2006. [(accessed on 1 November 2022)]. Available online: http://www.jisc.ac.uk/media/documents/programmes/elearninginnovation/gamingreport_v3.pdf [ Google Scholar ]
  • Détienne Françoise, Baker Michael, Burkhardt Jean-Marie. Perspectives on Quality of Collaboration in Design. CoDesign. 2012; 8 :197–99. doi: 10.1080/15710882.2012.742350. [ CrossRef ] [ Google Scholar ]
  • Diedrich Jennifer, Jauk Emanuel, Silvia Paul J., Gredlein Jeffrey M., Neubauer Aljoscha C., Benedek Mathias. Assessment of Real-Life Creativity: The Inventory of Creative Activities and Achievements (ICAA) Psychology of Aesthetics, Creativity, and the Arts. 2018; 12 :304–16. doi: 10.1037/aca0000137. [ CrossRef ] [ Google Scholar ]
  • Doyle Denise. Creativity in the Twenty First Century. Edited by Anna Hui and Christian Wagner. Springer International Publishing; Cham: 2021. Creative and Collaborative Practices in Virtual Immersive Environments; pp. 3–19. [ CrossRef ] [ Google Scholar ]
  • Drisko James W. Competencies and Their Assessment. Journal of Social Work Education. 2014; 50 :414–26. doi: 10.1080/10437797.2014.917927. [ CrossRef ] [ Google Scholar ]
  • Dul Jan, Ceylan Canan. Work Environments for Employee Creativity. Ergonomics. 2011; 54 :12–20. doi: 10.1080/00140139.2010.542833. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dumitru Daniela, Bigu Dragos, Elen Jan, Ahern Aoife, McNally Ciaran, O’Sullivan John. A European Review on Critical Thinking Educational Practices in Higher Education Institutions. UTAD; Vila Real: 2018. [(accessed on 2 November 2022)]. Available online: http://repositorio.utad.pt/handle/10348/8320 [ Google Scholar ]
  • Edelman Jonathan, Owoyele Babajide, Santuber Joaquin. Design Thinking in Education. Springer International Publishing; Cham: 2022. Beyond Brainstorming: Introducing Medgi, an Effective, Research-Based Method for Structured Concept Development; pp. 209–32. [ CrossRef ] [ Google Scholar ]
  • Etilé Fabrice, Teyssier Sabrina. Signaling Corporate Social Responsibility: Third-Party Certification versus Brands: Signaling CSR: Third-Party Certification versus Brands. The Scandinavian Journal of Economics. 2016; 118 :397–432. doi: 10.1111/sjoe.12150. [ CrossRef ] [ Google Scholar ]
  • Evans Carla. Measuring Student Success Skills: A Review of the Literature on Collaboration. National Center for the Improvement of Educational Assessment; Dover: 2020. [ Google Scholar ]
  • Facione Peter Arthur. The California Critical Thinking Skills Test–College Level. Technical Report# 1. Experimental Validation and Content Validity. [(accessed on 2 November 2022)]; 1990a Available online: https://files.eric.ed.gov/fulltext/ED327549.pdf
  • Facione Peter Arthur. Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction. Research Findings and Recommendations. ERIC, Institute of Education Sciences; Washington, DC: 1990b. [(accessed on 2 November 2022)]. pp. 1–112. Available online: https://eric.ed.gov/?id=ED315423 [ Google Scholar ]
  • Facione Peter Arthur. Critical thinking: What it is and why it counts. Insight Assessment. 2011; 2007 :1–23. [ Google Scholar ]
  • Faidley Joel. Ph.D. dissertation. East Tennessee State University; Johnson City, TN, USA: 2018. Comparison of Learning Outcomes from Online and Face-to-Face Accounting Courses. [ Google Scholar ]
  • Friedman Hershey H. Cognitive Biases That Interfere with Critical Thinking and Scientific Reasoning: A Course Module. SSRN Electronic Journal. 2017:1–60. doi: 10.2139/ssrn.2958800. [ CrossRef ] [ Google Scholar ]
  • Fryer-Edwards Kelly, Arnold Robert M., Baile Walter, Tulsky James A., Petracca Frances, Back Anthony. Reflective Teaching Practices: An Approach to Teaching Communication Skills in a Small-Group Setting. Academic Medicine: Journal of the Association of American Medical Colleges. 2006; 81 :638–44. doi: 10.1097/01.ACM.0000232414.43142.45. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Glăveanu Vlad Petre. Rewriting the Language of Creativity: The Five A’s Framework. Review of General Psychology: Journal of Division 1, of the American Psychological Association. 2013; 17 :69–81. doi: 10.1037/a0029528. [ CrossRef ] [ Google Scholar ]
  • Glăveanu Vlad Petre. The Psychology of Creativity: A Critical Reading. Creativity Theories Research Applications. 2014; 1 :10–32. doi: 10.15290/ctra.2014.01.01.02. [ CrossRef ] [ Google Scholar ]
  • Goldenberg Olga, Wiley Jennifer. Quality, Conformity, and Conflict: Questioning the Assumptions of Osborn’s Brainstorming Technique. The Journal of Problem Solving. 2011; 3 :96–118. doi: 10.7771/1932-6246.1093. [ CrossRef ] [ Google Scholar ]
  • Graesser Arthur C., Sabatini John P., Li Haiying. Educational Psychology Is Evolving to Accommodate Technology, Multiple Disciplines, and Twenty-First-Century Skills. Annual Review of Psychology. 2022; 73 :547–74. doi: 10.1146/annurev-psych-020821-113042. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Graesser Arthur C., Fiore Stephen M., Greiff Samuel, Andrews-Todd Jessica, Foltz Peter W., Hesse Friedrich W. Advancing the Science of Collaborative Problem Solving. Psychological Science in the Public Interest. 2018; 19 :59–92. doi: 10.1177/1529100618808244. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Grassmann Susanne. The pragmatics of word learning. In: Matthews Danielle., editor. Pragmatic Development in First Language Acquisition. John Benjamins Publishing Company; Amsterdam: 2014. pp. 139–60. [ CrossRef ] [ Google Scholar ]
  • Hager Keri, St Hill Catherine, Prunuske Jacob, Swanoski Michael, Anderson Grant, Lutfiyya May Nawal. Development of an Interprofessional and Interdisciplinary Collaborative Research Practice for Clinical Faculty. Journal of Interprofessional Care. 2016; 30 :265–67. doi: 10.3109/13561820.2015.1092951. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Halpern Diane F. Teaching Critical Thinking for Transfer across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring. The American Psychologist. 1998; 53 :449–55. doi: 10.1037/0003-066X.53.4.449. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Halpern Diane F., Dunn Dana S. Critical Thinking: A Model of Intelligence for Solving Real-World Problems. Journal of Intelligence. 2021; 9 :22. doi: 10.3390/jintelligence9020022. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hanover Research A Crosswalk of 21st Century Skills. 2012. [(accessed on 15 August 2022)]. Available online: http://www.hanoverresearch.com/wp-content/uploads/2011/12/A-Crosswalk-of-21st-Century-Skills-Membership.pdf
  • Hathaway Julia R., Tarini Beth A., Banerjee Sushmita, Smolkin Caroline O., Koos Jessica A., Pati Susmita. Healthcare Team Communication Training in the United States: A Scoping Review. Health Communication. 2022:1–26. doi: 10.1080/10410236.2022.2036439. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hesse Friedrich, Care Esther, Buder Juergen, Sassenberg Kai, Griffin Patrick. A Framework for Teachable Collaborative Problem Solving Skills. In: Griffin Patrick, Care Esther., editors. Assessment and Teaching of 21st Century Skills. Springer Netherlands; Dordrecht: 2015. pp. 37–56. [ Google Scholar ]
  • Hitchcock David. Critical Thinking. In: Edward Nouri Zalta., editor. The Stanford Encyclopedia of Philosophy (Fall 2020 Edition) Stanford University; Stanford: 2020. [ Google Scholar ]
  • Houdé Olivier. Inhibition and cognitive development: Object, number, categorization, and reasoning. Cognitive Development. 2000; 15 :63–73. doi: 10.1016/S0885-2014(00)00015-0. [ CrossRef ] [ Google Scholar ]
  • Houdé Olivier, Borst Grégoire. Measuring inhibitory control in children and adults: Brain imaging and mental chronometry. Frontiers in Psychology. 2014; 5 :616. doi: 10.3389/fpsyg.2014.00616. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Huber Christopher R., Kuncel Nathan R. Does College Teach Critical Thinking? A Meta-Analysis. Review of Educational Research. 2016; 86 :431–68. doi: 10.3102/0034654315605917. [ CrossRef ] [ Google Scholar ]
  • Huizinga Johan. Homo Ludens: A Study of the Play-Elements in Culture. Routledge; London: 1949. [ Google Scholar ]
  • Humphrey Neil, Curran Andrew, Morris Elisabeth, Farrell Peter, Woods Kevin. Emotional Intelligence and Education: A Critical Review. Educational Psychology. 2007; 27 :235–54. doi: 10.1080/01443410601066735. [ CrossRef ] [ Google Scholar ]
  • International Institute for Competency Development 21st Century Skills 4Cs Labelization. 2021. [(accessed on 2 November 2022)]. Available online: https://icd-hr21.org/offers/21st-century-competencies/
  • Jackson Denise. Business Graduate Performance in Oral Communication Skills and Strategies for Improvement. The International Journal of Management Education. 2014; 12 :22–34. doi: 10.1016/j.ijme.2013.08.001. [ CrossRef ] [ Google Scholar ]
  • Jahn Gabriele, Schramm Matthias, Spiller Achim. The Reliability of Certification: Quality Labels as a Consumer Policy Tool. Journal of Consumer Policy. 2005; 28 :53–73. doi: 10.1007/s10603-004-7298-6. [ CrossRef ] [ Google Scholar ]
  • Jauk Emanuel, Benedek Mathias, Neubauer Aljoscha C. The Road to Creative Achievement: A Latent Variable Model of Ability and Personality Predictors. European Journal of Personality. 2014; 28 :95–105. doi: 10.1002/per.1941. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Joie-La Marle Chantal, Parmentier François, Coltel Morgane, Lubart Todd, Borteyrou Xavier. A Systematic Review of Soft Skills Taxonomies: Descriptive and Conceptual Work. 2022. [(accessed on 2 November 2022)]. Available online: [ CrossRef ]
  • Jones Stanley E., LeBaron Curtis D. Research on the Relationship between Verbal and Nonverbal Communication: Emerging Integrations. The Journal of Communication. 2002; 52 :499–521. doi: 10.1111/j.1460-2466.2002.tb02559.x. [ CrossRef ] [ Google Scholar ]
  • Kaendler Celia, Wiedmann Michael, Leuders Timo, Rummel Nikol, Spada Hans. Monitoring Student Interaction during Collaborative Learning: Design and Evaluation of a Training Program for Pre-Service Teachers. Psychology Learning & Teaching. 2016; 15 :44–64. doi: 10.1177/1475725716638010. [ CrossRef ] [ Google Scholar ]
  • Kahneman Daniel. A Perspective on Judgment and Choice: Mapping Bounded Rationality. The American Psychologist. 2003; 58 :697–720. doi: 10.1037/0003-066X.58.9.697. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kahneman Daniel. Thinking, Fast and Slow. Macmillan; New York: 2011. [ Google Scholar ]
  • Karl Katherine A., Peluchette Joy V., Aghakhani Navid. Virtual Work Meetings during the COVID-19 Pandemic: The Good, Bad, and Ugly. Small Group Research. 2022; 53 :343–65. doi: 10.1177/10464964211015286. [ CrossRef ] [ Google Scholar ]
  • Keefer Kateryna V., Parker James D. A., Saklofske Donald H. The Springer Series on Human Exceptionality. Springer International Publishing; Cham: 2018. Three Decades of Emotional Intelligence Research: Perennial Issues, Emerging Trends, and Lessons Learned in Education: Introduction to Emotional Intelligence in Education; pp. 1–19. [ Google Scholar ]
  • Kemp Nenagh, Grieve Rachel. Face-to-Face or Face-to-Screen? Undergraduates’ Opinions and Test Performance in Classroom vs. Online Learning. Frontiers in Psychology. 2014; 5 :1278. doi: 10.3389/fpsyg.2014.01278. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kimery Kathryn, McCord Mary. Third-Party Assurances: Mapping the Road to Trust in E-retailing. The Journal of Information Technology Theory and Application. 2002; 4 :63–82. [ Google Scholar ]
  • Kohn Nicholas W., Smith Steven M. Collaborative Fixation: Effects of Others’ Ideas on Brainstorming. Applied Cognitive Psychology. 2011; 25 :359–71. doi: 10.1002/acp.1699. [ CrossRef ] [ Google Scholar ]
  • Kowaltowski Doris C. C. K., Bianchi Giovana, de Paiva Valéria Teixeira. Methods That May Stimulate Creativity and Their Use in Architectural Design Education. International Journal of Technology and Design Education. 2010; 20 :453–76. doi: 10.1007/s10798-009-9102-z. [ CrossRef ] [ Google Scholar ]
  • Kruijver Irma P. M., Kerkstra Ada, Francke Anneke L., Bensing Jozien M., van de Wiel Harry B. M. Evaluation of Communication Training Programs in Nursing Care: A Review of the Literature. Patient Education and Counseling. 2000; 39 :129–45. doi: 10.1016/S0738-3991(99)00096-8. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lai Emily R. Critical thinking: A literature review. Pearson’s Research Reports. 2011; 6 :40–41. doi: 10.25148/lawrev.11.2.3. [ CrossRef ] [ Google Scholar ]
  • Lamri Jérémy, Lubart Todd. Creativity and Its’ Relationships with 21st Century Skills in Job Performance. Kindai Management Review. 2021; 9 :75–91. [ Google Scholar ]
  • Lamri Jérémy, Barabel Michel, Meier Olivier, Lubart Todd. Le Défi Des Soft Skills: Comment les Développer au XXIe Siècle? Dunod; Paris: 2022. [ Google Scholar ]
  • Landa Rebecca J. Assessment of Social Communication Skills in Preschoolers: Assessing Social Communication Skills in Children. Mental Retardation and Developmental Disabilities Research Reviews. 2005; 11 :247–52. doi: 10.1002/mrdd.20079. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lee Sang M., Choi Jeongil, Lee Sang-Gun. The impact of a third-party assurance seal in customer purchasing intention. Journal of Internet Commerce. 2004; 3 :33–51. doi: 10.1300/J179v03n02_03. [ CrossRef ] [ Google Scholar ]
  • Lewis Arthur, Smith David. Defining Higher Order Thinking. Theory into Practice. 1993; 32 :131–37. doi: 10.1080/00405849309543588. [ CrossRef ] [ Google Scholar ]
  • Liu Ou Lydia, Frankel Lois, Roohr Katrina Crotts. Assessing Critical Thinking in Higher Education: Current State and Directions for next-Generation Assessment: Assessing Critical Thinking in Higher Education. ETS Research Report Series. 2014; 2014 :1–23. doi: 10.1002/ets2.12009. [ CrossRef ] [ Google Scholar ]
  • Lubart Todd. The 7 C’s of Creativity. The Journal of Creative Behavior. 2017; 51 :293–96. doi: 10.1002/jocb.190. [ CrossRef ] [ Google Scholar ]
  • Lubart Todd, Thornhill-Miller Branden. Creativity: An Overview of the 7C’s of Creative Thought. Heidelberg: Heidelberg University Publishing. 2019 doi: 10.17885/HEIUP.470.C6678. [ CrossRef ] [ Google Scholar ]
  • Lubart Todd, Barbot Baptiste, Besançon Maud. Creative Potential: Assessment Issues and the EPoC Battery/Potencial Creativo: Temas de Evaluación y Batería EPoC. Estudios de Psicologia. 2019; 40 :540–62. doi: 10.1080/02109395.2019.1656462. [ CrossRef ] [ Google Scholar ]
  • Lubart Todd, Zenasni Franck, Barbot Baptiste. Creative potential and its measurement. International Journal of Talent Development and Creativity. 2013; 1 :41–51. [ Google Scholar ]
  • Lubart Tubart, Thornhill-Miller Branden. Creativity in Law: Legal Professions and the Creative Profiler Approach. In: Masson Antoine, Robinson Gavin., editors. Mapping Legal Innovation: Trends and Perspectives. Springer International Publishing; Cham: 2021. pp. 1–19. [ CrossRef ] [ Google Scholar ]
  • Lubin Jeffrey, Hendrick Stephan, Thornhill-Miller Branden, Mercier Maxence, Lubart Todd. Creativity in Solution-Focused Brief Therapy Forthcoming.
  • Lucas Bill. Why We Need to Stop Talking about Twenty-First Century Skills. Centre for Strategic Education; Melbourne: 2019. [ Google Scholar ]
  • Lucas Bill. Creative Thinking in Schools across the World. The Global Institute of Creative Thinking; London: 2022. [ Google Scholar ]
  • Lucas Bill, Claxton Guy. Wider Skills for Learning: What Are They, How Can They Be Cultivated, How Could They Be Measured and Why Are They Important for Innovation? NESTA; London: 2009. [ Google Scholar ]
  • Malaby Thomas M. Beyond Play: A New Approach to Games. Games and Culture. 2007; 2 :95–113. doi: 10.1177/1555412007299434. [ CrossRef ] [ Google Scholar ]
  • Marin Lisa M., Halpern Diane F. Pedagogy for developing critical thinking in adolescents: Explicit instruction produces greatest gains. Thinking Skills and Creativity. 2011; 6 :1–13. doi: 10.1016/j.tsc.2010.08.002. [ CrossRef ] [ Google Scholar ]
  • Mathieu John E., Hollenbeck John R., van Knippenberg Daan, Ilgen Daniel R. A Century of Work Teams in the Journal of Applied Psychology. The Journal of Applied Psychology. 2017; 102 :452–67. doi: 10.1037/apl0000128. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Matthews Danielle. Pragmatic Development in First Language Acquisition. Amsterdam: John Benjamins Publishing Company. 2014 doi: 10.1075/tilar.10. [ CrossRef ] [ Google Scholar ]
  • McDonald Skye, Gowland Alison, Randall Rebekah, Fisher Alana, Osborne-Crowley Katie, Honan Cynthia. Cognitive Factors Underpinning Poor Expressive Communication Skills after Traumatic Brain Injury: Theory of Mind or Executive Function? Neuropsychology. 2014; 28 :801–11. doi: 10.1037/neu0000089. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Moore Brooke Noel, Parker Richard. Critical Thinking. 20th ed. McGraw-Hill Education; New York: 2016. [ Google Scholar ]
  • Morreale Sherwyn P., Valenzano Joseph M., Bauer Janessa A. Why Communication Education Is Important: A Third Study on the Centrality of the Discipline’s Content and Pedagogy. Communication Education. 2017; 66 :402–22. doi: 10.1080/03634523.2016.1265136. [ CrossRef ] [ Google Scholar ]
  • Mourad Maha. Quality Assurance as a Driver of Information Management Strategy: Stakeholders’ Perspectives in Higher Education. Journal of Enterprise Information Management. 2017; 30 :779–94. doi: 10.1108/JEIM-06-2016-0104. [ CrossRef ] [ Google Scholar ]
  • National Education Association . Preparing 21st Century Students for a Global Society: An Educator’s Guide to the “Four Cs”. National Education Association; Alexandria: 2011. [ Google Scholar ]
  • Nouri Jalal, Åkerfeldt Anna, Fors Uno, Selander Staffan. Assessing Collaborative Problem Solving Skills in Technology-Enhanced Learning Environments—The PISA Framework and Modes of Communication. International Journal of Emerging Technologies in Learning (IJET) 2017; 12 :163. doi: 10.3991/ijet.v12i04.6737. [ CrossRef ] [ Google Scholar ]
  • O’Carroll Veronica, Owens Melissa, Sy Michael, El-Awaisi Alla, Xyrichis Andreas, Leigh Jacqueline, Nagraj Shobhana, Huber Marion, Hutchings Maggie, McFadyen Angus. Top Tips for Interprofessional Education and Collaborative Practice Research: A Guide for Students and Early Career Researchers. Journal of Interprofessional Care. 2021; 35 :328–33. doi: 10.1080/13561820.2020.1777092. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • OECD . PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematic, Financial Literacy and Collaborative Problem Solving. OECD Publishing; Paris: 2017. PISA 2015 collaborative problem-solving framework. [ CrossRef ] [ Google Scholar ]
  • OECD . Framework for the Assessment of Creative Thinking in PISA 2021: Third Draft. OECD; Paris: 2019a. [(accessed on 2 November 2022)]. Available online: https://www.oecd.org/pisa/publications/PISA-2021-creative-thinking-framework.pdf [ Google Scholar ]
  • OECD . Future of Education and Skills 2030: A Series of Concept Notes. OECD Learning Compass; Paris: 2019b. [(accessed on 2 November 2022)]. Available online: https://www.oecd.org/education/2030-project/teaching-and-learning/learning/learning-compass-2030/OECD_Learning_Compass_2030_Concept_Note_Series.pdf [ Google Scholar ]
  • Osborn A. F. Applied Imagination. Charles Scribner’s Sons; New York: 1953. [ Google Scholar ]
  • Parkinson Thomas L. The Role of Seals and Certifications of Approval in Consumer Decision-Making. The Journal of Consumer Affairs. 1975; 9 :1–14. doi: 10.1111/j.1745-6606.1975.tb00545.x. [ CrossRef ] [ Google Scholar ]
  • Partnership for 21st Century Skills . 21st Century Skills Education and Competitiveness: A Resource and Policy Guide. Partnership for 21st Century Skills; Tuscon: 2008. [ Google Scholar ]
  • Pasquinelli Elena, Bronner Gérald. Éduquer à l’esprit critique. Bases théoriques et indications pratiques pour l’enseignement et la formation. Ministère de l’Éducation Nationale, de la JEUNESSE et des Sports; Paris: 2021. Rapport du Conseil Scientifique de l’Éducation Nationale. [ Google Scholar ]
  • Pasquinelli Elena, Farina Mathieu, Bedel Audrey, Casati Roberto. Naturalizing Critical Thinking: Consequences for Education, Blueprint for Future Research in Cognitive Science. Mind, Brain and Education: The Official Journal of the International Mind, Brain, and Education Society. 2021; 15 :168–76. doi: 10.1111/mbe.12286. [ CrossRef ] [ Google Scholar ]
  • Paul Richard, Elder Linda. Critical thinking: The nature of critical and creative thought. Journal of Developmental Education. 2006; 30 :34–35. [ Google Scholar ]
  • Paulus Paul B., Yang Huei-Chuan. Idea Generation in Groups: A Basis for Creativity in Organizations. Organizational Behavior and Human Decision Processes. 2000; 82 :76–87. doi: 10.1006/obhd.2000.2888. [ CrossRef ] [ Google Scholar ]
  • Paulus Paul B., Kenworthy Jared B. Effective brainstorming. In: Paulus Paul B., Nijstad Bernard A., editors. The Oxford Handbook of Group Creativity and Innovation. Oxford University Press; New York: 2019. [ CrossRef ] [ Google Scholar ]
  • Paulus Paul B., Dzindolet Mary T. Social Influence Processes in Group Brainstorming. Journal of Personality and Social Psychology. 1993; 64 :575–86. doi: 10.1037/0022-3514.64.4.575. [ CrossRef ] [ Google Scholar ]
  • Paulus Paul B., Brown Vincent R. Toward More Creative and Innovative Group Idea Generation: A Cognitive-Social-Motivational Perspective of Brainstorming: Cognitive-Social-Motivational View of Brainstorming. Social and Personality Psychology Compass. 2007; 1 :248–65. doi: 10.1111/j.1751-9004.2007.00006.x. [ CrossRef ] [ Google Scholar ]
  • Peddle Monica, Bearman Margaret, Radomski Natalie, Mckenna Lisa, Nestel Debra. What Non-Technical Skills Competencies Are Addressed by Australian Standards Documents for Health Professionals Who Work in Secondary and Tertiary Clinical Settings? A Qualitative Comparative Analysis. BMJ Open. 2018; 8 :e020799. doi: 10.1136/bmjopen-2017-020799. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Peña-López Ismaël. PISA 2015 Results (Volume V): Collaborative Problem Solving. PISA, OECD Publishing; Paris: 2017. [ Google Scholar ]
  • Popil Inna. Promotion of Critical Thinking by Using Case Studies as Teaching Method. Nurse Education Today. 2011; 31 :204–7. doi: 10.1016/j.nedt.2010.06.002. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pornpitakpan Chanthika. The Persuasiveness of Source Credibility: A Critical Review of Five Decades’ Evidence. Journal of Applied Social Psychology. 2004; 34 :243–81. doi: 10.1111/j.1559-1816.2004.tb02547.x. [ CrossRef ] [ Google Scholar ]
  • Possin Kevin. Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score. Informal Logic. 2014; 34 :393–416. doi: 10.22329/il.v34i4.4141. [ CrossRef ] [ Google Scholar ]
  • Proctor Robert W., Dutta Addie. Skill Acquisition and Human Performance. Sage Publications, Inc.; Thousand Oaks: 1995. [ Google Scholar ]
  • Putman Vicky L., Paulus Paul B. Brainstorming, Brainstorming Rules and Decision Making. The Journal of Creative Behavior. 2009; 43 :29–40. doi: 10.1002/j.2162-6057.2009.tb01304.x. [ CrossRef ] [ Google Scholar ]
  • Reiman Joey. Success: The Original Handbook. Longstreet Press; Atlanta: 1992. [ Google Scholar ]
  • Ren Xuezhu, Tong Yan, Peng Peng, Wang Tengfei. Critical Thinking Predicts Academic Performance beyond General Cognitive Ability: Evidence from Adults and Children. Intelligence. 2020; 82 :101487. doi: 10.1016/j.intell.2020.101487. [ CrossRef ] [ Google Scholar ]
  • Renard Marie-Christine. Quality Certification, Regulation and Power in Fair Trade. Journal of Rural Studies. 2005; 21 :419–31. doi: 10.1016/j.jrurstud.2005.09.002. [ CrossRef ] [ Google Scholar ]
  • Restout Emilie. Labels RSE: Un décryptage des entreprises labellisées en France. Goodwill Management. 2020. [(accessed on 2 November 2022)]. Available online: https://goodwill-management.com/labels-rse-decryptage-entreprises-labellisees/
  • Rhodes Mel. An Analysis of Creativity. The Phi Delta Kappan. 1961; 42 :305–10. [ Google Scholar ]
  • Rider Elizabeth A., Keefer Constance H. Communication Skills Competencies: Definitions and a Teaching Toolbox: Communication. Medical Education. 2006; 40 :624–29. doi: 10.1111/j.1365-2929.2006.02500.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Riemer Marc J. Communication Skills for the 21st Century Engineer. Global Journal of Engineering Education. 2007; 11 :89. [ Google Scholar ]
  • Rietzschel Eric F., Nijstad Bernard A., Stroebe Wolfgang. Productivity Is Not Enough: A Comparison of Interactive and Nominal Brainstorming Groups on Idea Generation and Selection. Journal of Experimental Social Psychology. 2006; 42 :244–51. doi: 10.1016/j.jesp.2005.04.005. [ CrossRef ] [ Google Scholar ]
  • Ross David. Why the Four Cs Will Become the Foundation of Human-AI Interface. 2018. [(accessed on 2 November 2022)]. Available online: https://www.gettingsmart.com/2018/03/04/why-the-4cs-will-become-the-foundation-of-human-ai-interface/
  • Rothermich Kathrin. Social Communication Across the Lifespan: The Influence of Empathy [Preprint] SocArXiv. 2020 doi: 10.31235/osf.io/adgmy. [ CrossRef ] [ Google Scholar ]
  • Rusdin Norazlin Mohd, Ali Siti Rahaimah. Practice of Fostering 4Cs Skills in Teaching and Learning. International Journal of Academic Research in Business and Social Sciences. 2019; 9 :1021–35. doi: 10.6007/IJARBSS/v9-i6/6063. [ CrossRef ] [ Google Scholar ]
  • Rychen Dominique Simone, Hersch Salganik Laura., editors. Key Competencies for a Successful Life and a Well-Functioning Society. Hogrefe and Huber; Cambridge: 2003. [ Google Scholar ]
  • Sahin Mehmet Can. Instructional Design Principles for 21st Century Learning Skills. Procedia, Social and Behavioral Sciences. 2009; 1 :1464–68. doi: 10.1016/j.sbspro.2009.01.258. [ CrossRef ] [ Google Scholar ]
  • Salas Eduardo, Stagl Kevin C., Burke C. Shawn. International Review of Industrial and Organizational Psychology. John Wiley & Sons, Ltd.; Chichester: 2004. 25 Years of Team Effectiveness in Organizations: Research Themes and Emerging Needs; pp. 47–91. [ CrossRef ] [ Google Scholar ]
  • Salas Eduardo, Shuffler Marissa L., Thayer Amanda L., Bedwell Wendy L., Lazzara Elizabeth H. Understanding and Improving Teamwork in Organizations: A Scientifically Based Practical Guide. Human Resource Management. 2015; 54 :599–622. doi: 10.1002/hrm.21628. [ CrossRef ] [ Google Scholar ]
  • Salmi Jamil. The Tertiary Education Imperative: Knowledge, Skills and Values for Development. Springer; Cham: 2017. [ Google Scholar ]
  • Samani Sanaz Ahmadpoor, Rasid Siti Zaleha Binti Abdul, bt Sofian Saudah. A Workplace to Support Creativity. Industrial Engineering & Management Systems. 2014; 13 :414–20. doi: 10.7232/iems.2014.13.4.414. [ CrossRef ] [ Google Scholar ]
  • Saroyan Alenoush. Fostering Creativity and Critical Thinking in University Teaching and Learning: Considerations for Academics and Their Professional Learning. OECD; Paris: 2022. [ CrossRef ] [ Google Scholar ]
  • Sasmita Jumiati, Suki Norazah Mohd. Young consumers’ insights on brand equity: Effects of brand association, brand loyalty, brand awareness, and brand image. International Journal of Retail & Distribution Management. 2015; 43 :276–92. doi: 10.1108/IJRDM-02-2014-0024. [ CrossRef ] [ Google Scholar ]
  • Schlegel Claudia, Woermann Ulrich, Shaha Maya, Rethans Jan-Joost, van der Vleuten Cees. Effects of Communication Training on Real Practice Performance: A Role-Play Module versus a Standardized Patient Module. The Journal of Nursing Education. 2012; 51 :16–22. doi: 10.3928/01484834-20111116-02. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Schleicher Andreas. Why Creativity and Creative Teaching and Learning Matter Today and for Tomorrow’s World. GloCT in Collaboration with OECD CERI; Paris: 2022. Creativity in Education Summit 2022. [ Google Scholar ]
  • Schneider Bertrand, Sharma Kshitij, Cuendet Sebastien, Zufferey Guillaume, Dillenbourg Pierre, Pea Roy. Leveraging Mobile Eye-Trackers to Capture Joint Visual Attention in Co-Located Collaborative Learning Groups. International Journal of Computer-Supported Collaborative Learning. 2018; 13 :241–61. doi: 10.1007/s11412-018-9281-2. [ CrossRef ] [ Google Scholar ]
  • Schultz David M. Eloquent Science: A course to improve scientific and communication skills; Paper presented at the 19th Symposium on Education; Altanta, GA, USA. January 18–21; 2010. [ Google Scholar ]
  • Scialabba George. Mindplay. Harvard Magazine. 1984; 16 :19. [ Google Scholar ]
  • Scott Ginamarie, Leritz Lyle E., Mumford Michael D. The Effectiveness of Creativity Training: A Quantitative Review. Creativity Research Journal. 2004; 16 :361–88. doi: 10.1080/10400410409534549. [ CrossRef ] [ Google Scholar ]
  • Sigafoos Jeff, Schlosser Ralf W., Green Vanessa A., O’Reilly Mark, Lancioni Giulio E. Communication and Social Skills Assessment. In: Matson Johnny L., editor. Clinical Assessment and Intervention for Autism Spectrum Disorders. Elsevier; Amsterdam: 2008. pp. 165–92. [ CrossRef ] [ Google Scholar ]
  • Simonton Dean Keith. Creativity from a Historiometric Perspective. In: Sternberg Robert J., editor. Handbook of Creativity. Cambridge University Press; Cambridge: 1999. pp. 116–34. [ CrossRef ] [ Google Scholar ]
  • Singh Pallavi, Bala Hillol, Dey Bidit Lal, Filieri Raffaele. Enforced Remote Working: The Impact of Digital Platform-Induced Stress and Remote Working Experience on Technology Exhaustion and Subjective Wellbeing. Journal of Business Research. 2022; 151 :269–86. doi: 10.1016/j.jbusres.2022.07.002. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Spada Hans, Meier Anne, Rummel Nikol, Hauser Sabine. Proceedings of the 2005 Conference on Computer Support for Collaborative Learning Learning 2005: The next 10 Years!—CSCL’05, Taipei, Taiwan, May 30–June 4. Association for Computational Linguistics; Morristown: 2005. A New Method to Assess the Quality of Collaborative Process in CSCL. [ Google Scholar ]
  • Spitzberg Brian H. Methods of interpersonal skill assessment. In: Greene John O., Burleson Brant R., editors. The Handbook of Communication and Social Interaction Skills. Lawrence Erlbaum Associates; Mahwah: 2003. [ Google Scholar ]
  • Sternberg Robert. Intelligence, Wisdom, and Creativity: Three Is Better than One. Educational Psychologist. 1986; 21 :175–90. doi: 10.1207/s15326985ep2103_2. [ CrossRef ] [ Google Scholar ]
  • Sternberg Robert J., Funke Joachim. The Psychology of Human Thought: An Introduction. Heidelberg University Publishing (heiUP); Heidelberg: 2019. [ CrossRef ] [ Google Scholar ]
  • Sursock Andrée. Quality assurance and rankings: Some European lessons. In: Hazelkorn Ellen, Mihut Georgiana., editors. Research Handbook on University Rankings. Edward Elgar Publishing; Cheltenham: 2021. pp. 185–96. [ CrossRef ] [ Google Scholar ]
  • Sursock Andrée, Vettori Oliver. Qualitätskultur. Ein Blick in Die Gelebte Praxis der Hochschulen. Agency for Quality Assurance and Accreditation; Vienna: 2017. [(accessed on 2 November 2022)]. Quo vadis, quality culture? Theses from different perspectives; pp. 13–18. Available online: https://www.aq.ac.at/de/ueber-uns/publikationen/sonstige-publikationen.php [ Google Scholar ]
  • Sutter Éric. Certification et Labellisation: Un Problème de Confiance. Bref Panorama de La Situation Actuelle. Documentaliste-Sciences de l Information. 2005; 42 :284–90. doi: 10.3917/docsi.424.0284. [ CrossRef ] [ Google Scholar ]
  • Taddei François. Training Creative and Collaborative Knowledge-Builders: A Major Challenge for 21st Century Education. OCDE; Paris: 2009. [ Google Scholar ]
  • Thomas Keith, Lok Beatrice. Teaching Critical Thinking: An Operational Framework. In: Davies Martin, Barnett Ronald., editors. The Palgrave Handbook of Critical Thinking in Higher Education. Palgrave Macmillan US; New York: 2015. pp. 93–105. [ CrossRef ] [ Google Scholar ]
  • Thompson Jeri. Measuring Student Success Skills: A Review of the Literature on Complex Communication. National Center for the Improvement of Educational Assessment; Dover: 2020. [ Google Scholar ]
  • Thorndahl Kathrine L., Stentoft Diana. Thinking Critically about Critical Thinking and Problem-Based Learning in Higher Education: A Scoping Review. Interdisciplinary Journal of Problem-Based Learning 14. 2020 doi: 10.14434/ijpbl.v14i1.28773. [ CrossRef ] [ Google Scholar ]
  • Thornhill-Miller Branden. ‘Crea-Critical-Collab-ication’: A Dynamic Interactionist Model of the 4Cs (Creativity, Critical Thinking, Collaboration and Communication) 2021. [(accessed on 2 November 2022)]. Available online: http://thornhill-miller.com/newWordpress/index.php/current-research/
  • Thornhill-Miller Branden, Dupont Jean-Marc. Virtual Reality and the Enhancement of Creativity and Innovation: Underrecognized Potential Among Converging Technologies? Journal for Cognitive Education and Psychology. 2016; 15 :102–21. doi: 10.1891/1945-8959.15.1.102. [ CrossRef ] [ Google Scholar ]
  • Thornhill-Miller Branden, Millican Peter. The Common-Core/Diversity Dilemma: Revisions of Humean Thought, New Empirical Research, and the Limits of Rational Religious Belief. European Journal for Philosophy of Religion. 2015; 7 :1–49. doi: 10.24204/ejpr.v7i1.128. [ CrossRef ] [ Google Scholar ]
  • Tomasello Michael. Constructing a Language: A Usage-Based Theory of Language Acquisition. Harvard University Press; Cambridge: 2005. [ CrossRef ] [ Google Scholar ]
  • Uribe-Enciso Olga Lucía, Uribe-Enciso Diana Sofía, Vargas-Daza María Del Pilar. Pensamiento Crítico y Su Importancia En La Educación: Algunas Reflexiones. Rastros Rostros. 2017; 19 doi: 10.16925/ra.v19i34.2144. [ CrossRef ] [ Google Scholar ]
  • van der Vleuten Cees, van den Eertwegh Valerie, Giroldi Esther. Assessment of Communication Skills. Patient Education and Counseling. 2019; 102 :2110–13. doi: 10.1016/j.pec.2019.07.007. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • van Klink Marcel R., Boon Jo. Competencies: The triumph of a fuzzy concept. International Journal of Human Resources Development and Management. 2003; 3 :125–37. doi: 10.1504/IJHRDM.2003.002415. [ CrossRef ] [ Google Scholar ]
  • van Laar Ester, Van Deursen Alexander J. A. M., Van Dijk Jan A. G. M., de Haan Jos. The Relation between 21st-Century Skills and Digital Skills: A Systematic Literature Review. Computers in Human Behavior. 2017; 72 :577–88. doi: 10.1016/j.chb.2017.03.010. [ CrossRef ] [ Google Scholar ]
  • van Rosmalen Peter, Boyle Elizabeth A., Nadolski Rob, van der Baaren John, Fernández-Manjón Baltasar, MacArthur Ewan, Pennanen Tiina, Manea Madalina, Star Kam. Lecture Notes in Computer Science. Springer International Publishing; Cham: 2014. Acquiring 21st Century Skills: Gaining Insight into the Design and Applicability of a Serious Game with 4C-ID; pp. 327–34. [ CrossRef ] [ Google Scholar ]
  • Vincent-Lancrin Stéphan, González-Sancho Carlos, Bouckaert Mathias, de Luca Federico, Fernández-Barrerra Meritxell, Jacotin Gwénaël, Urgel Joaquin, Vidal Quentin. Fostering Students’ Creativity and Critical Thinking: What It Means in School. OECD Publishing; Paris: 2019. [ CrossRef ] [ Google Scholar ]
  • Voogt Joke, Roblin Natalie Pareja. A Comparative Analysis of International Frameworks for 21st Century Competences: Implications for National Curriculum Policies. Journal of Curriculum Studies. 2012; 44 :299–321. doi: 10.1080/00220272.2012.668938. [ CrossRef ] [ Google Scholar ]
  • Waizenegger Lena, McKenna Brad, Cai Wenjie, Bendz Taino. An Affordance Perspective of Team Collaboration and Enforced Working from Home during COVID-19. European Journal of Information Systems: An Official Journal of the Operational Research Society. 2020; 29 :429–42. doi: 10.1080/0960085X.2020.1800417. [ CrossRef ] [ Google Scholar ]
  • Watson Goodwin. Watson-Glaser Critical Thinking Appraisal. Psychological Corporation; San Antonio: 1980. [ Google Scholar ]
  • Watson Goodwin, Glaser Edwin M. Technical Manual and User’s Guide. Pearson; Kansas City: 2010. Watson-Glaser TM II critical thinking appraisal. [ Google Scholar ]
  • Weick Karl E. The collapse of sensemaking in organizations: The Mann Gulch disaster. Administrative Science Quarterly. 1993; 38 :628–52. doi: 10.2307/2393339. [ CrossRef ] [ Google Scholar ]
  • West Richard F., Toplak Maggie E., Stanovich Keith E. Heuristics and Biases as Measures of Critical Thinking: Associations with Cognitive Ability and Thinking Dispositions. Journal of Educational Psychology. 2008; 100 :930–41. doi: 10.1037/a0012842. [ CrossRef ] [ Google Scholar ]
  • Whitmore Paul G. What are soft skills; Paper presented at the CONARC Soft Skills Conference; Fort Bliss, TX, USA. December 12–13; 1972. pp. 12–13. [ Google Scholar ]
  • Willingham Daniel T. Critical Thinking: Why Is It so Hard to Teach? Arts Education Policy Review. 2008; 109 :21–32. doi: 10.3200/AEPR.109.4.21-32. [ CrossRef ] [ Google Scholar ]
  • Wilson Sarah Beth, Varma-Nelson Pratibha. Small Groups, Significant Impact: A Review of Peer-Led Team Learning Research with Implications for STEM Education Researchers and Faculty. Journal of Chemical Education. 2016; 93 :1686–702. doi: 10.1021/acs.jchemed.5b00862. [ CrossRef ] [ Google Scholar ]
  • Winterton Jonathan, Deist Françoise Delamare-Le, Stringfellow Emma. Typology of Knowledge, Skills and Competences: Clarification of the Concept and Prototype. Office for Official Publications of the European Communities; Luxembourg: 2006. [ Google Scholar ]
  • World Economic Forum . New Vision for Education: Unlocking the Potential of Technology. World Economic Forum; Geneva: 2015. [ Google Scholar ]
  • World Economic Forum The Future of Jobs Report 2020. 2020. [(accessed on 2 November 2022)]. Available online: https://www.weforum.org/reports/the-future-of-jobs-report-2020
  • World Health Organization . Framework for Action on Interprofessional Education and Collaborative Practice. World Health Organization; Geneva: 2010. No. WHO/HRH/HPN/10.3. [ PubMed ] [ Google Scholar ]
  • Yue Meng, Zhang Meng, Zhang Chunmei, Jin Changde. The Effectiveness of Concept Mapping on Development of Critical Thinking in Nursing Education: A Systematic Review and Meta-Analysis. Nurse Education Today. 2017; 52 :87–94. doi: 10.1016/j.nedt.2017.02.018. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Zielke Stephan, Dobbelstein Thomas. Customers’ Willingness to Purchase New Store Brands. Journal of Product & Brand Management. 2007; 16 :112–21. doi: 10.1108/10610420710739982. [ CrossRef ] [ Google Scholar ]
  • Zlatić Lidija, Bjekić Dragana, Marinković Snežana, Bojović Milevica. Development of Teacher Communication Competence. Procedia, Social and Behavioral Sciences. 2014; 116 :606–10. doi: 10.1016/j.sbspro.2014.01.265. [ CrossRef ] [ Google Scholar ]

AOFIRS

  • Board Members
  • Management Team
  • Become a Contributor
  • Volunteer Opportunities
  • Code of Ethical Practices

KNOWLEDGE NETWORK

  • Search Engines List
  • Suggested Reading Library
  • Web Directories
  • Research Papers
  • Industry News

AOFIRS Knowledge Share Network

  • Become a Member
  • Associate Membership
  • Certified Membership
  • Membership Application
  • Corporate Application

Join Professional Group of Online Researchers

  • CIRS Certification Program
  • CIRS Certification Objectives
  • CIRS Certification Benefits
  • CIRS Certification Exam
  • Maintain Your Certification

Top Research Courses

  • Upcoming Events
  • Live Classes
  • Classes Schedule
  • Webinars Schedules

Online Research Training Program

  • Latest Articles
  • Internet Research
  • Search Techniques
  • Research Methods
  • Business Research
  • Search Engines
  • Research & Tools
  • Investigative Research
  • Internet Search
  • Work from Home
  • Internet Ethics
  • Internet Privacy

What are Research Skills and why are they important?

Internet research skills

Most jobs actually require some level of problem-solving. You may come across an impediment and come up with a question that you must answer in order to proceed. To answer this question, you will almost certainly need to conduct some research. People with research skills can identify a problem, gather informational resources that can help address the problem, assess the quality and relevance of these resources, and come up with an effective solution to the problem.

By the way, to diversify your research paper process you can find unique research paper topics .

What is Research?

Internet Research is the practice of conducting research using Internet information, particularly free information on Internet-based educational resources (such as Internet discussion forums).

Simply put, research is the process of discovering new knowledge. This knowledge can be either the development of new concepts or the advancement of existing knowledge and theories, leading to a new understanding that was not previously known.

In fact, almost every profession or job necessitates some level of research and research skills. As long as you encounter a question, which is a natural occurrence in almost everything, you should encounter an opportunity to conduct research. When there is a need for research, strong research skills come in handy.

What are Research Skills?

Research skills enable you to focus on a specific goal, gather relevant information, and communicate your findings to others. We are taught from a young age to develop research skills, and for good reason.

Teachers in academia required answers to a series of topic-related questions in an essay. Similarly, your boss may eventually request that you investigate a work-related topic or figure out how to solve a problem.

Why are Research Skills Important?

Research skills are important in the workplace for a variety of reasons, including the ability for individuals and businesses to:

  • Develop new processes and outcomes. You don't have to be involved in research and development to improve the way your team works. Any sensible employer will value your efforts in researching new processes that will make your job (and those of your team) more efficient.
  • Personal Growth. People who have a knack and a passion for research are never satisfied with doing things the same way they've always done them. Organizations require independent thinkers who will seek their own answers and continually improve their skills. These employees will also learn new technologies more quickly.
  • Customer relationship management. In almost every industry, being able to conduct research on your customer base is critical. It's difficult to move products or sell services if you don't know what people want. It is a valuable responsibility to research your customer base's interests, needs, and pain points.
  • Cost Effective. Whether your organization is launching a new product or simply trying to cut costs, research is critical for identifying wasted resources and redirecting them to more worthy causes. Anyone who goes out of their way to find ways for the company to save money will be praised by their boss.
  • Competitor Analysis. Knowing what your top competitors are up to is crucial for any company. If a company wants to stay functioning, it must research what works for its competitors, what they do better than you, and where it may improve its standing with the least amount of resources.

Types of Research Skills

Experienced researchers understand that conducting a worthwhile investigation necessitates a wide range of abilities. Consider which research abilities you have naturally and which you could improve.

Goal Setting

You must first know what you're looking for before you can conduct any form of productive research. Setting goals is a skill just like any other. It will be lot easier to construct a path there if you can imagine the conclusion you're aiming to attain by investing effort into research. Goal-setting skills include:

  • Specificity
  • Time-Management
  • Planning ahead
  • Organization
  • Accountable

Data Collection

The collection of data is often the first thing to remember when thinking about the research process. It is a systematic process to collect and measure information on variables of interest that allows one to respond to research questions, to test hypothesis and to assess results.

Simply collecting facts and information on the internet can meet your needs for some purposes. More direct and popular research may be needed by others. You will be more impressive with your experience in different methods of data collection. Methods of data collection are:

  • Questionnaires and surveys
  • Observations
  • Documents and records
  • Focus groups
  • Oral histories

Evaluate and Analyze Information and Sources

In research, it is important to find reliable information suitable for your task. Some tasks may require the use of certain types of sources, such as primary or secondary sources or certain types of journals, like scientific journals. You may need to restrict the numbers sources you use for other assignments.

In all cases, the information contained in your assignments should always be assessed. Knowing how to assess information helps you with research tasks and with your life's bigger decisions. Knowing where to go for information that is relevant, credible, and accurate can assist you in making informed decisions about graduate school, a new car purchase, financial aid opportunities, daycare options, and other topics.

  • Published books
  • Encyclopedias
  • Scholarly journals
  • Library catalogs

Using the internet to gather information

Search engines are used to find the majority of information on the Internet. A search engine is an online service that employs web robots to query millions of web pages and compile an index of the results. Internet users can then utilize these services to search the web for information. While it is beneficial to consult different sources, today's research is driven by good online research skills.

One of the greatest things about the internet is how much information it holds; unfortunately, getting to the data you need requires sifting through a lot of rubbish. Employers value the ability to efficiently utilise the large reservoir of knowledge available on the internet without getting lost in the clutter. The following are some examples of internet research skills:

  • Source checking
  • Searching relevant questions
  • Exploring deeper than the first options
  • Avoiding distraction
  • Giving credit
  • Organizing findings

Due to the sheer size of the World Wide Web, and with the rapid growth of indexed web pages, finding relevant and reliable information demands specialized training and Internet research skills . We provide a centralized virtual platform for knowledge professionals that use the Internet as a primary source of information. This AofIRS is more than just a virtual collaboration and networking platform for researchers and knowledge professionals. The website is filled with free, up-to-date content and reference material that is ideal for research.

Interviewing

Some research projects may demand a more hands-on approach than relying just on online resources. In the research process, being prepared with great interviewing skills can be really beneficial. Interviews can be a good way to get first-hand knowledge for your research, and knowing how to conduct an effective interview can help you improve your research skills. Interviewing abilities include:

  • A plan of action
  • Specific, pointed questions
  • Respectfulness
  • Considering the interview setting
  • Actively Listening
  • Taking notes

Report Writing

Report writing skills can help you in both your employment and your academic studies. In any case, the overall goal of a report is to transmit specific facts to its audience.

Communication is crucial for effective report writing. Your supervisor, professor, or general reader should comprehend your findings and conclusions clearly. Skills in report writing include:

  • Formatting is important.
  • Including a synopsis
  • Keeping your focus on your main goal
  • Developing a plan
  • Proofreading\sDirectness

Critical Thinking

Critical thinking skills can help you a lot in the research process and in general as an employee. Your data analysis skills are referred to as critical thinking. When you're conducting research, you'll need to be able to interpret your findings and make rational judgments based on them. The following are examples of critical thinking skills:

  • Observation
  • Assessing issues
  • Problem-solving
  • Communication

Planning and Scheduling 

The development of baseline productivity and success standards is one of the most significant components of planning and scheduling. You won't know if you're meeting goals until you have a particular strategy in place with a specific desired outcome defined by a completion date.

It also makes time management considerably easy. Employers value planning and scheduling abilities because they suggest a well-prepared employee. Skills in planning and scheduling include:

  • Setting objectives
  • Identifying tasks
  • Prioritizing
  • Delegating if needed
  • Time-management

Note-taking

Research involves sifting through and taking in lots of information. Taking thorough notes ensures that you do not overlook any findings and allows you to communicate these findings to your coworkers. Being able to take good notes aids in the summarization of research. Here are some examples of note-taking abilities:

  • Using short-hand
  • Keeping your goal in mind
  • Emphasizing important points
  • Reviewing notes afterward

Time Management

Unfortunately, we only have 24 measly hours in a day. In a professional setting, the ability to effectively manage this time is extremely valuable. Hiring managers look for candidates who can complete tasks within a specific time frame.

Strong time management skills imply that you can organize a strategy for breaking down larger tasks in a project and completing them by a deadline. Improving your time management skills can significantly boost the productivity of your research. Time management abilities include the following:

  • Creating task outlines
  • Thinking strategically
  • Stress-management
  • Utilizing resources
  • Setting reasonable expectations
  • Meeting deadlines

Other Helpful Research Skills

The definition of research skills is broad, and there are many traits that could help you in the research process. Consider some of the additional research skills below.

  • Attention to detail
  • Reading and writing skills
  • Considering keywords
  • Competitor comparison
  • Multitasking
  • Summarization
  • Presentation

How to Improve Your Research Skills

The great thing about research skills is that many of us use them on a daily basis. When you use a search engine to find information on a topic, you are conducting research. However, there are more proactive ways to begin improving your research skills today:

  • Make a distinction between source quality. A researcher's worst source determines how good they are. Start paying attention to the quality of the sources you're using, and be wary of anything you read until you've double-checked the attributions and works cited. Examine the author's bias, the author's research's alignment with the greater body of confirmed research in the subject, and the journal that sponsored or published the research.
  • Verify information from several sources. It gets increasingly trustworthy when you can verify information from a variety of sources. If you want to strengthen your belief in one source, check if you can locate another that agrees with it. When you run into contradictions and conflicts in your study, you know you need to keep going until you reach a more definitive conclusion.
  • Don't be influenced by confirmation bias. Confirmation bias occurs when a researcher expects a specific result and then searches for data to support that hypothesis, ignoring any sources that contradict or invalidate the researcher's initial idea. Be ready for unexpected responses and keep an open mind. Also, keep in mind that you might not be able to discover a definitive answer. It's preferable to provide the important points of your research to someone (such as your employer) and explain that it didn't lead to a concrete plan of action than to alter your data and give the answer you or your boss want to hear.
  • Stay organized. You'll encounter a lot of material during the data gathering process, from webpages to PDFs to videos. To avoid losing something or not being able to properly mention something, it's critical that you maintain all of this information organized in some way. There are numerous methods for keeping your research project structured, but here are a few of the most common: Bookmarks in your browser, index cards, and an annotated bibliography that you update as you go are all useful tools.
  • Develop your research skills. Professional certification will help you improve your research skills. CIRS™ (Certified Internet Research Specialist), is by far the only professional credential that meets this challenge. Professional researchers owe it to themselves to seek structured certification programs and stay in touch with new materials and tools that are available to transform research problems from very difficult or impossible to quick and simple tasks. We have developed a CIRS Certification (Certified Internet Research Specialist) to educate and train Online Researchers that now form a significantly large group of people involved in digital information research work.
  • Get specific as you go. There's nothing wrong with commencing your investigation in a broad sense. After all, it's critical to become acquainted with the vocabulary and substance of the researcher's results before delving into the details. Orienting yourself to a new topic is an important step that will prevent you from being discouraged and working backwards.
  • Learn how to spot a reliable source. Because not all sources are trustworthy, it's critical to be able to distinguish between the good and the bad. To find a trustworthy source, utilize your critical thinking and analytical skills to ask yourself the following questions: Is this source consistent with other sources I've discovered? Is the author a subject matter expert? Is there a conflict of interest in the author's point of view on this subject?

If you're ready to conduct research to enhance your search efforts, the following resources will be useful:

  • Educational Search Engines for Students
  • Top 100  Academic Search Engines
  • 3 ways to help students do efficient online research

Live Classes Schedule

  • JUN 14 CIRS Certification Internet Research Training Program Live Classes Online
  • JUN 14 Web Search Methods & Techniques Live Training Live Classes Online

World's leading professional association of Internet Research Specialists - We deliver Knowledge, Education, Training, and Certification in the field of Professional Online Research. The AOFIRS is considered a major contributor in improving Web Search Skills and recognizes Online Research work as a full-time occupation for those that use the Internet as their primary source of information.

Get Exclusive Research Tips in Your Inbox

  • Privacy Policy
  • Terms & Conditions
  • Advertising Opportunities
  • Knowledge Network

twitter button

The Higher Education Review

The Higher Education Review

  • Engineering
  • Jobs and Careers
  • Media and Mass Communication
  • Education Consultancy
  • Universities

how essential is critical thinking and communication skills in academic research

Why Communication and Critical Thinking are the Most Essential 21st Century Skills

Download now complete list of top private engineering colleges.

  • Scroll to top
  • Dark Light Dark Light

SurveyPoint

Everything You Need To Know About Top Skills in 2024

  • Author Survey Point Team
  • Published June 14, 2024

Skills

As we move deeper into the 21st century, the skills required to thrive in both professional and personal arenas continue to evolve. The year 2024 brings with it new challenges and opportunities, necessitating a fresh look at the competencies that can help individuals stand out. From technological adeptness to emotional intelligence, here are the top skills you need to outshine in 2024.

Table of Contents

1. Digital Literacy

In an increasingly digital world, proficiency with technology is no longer optional. Understanding digital tools, platforms, and trends is crucial. This includes:

  • Basic Coding and Programming : Knowing the fundamentals of coding can open doors to understanding how digital systems work.
  • Data Analysis : The ability to interpret and draw insights from data is invaluable in decision-making processes across industries.
  • Cybersecurity Awareness : Protecting personal and professional data from cyber threats is essential in the digital age.

2. Emotional Intelligence (EI)

While technical skills are critical, emotional intelligence is equally important. EI involves:

  • Self-awareness : Understanding your emotions and their impact on others.
  • Empathy : Recognizing and considering others’ feelings, fostering better teamwork and communication.
  • Adaptability : Managing emotions in dynamic situations and responding effectively to change.

3. Critical Thinking and Problem-Solving

Employers value individuals who can think critically and solve complex problems. This skill set includes:

  • Analytical Thinking : Breaking down complex problems into manageable parts.
  • Creativity : Developing innovative solutions to challenges.
  • Decision-Making : Assessing situations and making informed, timely decisions.

4. Effective Communication

Clear and effective communication remains a cornerstone of professional success. This encompasses:

  • Verbal Communication : Articulating ideas clearly and confidently.
  • Written Communication : Crafting compelling and precise written content.
  • Listening Skills : Active listening to understand and respond appropriately.

5. Adaptability and Flexibility

The pace of change in the modern world demands adaptability. Being flexible means:

  • Learning Agility : Quickly learning new skills and concepts.
  • Open-Mindedness : Being receptive to new ideas and perspectives.
  • Resilience : Bouncing back from setbacks and maintaining productivity.

6. Leadership and Team Collaboration

Strong leadership and teamwork skills are essential, even for non-managerial roles. This includes:

  • Motivating Others : Inspiring and guiding team members towards goals.
  • Conflict Resolution : Managing and resolving disputes effectively.
  • Delegation : Assigning tasks based on team members’ strengths and maintaining accountability.

7. Cultural Competence

In a globalized world, cultural competence is increasingly important. This involves:

  • Cultural Awareness : Understanding and respecting cultural differences.
  • Global Mindset : Thinking globally and appreciating diverse perspectives.
  • Language Skills : Proficiency in multiple languages can be a significant asset.

8. Sustainability and Ethical Awareness

With growing emphasis on sustainability, understanding environmental impact and ethical practices is crucial. This includes:

  • Sustainable Practices : Implementing and advocating for eco-friendly practices.
  • Ethical Decision-Making : Making choices that consider ethical implications and social responsibility.
  • Corporate Social Responsibility (CSR) : Understanding and participating in CSR initiatives.

9. Financial Literacy

Financial skills are essential for both personal and professional growth. This involves:

  • Budgeting and Forecasting : Managing finances effectively.
  • Investment Knowledge : Understanding investment strategies and financial markets.
  • Risk Management : Identifying and mitigating financial risks.

10. Continuous Learning and Development

The most successful individuals are those who commit to lifelong learning. This involves:

  • Professional Development : Pursuing courses, certifications, and training.
  • Personal Growth : Engaging in activities that foster personal development.
  • Curiosity : Maintaining a desire to learn and explore new areas.

As we navigate the complexities of 2024, the ability to adapt and excel in various skill areas will be more important than ever. By focusing on digital literacy, emotional intelligence, critical thinking, effective communication, adaptability, leadership, cultural competence, sustainability, financial literacy, and continuous learning, individuals can position themselves to outshine in their professional and personal lives. Embracing these skills will not only enhance career prospects but also contribute to overall personal growth and fulfillment. For more information checkout- surveypoint.ai

Survey Point Team

Recent posts.

Unraveling the Fabric of Social Networking: All You Need To Know

  • Posted by Survey Point Team

Unraveling the Fabric of Social Networking: All You Need To Know

INDIA

Everything You Need To Know About NDA and INDIA Alliances

Soft Drinks

All You Need To Know About The Health Impact of Soft Drinks in India

how essential is critical thinking and communication skills in academic research

  • All topics »
  • Fact sheets
  • Feature stories
  • Publications
  • Questions & answers
  • Tools and toolkits
  • Coronavirus disease (COVID-19) pandemic
  • Ukraine emergency
  • Environment and health

how essential is critical thinking and communication skills in academic research

  • Calls for experts
  • Initiatives
  • European Programme of Work
  • Sustainable Development Goals
  • The Pan-European Mental Health Coalition
  • Empowerment through Digital Health
  • The European Immunization Agenda 2030
  • Healthier behaviours: incorporating behavioural and cultural insights
  • Moving towards UHC
  • Protecting against health emergencies
  • Promoting health and well-being
  • News stories
  • Media releases
  • Photo stories
  • Questions and answers
  • Media Contacts

Newsletters

  • European Health Information Gateway
  • European health report
  • Core health indicators
  • WHO Immunization Data portal
  • Noncommunicable diseases (NCD) dashboard 
  • Events 
  • Teams »
  • Data and digital health
  • Policy & Governance f. Health through the Life Course
  • Groups and networks »
  • Health Evidence Network (HEN)

The European Health Report 2021 »

european health report 2021

  • Conflict in Israel and the occupied Palestinian territory
  • Armenian refugee health response
  • Climate crisis: extreme weather
  • Türkiye and Syria earthquakes
  • About health emergencies
  • Health emergencies newsletter 
  • Health emergencies list

how essential is critical thinking and communication skills in academic research

  • Regional Director
  • Executive Council
  • Technical centres
  • Faces of WHO
  • Regional Committee for Europe
  • Standing Committee
  • Partners 
  • Groups and networks
  • WHO collaborating centres

74th session of the WHO Regional Committee for Europe

74th session of the WHO Regional Committee for Europe

Call for Experts: Technical Advisory Group on Behavioural and Cultural Insights (TAG-BCI)

Issued on: 24/06/2024

Deadline: 31/08/2024

The World Health Organization (WHO) is seeking experts to serve as members of the Technical Advisory Group on Behavioural and Cultural Insights (TAG-BCI), established in the WHO Regional Office for Europe (WHO/Europe). This Call for experts provides information about the TAG-BCI, the expert profiles being sought, the process to express interest, and the process of selection.

Behaviours have a critical impact on health and well-being. Health behaviours, including lifestyles or the way people interact with health systems, have extensive implications for health status, equity, health system capacity, costs and more. It is therefore crucial that the complex factors affecting health behaviour are being explored and used to develop evidence-based interventions.

In September 2020, the 53 Member States in the WHO European Region adopted the European Programme of Work, 2020–2025 – “United action for better health” (EPW), which identifies Behavioural and Cultural Insights (BCI) as a flagship initiative working to advance the use of evidence-based and people-centred approaches to health. There is growing evidence across different health areas and countries demonstrating that BCI-related work contributes to improving the outcomes of health-related policies, services and communication, including by making them more relevant, effective, equitable, sustainable, inclusive and people-centred. Yet, BCI in health remains underexplored and underutilized and subject to modest investment in many places globally and in the WHO European Region.

BCI here refers to a broad field of work drawing on existing approaches from the fields of behavioural and social sciences, cultural studies, health humanities, and related fields. Guided by the ‘Tailoring Health Programmes’ approach, the work involves the systematic exploration of individual and contextual factors affecting health behaviours; the use of global and local evidence to improve the outcomes of health-related policies, services and communication, delivering better health and reducing inequity; and the robust evaluation of these interventions.

The TAG-BCI acts as an advisory body to the BCI Unit at WHO/Europe, with the aim to advance the use of evidence-based and people-centred approaches to health-related behaviours in the Member States of the Region.

In line with the Resolution: European regional action framework for behavioural and cultural insights for equitable health, 2022–2027 , the vision is a Region where health-related policies, services and communication deliver better health and reduce health inequity owing to the systematic application of BCI approaches in their development, implementation and evaluation. This vision is advanced through five strategic commitments made by Member States: to:

  • build understanding and support of BCI among key stakeholders;
  • conduct BCI research;
  • apply BCI to improve outcomes of health-related policies, services and communication;
  • commit human and financial resources for BCI and ensure their sustainability;
  • implement strategic plan(s) for the application of BCI for better health.

The work of the BCI Unit seeks to support Member States in advancing the use of BCI for health through four workstreams:

  • In-country work: technical support to health authorities in the Region to conduct BCI-related work;
  • Capacity-building: trainings at regional, sub-regional and in-country levels, online and in-person;
  • Evidence: publication of guidance, policy considerations, evidence;
  • Advocacy: visibility, partnership and stakeholder relations to advance the use of BCI for health.

The WHO European Region comprises 53 Member States, covering a vast geographical Region with a high degree of diversity as regards health, health systems, income levels, socio-economic conditions, political systems, historic and cultural contexts and more.

Functions of the TAG-BCI

In its capacity as an advisory body to WHO/Europe, the TAG-BCI shall have the following functions:

  • To advise the WHO Regional Office for Europe on strategic opportunities for the BCI work, including identifying and describing current and future challenges where BCI can be leveraged, in order to accelerate action towards broader regional and global health goals and strategies;
  • To provide technical advice and expertise to the BCI Unit in the development of academic projects, research protocols, technical documents and policy recommendations on BCI, particularly with regard to the state of the evidence and relevant policy innovations;
  • In line with WHO strategic documents and specific requests, to contribute to advancing the use of BCI for health across the Region, including through increased visibility and advocacy-related activities; and
  • To advise the BCI Unit in the implementation of interventions and activities at country and regional levels, including through reviewing documents related to research projects.

Member must be free of conflicts of interest. Membership is personal, and no members will represent their employer or an organization which they are affiliated with. See more information below.

Operations of the TAG-BCI

The TAG-BCI shall normally meet in plenary once or twice each year. Meetings are topic-based and TAG-BCI members will need to prepare presentations, considerations and input on the topic in question (for example, behaviours and health equity, cost-effectiveness of health behavioural interventions, dimensions of stakeholder engagement, or the cultural contexts of health behaviours). WHO/Europe may convene additional meetings of the TAG-BCI or its sub-groups as needed. Meetings may be held in person (at the WHO Regional office for Europe in Copenhagen or another location, as determined by WHO/Europe) or virtually, using online meeting options.

TAG-BCI members may be invited by WHO/Europe over email to review documentation or provide their advice and feedback for consideration, in accordance with the TAG-BCI functions, outside of TAG-BCI meetings.

The working language of the TAG-BCI will be English.

Participation entails the following:

  • Members will be appointed to serve for a period of 2 years and shall be eligible for reappointment.
  • TAG-BCI members are expected to attend meetings. If a member misses two consecutive meetings, WHO/Europe may end his/her appointment as member of the TAG-BCI.
  • Active participation is expected from all TAG-BCI members, including in online meetings and interaction over email. Members may be required to review strategic and technical documents in advance of meetings and provide their views for consideration by the TAG-BCI.
  • WHO/Europe shall determine the modes of communication with the TAG-BCI.

Who can express interest?

The TAG-BCI will be multidisciplinary, with members who have a range of technical knowledge, skills and experience relevant to behavioural and cultural insights and as mentioned below. Knowledge of WHO’s mandate and ways of working or experience with working or engaging with WHO are not a requirement but is an advantage for TAG members. Approximately 8 members may be selected.

WHO seeks to put together a TAG-BCI with a diverse set of skills, expertise and experience and with different perspectives on health behaviours, encompassing behavioural science, the cultural context of behaviours and other relevant dimensions to behaviour, such as political, health systems, equity, communications, digital/AI and other.

WHO welcomes expressions of interest from individuals with expertise/experience working with behaviours, including researchers, public health experts and practitioners, policy-makers, healthcare professionals, innovators and other professionals.

Applicants from outside the Region will be accepted, but priority will be given to applicants within the Region and to ensure representation from its various subregions.

Submitting your expression of interest

To register your interest in being considered for the TAG-BCI, please submit the following documents by 31 August 2024, 24:00h (midnight) CET using the following online form:

and including the following documents:

  • Your curriculum vitae; and
  • A signed and completed Declaration of Interests (DOI) form for WHO Experts, available at:

After submission, your expression of interest will be reviewed by WHO. Due to an expected high volume of interest, only selected individuals will be informed.

Important information about the selection processes and conditions of appointment

Members of WHO advisory groups (AGs) must be free of any real, potential or apparent conflicts of interest. To this end, applicants are required to complete the WHO Declaration of Interests for WHO Experts, and the selection as a member of an AG is, amongst other things, dependent on WHO determining that there is no conflict of interest or that any identified conflicts could be appropriately managed (in addition to WHO’s evaluation of an applicant’s experience, expertise and motivation and other criteria).

All AG members will serve in their individual expert capacity and shall not represent any governments, any commercial industries or entities, any research, academic or civil society organizations, or any other bodies, entities, institutions or organizations. They are expected to fully comply with the Code of Conduct for WHO Experts. AG members will be expected to sign and return a completed confidentiality undertaking prior to the beginning of the first meeting.

At any point during the selection process, telephone interviews may be scheduled between an applicant and the WHO Secretariat to enable WHO to ask questions relating to the applicant’s experience and expertise and/or to assess whether the applicant meets the criteria for membership in the relevant AG.

The selection of members of the AGs will be made by WHO in its sole discretion, taking into account the following (non-exclusive) criteria: relevant technical expertise; experience in international and country policy work; communication skills; and ability to work constructively with people from different cultural backgrounds and orientations .The selection of AG members will also take account of the need for diverse perspectives from different regions, especially from low and middle-income countries, and for gender balance.

If selected by WHO, proposed members will be sent an invitation letter and a Memorandum of Agreement. Appointment as a member of an AG will be subject to the proposed member returning to WHO the countersigned copy of these two documents.

WHO reserves the right to accept or reject any expression of interest, to annul the open call process and reject all expressions of interest at any time without incurring any liability to the affected applicant or applicants and without any obligation to inform the affected applicant or applicants of the grounds for WHO's action. WHO may also decide, at any time, not to proceed with the establishment of the AG, disband an existing AG or modify the work of the AG.

WHO shall not in any way be obliged to reveal, or discuss with any applicant, how an expression of interest was assessed, or to provide any other information relating to the evaluation/selection process or to state the reasons for not choosing a member.

WHO may publish the names and a short biography of the selected individuals on the WHO internet.

AG members will not be remunerated for their services in relation to the AG or otherwise. Travel and accommodation expenses of AG members to participate in AG meetings will be covered by WHO in accordance with its applicable policies, rules and procedures.

The appointment will be limited in time as indicated in the letter of appointment.

If you have any questions about this “Call for experts”, please write to [email protected] well before the applicable deadline (31 August 2024).

Related Highlight

Code of Conduct for WHO Experts

Declaration of Interest (DOI) form for WHO Experts

BCI at WHO/Europe

Technical work

Terms of Reference (TOR)

TAG-BCI 

IMAGES

  1. Critical Thinking Definition, Skills, and Examples

    how essential is critical thinking and communication skills in academic research

  2. 10 Essential Critical Thinking Skills (And How to Improve Them

    how essential is critical thinking and communication skills in academic research

  3. Guide to improve critical thinking skills

    how essential is critical thinking and communication skills in academic research

  4. Critical Thinking Skills Chart

    how essential is critical thinking and communication skills in academic research

  5. Critical_Thinking_Skills_Diagram_svg

    how essential is critical thinking and communication skills in academic research

  6. Critical Thinking Skills

    how essential is critical thinking and communication skills in academic research

VIDEO

  1. writing skills and it's types/writing skills

  2. 5 Tips To Improve Critical Thinking What is How To Develop Critical Thinking #EnergeticRavi

  3. Top 10 Tips for Teaching Critical Thinking

  4. Module 6

  5. Does Philosophy Make You Successful? (Unpacking the Benefits of Big Ideas)

  6. Communication Leadership: January Info Session

COMMENTS

  1. What is Critical Thinking in Academics

    Critical thinking is the disciplined art of analysing and evaluating information or situations by applying a range of intellectual skills. It goes beyond mere memorisation or blind acceptance of information, demanding a deeper understanding and assessment of evidence, context, and implications. Moreover, paraphrasing in sources is an essential ...

  2. Critical Thinking in Academic Research

    About the Book. Critical Thinking in Academic Research - 2nd Edition provides examples and easy-to-understand explanations to equip students with the skills to develop research questions, evaluate and choose the right sources, search for information, and understand arguments. This 2nd Edition includes new content based on student feedback as ...

  3. Bridging critical thinking and transformative learning: The role of

    Perspective-taking is essential to critical thinking. In fact, I maintain that critical thinking is best construed as a dynamic process between arousing and resolving states of doubt. ... using critical thinking skills in a way that results in transformative learning will likely include a state of doubt as a pivotal stage in the process ...

  4. What Is Critical Thinking?

    Critical thinking is important in all disciplines and throughout all stages of the research process. The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both. In academic writing, critical thinking can help you to determine whether a source: Is free from research bias ...

  5. The Importance of Critical Thinking Skills in Research

    The answer is critical thinking skills. The more that academic research becomes governed by policies outside of the research process, the less opportunity there will be for researchers to exercise such skills. True research demands new ideas, perspectives, and arguments based on willingness and confidence to revisit and directly challenge ...

  6. PDF The Role of Critical Thinking in Academic

    Research on academic composition has increasingly questioned the nature and value of critical thinking in anglophone academic practices, much of it focussing on the challenges which international students face in developing and implementing a critical dimension in their writing (see Zamel 1993, 1995, Fox 1994, Casanave 2004).

  7. Critical Thinking and Academic Research: Intro

    Critical Thinking and Academic Research. Academic research focuses on the creation of new ideas, perspectives, and arguments. The researcher seeks relevant information in articles, books, and other sources, then develops an informed point of view within this ongoing "conversation" among researchers. The research process is not simply collecting ...

  8. Critical Thinking and Academic Research: Information

    Research involves applying critical thinking to information, whether it comes from an encyclopedia entry, a journal article, a website, or a documentary. A researcher analyzes the material and develops a perspective on it. The goal is to think critically about the information, not simply repeat its ideas. The purpose of your research and the ...

  9. The effectiveness of collaborative problem solving in promoting

    This outcome is in line with some research findings; as an example, a successful strategy is to encourage learners to collaborate, come up with solutions, and develop critical thinking skills by ...

  10. Enhancing undergraduates' critical thinking through research engagement

    Critical thinking (CT) ability, which involves both a set of analytical skills and dispositional qualities (Facione, 1990), is an important component that students can acquire from research and apply in their present and future academic and work context.

  11. Exploring the characteristics of undergraduates' Critical thinking

    1. Introduction. In the 21st century, with rapid technological changes and a more global economy, critical thinking is considered a highly required skill for college graduates to enter the workplace (Hart Research Associates, 2015).It has been a major goal of higher education to improve students' critical thinking (Al-Zou'bi, 2021).The Association of American Colleges and Universities (2011 ...

  12. Exploring the Connection between Critical Thinking Skills and Academic

    Not many realize that writing and thinking are interrelated in many ways. The teaching of critical thinking skills can be embedded in the teaching of writing in the classroom. This study explores ...

  13. Empowering students to develop research skills

    Empowering students to develop research skills. February 8, 2021. This post is republished from Into Practice, a biweekly communication of Harvard's Office of the Vice Provost for Advances in Learning. Terence D. Capellini, Richard B Wolf Associate Professor of Human Evolutionary Biology, empowers students to grow as researchers in his Building the Human Body course through a comprehensive ...

  14. Creativity, Critical Thinking, Communication, and Collaboration

    The individual assessment of critical thinking skills presents a number of ... Why Communication Education Is Important: A Third Study on the Centrality of the Discipline's Content and Pedagogy. Communication Education. 2017; 66:402 ... International Journal of Academic Research in Business and Social Sciences. 2019; 9:1021-35 ...

  15. Assessing Written Communication in Higher Education: Review and

    Written communication is considered one of the most critical competencies for academic and career success, as evident in surveys of stakeholders from higher education and the workforce. ... Written communication skills are crucial for the workplace, yet many employers perceive college graduates as being underprepared for the writing tasks ...

  16. PDF Action Research: The Development of Critical Thinking Skills Tammy

    ACTION RESEARCH: DEVELOP CRITICAL THINKING SKILLS 2 Abstract Critical thinking is the focal point missed in many students' educations. Students are taught memorization with little time left for the development of critical thinking skills which allows for a deeper understanding and a richer experience.

  17. What Are Critical Thinking Skills and Why Are They Important?

    According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills. Very helpful in promoting creativity. Important for self-reflection.

  18. Full article: Fostering critical thinking skills in secondary education

    Our critical thinking skills framework. The focus on critical thinking skills has its roots in two approaches: the cognitive psychological approach and the educational approach (see for reviews, e.g. Sternberg Citation 1986; Ten Dam and Volman Citation 2004).From a cognitive psychological approach, critical thinking is defined by the types of behaviours and skills that a critical thinker can show.

  19. Developing Critical Thinking and Communication Skills in Students

    A correlational research design was used to investigate the correlation between (1) critical thinking and communication skills; (2) critical thinking and learning outcomes; (3) communication ...

  20. What are Research Skills and why are they important?

    Research skills enable you to focus on a specific goal, gather relevant information, and communicate your findings to others. We are taught from a young age to develop research skills, and for good reason. Teachers in academia required answers to a series of topic-related questions in an essay. Similarly, your boss may eventually request that ...

  21. Critical Thinking and it's Importance in Education

    Critical thinking occurs when students are. analyzing, evaluating, in terpreting, or synthesizing information and applying. creative thought to form an argument, solve a problem, or reach a ...

  22. Why Communication and Critical Thinking are the Most Essential 21st

    Most of the times, critical thinkers are not intimated by others or adverse conditions. Having the ability to assimilate thoughts according to data analyzation and logic helps a critical thinker to establish a rational connection between ideas and reality. Some of the other reasons Why Communication and Critical Thinking are the most essential ...

  23. For Students: Information Literacy

    It is a combination of research skills, critical thinking skills, computer technology skills, and communication skills. Information literacy is essential for academic success, effective functioning in the workplace, and participation in society as knowledgeable citizens.

  24. Everything You Need To Know About Top Skills in 2024

    Effective Communication. Clear and effective communication remains a cornerstone of professional success. This encompasses: Verbal Communication: Articulating ideas clearly and confidently. Written Communication: Crafting compelling and precise written content. Listening Skills: Active listening to understand and respond appropriately. 5.

  25. Call for Experts: Technical Advisory Group on Behavioural and Cultural

    The selection of members of the AGs will be made by WHO in its sole discretion, taking into account the following (non-exclusive) criteria: relevant technical expertise; experience in international and country policy work; communication skills; and ability to work constructively with people from different cultural backgrounds and orientations ...